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LIGO

Laser Interferometer Gravitational-wave Observatory

LIGO-Hanford LIGO-Livingston
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Weiss’s 1972 design study
(Weiss, Electromagnetically Coupled Broadband

T h e d e S I g n Gravitational Antenna, 1972 Tech. Rep. MIT)
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Comprehensive upgrade of
Initial LIGO instrumentation in
the same vacuum system

Higher-power laser
Larger mirrors
Higher finesse arm cavities
Signal recycling cavity
Signal recycling mirror
el Output mode cleaner

E

rovements

and more ...
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Sensitivity: past, present and future
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Frequency (Hz)

In the early hours of
September 14th, 2015...
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 Observed on September 14th, 2015 at 09:40:45 UTC

* First observed in LIGO-Livingston then 7ms later at LIGO-Hanford
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PRL 116, 061102 (2016)

« Qver 0.2 seconds the signal increases in frequency and amplitude over ~8 cycles
from 35Hz to peak amplitude at 150 Hz
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 Observed on September 14th, 2015 at 09:40:45 UTC
* First observed in LIGO-Livingston then 7ms later at LIGO-Hanford

« Qver 0.2 seconds the signal increases in frequency and amplitude over ~8 cycles
from 35Hz to peak amplitude at 150 Hz
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Scientists found gravitational
waves in outer space.
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to find an apartment’ in NYC
with a walk-in closet.
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Making a detection

THE EFFECT OF A GW 1S SO MINUSCULE AND SCENTISTS HOPE TO (DENTIFY THE
EASILY CONFUSED WITH RANDOM NOISE, YOU PATTERNS OF GRAVITATIONAL WAVES BY
NEED A SMART DATA ANALYSIS TECHNIGUE, COMPARING THE WIGGLES THEY MEASURE
N THE EXPERIMENT TO THE WIGGLES THEY
"4% EXPECT FROM GRAVITATIONAL WAVES, w -
'"'o

. L ( ”q mlq
G
TS LIKE TRYING TO

[ (DENTIFY A SONG BEING
HUMMED AT A NOISY PARTY.
A VERY VERY NOISY PARTY.




Template space

* Jo detect signals from compact-object

1 |x1] < 0.9895, |x2| < 0.05

binaries, we construct a bank of 1 Ix1,2] < 0.05
template waveforms and matched-filter o e
the data (LBVV\Tllglifg (gstlal)
LVT151012 (PyCBC
L _slh)
h|h)

* An event must match the same
waveform template in both detectors
within the light travel time between sites

* Events are assigned a detection-
statistic value that ranks their likelihood

of being a gravitational wave signal 10 ms + 5 ms for uncertainly
in arrival time of weak signals

13



Calculating Significance

 Determined by rate at which detector noise produces an event with
a detection statistic value equal to or higher than the candidate

event

e Background set of data is created from coincident data from
multiple detectors

« Slide the timestamps of one detector’s data by many multiples of
0.1s and computing a new set of coincident events

\ / zero lag or
foreground

14

Usman et al., arXiv: 1508.02357 (2015)



Calculating Significance

 Determined by rate at which detector noise produces an event with
a detection statistic value equal to or higher than the candidate
event

e Background set of data is created from coincident data from
multiple detectors

« Slide the timestamps of one detector’s data by many multiples of
0.1s and computing a new set of coincident events

1 X X X X XN ¢ X
|1 X X X X X Y X
4+—p 4+—p +—p

0.1s 0.1s OIS

Time shifted data

Usman et al., arXiv: 1508.02357 (2015)
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Calculating Significance

 Determined by rate at which detector noise produces an event with
a detection statistic value equal to or higher than the candidate

event

e Background set of data is created from coincident data from
multiple detectors

« Slide the timestamps of one detector’s data by many multiples of
0.1s and computing a new set of coincident events

background events

Time shifted data

Usman et al., arXiv: 1508.02357 (2015) 16



Results from the first observing run
(12th Sept 2015 - 19th Jan 2016)
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Abbott et al., Phys. Rev. X 6, 041015 (2016)



Results from the first observing run

w GW150914

LVT151012

|
O
U

Strain (107%%)

I
=
o

=
o

GW151226

- Hanford ] u%”fh"%

L — Livingston , i

N
N
I
S~~~
E=
©
| -
-
n
N—"
G
~
N—r—
<
N
©
(-
©
=
N

© o
o Ul

|
O
8

I
=
o

10* 10° 0.5 1.0 1.5 2.0
Frequency (Hz) Time from 30 Hz (s)

Abbott et al., Phys. Rev. X 6, 041015 (2016)



Abb

Solar Masses

70

Black Holes of Known Mass

60
LIGO

50

40 - ‘ ’ '
30 : -
, X-Ray Studies GW150914 ‘ Oq

000 O O
" i:afo?ooo 0009 Q; e

0

GW151226

19



Parameters of the BBH systems

Posterior probability densities of the masses, spins and distance to the three events

%GW150914
\ LVT151012
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LVT151012
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Abbott et al., Phys. Rev. X 6, 041015 (2016)

GW151226

5655

LVT151012

All 3 remnant black holes
nave spins ~0.7 as expected
for the merger of similar
mass black holes in a binary
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Parameters of the BBH systems

Posterior probability densities of the masses, spins and distance to the three events
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e For GW151226 at least one black hole has
spin magnitude > 0.2

e Large spins parallel to angular momentum
are disfavoured

X1MM1 + X21MmM2

Xeff = Vi
C - N
X1,2 = S12- L
Gmi2

Abbott et al., Phys. Rev. X 6, 041015 (2016)
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Tests of General Relativity

* Allowing deviations in post-Newtonian waveform model
 Parameter deviations are reasonably consistent with zero

GWI150914 + GW151226

e GW150914 - merger-ringdown regime occurred at best instrument
sensitivity. Only several cycles in LIGO sensitivity band.

e GW151226 - many cycles in sensitivity band. Signal provides
opportunity to probe PN inspiral

Abbott et al., Phys. Rev. X 6, 041015 (2016) 22



Rate of BBH mergers

o  Knowledge about BBH
Event Based merger rates depend
Power Law on the mass
distribution - which we
don’'t know very well
yet!

e Assume a few different
mass distributions

* Infer the BBH merger
rate I1s in the range
9-240 Gpcoyr

Abbott et al. arXiv: 1606.04856 (2016) 23



Searching for BNS and NS-BH systems

During O1 we looking for gravitational waves from binary neutron
star (BNS) and neutron star - black hole (NS-BH) systems

Dominik et al. pop syn , ° 01 90% uppel’ |Im|t
de Mink & Belczynski pop syn BNS rate com pared to
Vangioni et al. r-process , other published rates

Jin et al. kilonova
Petrillo et al. GRB .
Coward et al. GRB | « (Constrain the merger

Siellez et al. GRB rate of BNS systems
Fong et al. GRB w2 with component
masses of 1.35+0.13
k v/ M, to be less than
1OBNS Ralt(g (Gpc—;;l)r—l) ! 1 2’600 GpC_