

Mass ejection from compact binary merger and r-process nucleosynthesis

Yuichiro Sekiguchi (Toho University)

S. Wanajo, N. Nishimura, K. Kyutoku, M. Tanaka, K. Hotokezaka, H. Nagakura, K. Kiuchi, M. Shibata, K. Taniguchi

Solar abundance of nuclei

Solar abundance of nuclei

Basic feature : exponential decay with mass number + constant tail

<u>Characteristic</u> <u>features:</u>

- Peak in iron-group
- Deficient of D, Li, Be, and B
- Enhancement of α nuclei (C, O, Ne, Si,..)
- Peaks in heavier region associated with n-magic numbers,

 made by neutron capture processes

Neutron capture processes: free from Coulomb barrier

To be an alchemist : recipe to cook gold

Neutron capture : packing neutrons into 'seed' nuclei n + (Z,N) ⇒ (Z,N+1)

- Large #neutron/#seed ratio is required
- ► A(gold) A (seed) ~ 100

• (1) Low electron fraction **Ye**

- Ye = number of electrons per baryon ~ # of proton ~ 1 - # of neutron
- To have a large number of free neutrons

(2) Higher entropy per baryon

• To slow the seed nuclei production

(3) Short expansion timescale

 To freeze seed production with rapid decrease of temperature

What is the cite of r-process ?

Supernova (SN) explosion + PNS v-driven wind : (Burbidge et al. 1957)

- Nice review by Thomas Janka and Luc Roberts
 - Smaller entropy/per baryon than previously expected (e.g., Janka et al. 1997)
 - □ Previous expectation (s/kB > 200) => recent update s/kB ~ 100-150
 - b difficulty in preserving n-rich condition (Roberts et al. 2010, 2012; Wanajo 2013)
 - Neutrinos from PNS make the flow towards proton rich side via weak interactions
- difficulty in satisfying the universality of the abundance pattern of r-process rich stars

NS-NS(/BH) binary merger: (Lattimer & Schramm 1974)

- problems in terms of chemical evolution (Argust et al. 2004)
 - Resolution by Ishimaru et al. (2015); Hirai et al. (2015)
- Good news by Piran
- How about the universality : too neutron rich ejecta ?
- What is the ejecta mass ?
 - Topic of this talk

Key observations : Universality

Abundance pattern comparison :

- r-rich low metallicity stars
- Solar neighborhood

Low metallicity suggests

- Such stars experience a few r-process events
- preserve the pattern of the r-process events (chemical fossil)
 - Not the mixture of many events

Key observations : Universality

The abundance patterns agree well for Z >~ 55

suggests that <u>r-process event synthesize</u> <u>heavy elements with a</u> <u>pattern similar to solar</u> <u>pattern (Univsersality)</u>

Key observations : Universality

The patterns agree approximately for 35 < Z < 50 but show some diversity (factor of few)

Weakly universal ?

We also consider this 'weak universality'

What is the cite of r-process ?

Supernova (SN) explosion + PNS v-driven wind : (Burbidge et al. 1957)

- Nice review by Thomas Janka and Luc Roberts
 - Smaller entropy/per baryon than previously expected (e.g., Janka et al. 1997)
 - □ Previous expectation (s/kB > 200) => recent update s/kB ~ 100-150
 - ▶ difficulty in preserving n-rich condition (Roberts et al. 2010, 2012; Wanajo 2013)
 - Neutrinos from PNS make the flow towards proton rich side via weak interactions
- difficulty in satisfying the universality of the abundance pattern of r-process rich stars

NS-NS(/BH) binary merger: (Lattimer & Schramm 1974)

- problems in terms of chemical evolution (Argust et al. 2004)
 - Resolution by Ishimaru et al. (2015); Hirai et al. (2015)
- Good news by Tsvi Piran
- How about the universality : too neutron rich ejecta ?
- How much is the ejecta mass ?
 - Topic of this talk

e.g., Matteucci et al. 2014, MNRAS, 438, 2177; Komiya et al. 2014, ApJ, 783, 132, Tsujimoto & Shigeyama, A&A, 565, L5

Chemical evolution of galaxies

- NS-NS/BH binary merger was observationally disfavored (Argast et al. 2004)
 - Too slow appearance of r-process elements
 - Iong merger time ~ 100Myr
 - Too large scattering
 - Iow event rate (~ 10^{-5~-4}/yr/gal) and larger mass per event

Chemical evolution of galaxies

A resolution of the problem in the chemical evolution model (*Hirai et al.* 2015; *Ishimaru et al.* 2015)

- Hierarchical merging paradigm : dwarf spheroidal galaxies are building block of the normal galaxies
 - [Fe/H] does not increase in the dwarf galaxies due to shallower gravitational potential
 - It takes ~ 300 Myr for [Fe/H] to start increasing
- Mixing in the star formation region (SNe feedback)
 - Reduces the dispersion of [Eu/Fe]
- NS-NS mergers with merger time
 ~ 300 Myr can reproduce the observed [Eu/Fe]

Time Gyr

What is the cite of r-process ?

Supernova (SN) explosion + PNS v-driven wind : (Burbidge et al. 1957)

- Nice review by Thomas Janka and Luc Roberts
 - Smaller entropy/per baryon than previously expected (e.g., Janka et al. 1997)
 - □ Previous expectation (s/kB > 200) => recent update s/kB ~ 100-150
 - ▶ difficulty in preserving n-rich condition (Roberts et al. 2010, 2012; Wanajo 2013)
 - Neutrinos from PNS make the flow towards proton rich side via weak interactions
- difficulty in satisfying the universality of the abundance pattern of r-process rich stars

NS-NS(/BH) binary merger: (Lattimer & Schramm 1974)

- problems in terms of chemical evolution (Argust et al. 2004)
 - Resolution by Ishimaru et al. (2015); Hirai et al. (2015)
- Good news by Piran
- How about the universality : too neutron rich ejecta ?
- How much is the ejecta mass ?
 - Topic of this talk

t=19.2435 ms

Animation by Hotokezaka

Sekiguchi et al. PRL (2011a, 2011b) Kiuchi et al. PRL (2010); Hotokezaka et al. (2013)

Dynamical Mass ejection from NS-NS merger (1): Tidal components Hotokezaka et al. 2013; Bauswein et al. 2013

- Less massive NS is tidally deformed —
- Angular momentum transfer by spiral arm and swing-by
- A part of matter is ejected along the orbital plane
- reflects low Ye of cold
 <u>NS</u> (β-eq. at T~0),
 no shock heating,
 rapid expansion
 (fast T drop), no time
 to change Ye by weak
 interactions

Density contour [log (g/cm³)]

t=11.81719 ms

-20

t=11.35916 ms

t=11.63398 ms

t=11.90880 ms

t=11.45077 ms

t=11.72559 ms

t=12.00041 ms

Dynamical Mass ejection from NS-NS merger (2): Shock driven components Hotokezaka et al. 2013; Bauswein et al. 2013

- Shocks occur due to oscillations of massive NS and collisions of spiral arms
- Isotropic mass ejection, higher temperature
- weak interactions set in and Ye will increases

Dynamical mass ejection from NS-NS merger

• Driven by tidal interactions Consists of cold NS matter in β -equilibrium \Rightarrow low Ye and T Driven by shocks

Consists of shock heated matter higher temperature => Weak interaction can change Ye

(Expected) Mass ejection mechanism & EOS

- <u>'Stiffer EOS'</u>
 - $\Leftrightarrow \mathsf{R}_{\mathsf{NS}} : \mathsf{larger}$
 - TM1, TMA
 - Tidal-driven dominant
 - Ejecta consist of low T & Ye NS matter
- <u>'Intermediate EOS'</u>
 - **DD2**
- Softer EOS'
 - $\Leftrightarrow \mathsf{R}_{\mathsf{NS}} : \mathsf{smaller}$
 - ► SFHo, IUFSU
 - Tidal-driven less dominant
 - Shock-driven dominant
 - Ye can change via weak processes

Soft(SFHo) vs. Stiff(TM1): Ejecta temperature

- Soft (SFHo): temperature of unbound ejecta is higher (as 1MeV) due to the shock heating, and produce copious positrons
- Stiff (TM1): temperature is much lower

Sekiguchi et al PRD (2015)

Soft(SFHo) vs. Stiff(TM1): Ejecta Ye = 1- Yn

- Soft (SFHo): In the shocked regions, Ye >> 0.2 by weak processes
- Stiff (TM1): Ye is low as < 0.2 (only strong r-process expected)</p>

Sekiguchi et al. 2015; Bauswein et al. 2013; Radice 2016; Lehner et al. 2016

EOS dependence : 1.35-1.35 NS-NS

Mej is larger for softer EOS : importance of shock heating and GR
 Only SFHo achieves Mej ~ 0.01 Msun : required by the total amount of

r-process elements and flux of the 'kilonova' event (GRB 130603B)

EOS dependence : 1.35-1.35 NS-NS

- Mass averaged Ye of the ejecta is larger for softer EOS
- But still neutron rich
- Ye distribution of the ejecta is broad irrespective of EOS
- There are ejecta components with larger Ye

Wanajo, Sekiguchi et al. ApJL (2014)

Achievement of the universality (soft EOS (SFHo), equal mass (1.35-1.35))

Dependence on mass ratio

Unequal mass NS-NS system: SFHo1.25-1.45

- Orbital plane : Tidal effects play a role, ejecta is neutron rich
- Meridian plane : shock + neutrinos play roles, ejecta less neutron rich

Dependence on mass ratio

- > Ye distribution is still wide if mass ratio is not very far from unity
 - For mass ratio larger than 1.25-1.45 model, Ye distributes in smaller values

Importance of neutrino absorption

Importance of weak interactions

- Goriely et al. 2015 studied in more detail the effects of weak interaction on the resulting r-process pattern
- $e \pm$ captures fill in the gap in A = 90-130
- Neutrino absorption contributes to synthesize the 1st peak

Importance of neutrino energy estimate

- There is also uncertainty in the neutrino energy estimate in gray neutrino transport codes which are currently available
- Foucart et al. developed an improved method of neutrino average energy estimation based on a conserved neutrino number density
- Impact is small for the dynamical ejecta mass but large for the ejecta Ye
 - ▶ The previous estimate predict strong r-process (lanthanoid) in the polar region

Importance of neutrino energy estimate

- There is also uncertainty in the neutrino energy estimate in gray neutrino transport codes which are currently available
- Foucart et al. developed an improved method of neutrino average energy estimation based on a conserved neutrino number density
- Impact is small for the dynamical ejecta mass but large for the ejecta Ye
 - > The previous estimate predict strong r-process (lanthanoid) in the polar region

Kiuchi et al. (2014, 2015)

Importance of magnetic fields Magnetized NS-NS merger simulation

Importance of magnetic fields

Kiuchi et al. 2014, 2015; see also Rasio & Shapiro 1999

Kiuchi et al. 2014, 2015; see also Rasio & Shapiro 1999

Shibata & Taniguchi (2008); Kyutoku et al. (2010, 2011) Fourcart et al. (2014,2015); Kyutoku, YS et al. in prep

BH-NS merger

BH-NS merger dynamics (DD2 EOS: Ye) MBH=5.4Msun, MNS=1.35Msun, aBH=0.75

Fourcart et al. (2014,2015); Kyutoku, YS et al. in prep

EOS dependence of the ejecta property

- The large amount of mass is tidally ejected
 - **Ejecta mass is larger for stiffer EOS (larger RNS)**
- Ejecta Ye is very small as < 0.1</p>
 - Only strong r-process will occur : problem in terms of universality ??
- Effects of neutrino-matter interaction is very small

Fourcart et al. (2014,2015); Kyutoku, YS et al. in prep

EOS dependence of the ejecta property

Magnetically driven torus winds are very important in BH-NS !

Kiuchi et al. 2015

Magnetically driven torus winds are very important in BH-NS ! Kiuchi et al. 2015

Magnetically driven torus winds are very important in BH-NS !

Kiuchi et al. 2015

Magnetically driven torus winds are very important in BH-NS ! Kiuchi et al. 2015

x [km]

Magnetically driven torus winds are very important in BH-NS ! Kiuchi et al. 2015

Kasen & Barnes (2013); Tanaka & Hotokezaka (2013); Hotokezaka et al. (2013); Tanaka et al. (2014)

'Macronova' modeling : NS-NS vs. BH-NS

- NS-NS : Soft EOS is necessary (shocks play a role)
- BH-NS : Stiffer EOS is preferable (tidal component is dominant)
- Or large amount of MHD driven viscous winds are necessary !
 - In particular for macronova candidates with larger Mej

Kasen & Barnes (2013); Tanaka & Hotokezaka (2013); Hotokezaka et al. (2013); Tanaka et al. (2014)

'Macronova' modeling : NS-NS vs. BH-NS

- NS-NS : Soft EOS is necessary (shocks play a role)
- BH-NS : Stiffer EOS is preferable (tidal component is dominant)
- Or large amount of MHD driven viscous winds are necessary !
 - In particular for macronova candidates with larger Mej

Rest-frame days after GRB 130603B Rest-frame days after GRB 130603B

Summary

- NS-NS/BH mergers are good candidate of r-process nucleosynthesis cite
- The dynamical mass ejection from NS-NS mergers
 - The ejecta mass strongly depends on NS matter EOS
 - Mej ~0.01 Msun: only for soft EOS like SFHo, APR with Rns ~ 12km
 - Ye distribution is wide due to neutrino interactions irrespective of EOS and the so-called universality requirement can be satisfied.
 - Magnetic fields might play a role driving a MHD viscous winds
- The dynamical mass ejection from BH-NS mergers
 - The ejecta mass depends on NS matter EOS and BH parameters
 - Mej ~ 0.01 Msun for soft EOS like APR, with moderate BH spin
 - Magnetic fields will play a role driving a strong MHD viscous winds and more mass than expected may be ejected from the torus
- Conclusion: need further studies with GR viscous neutrino code !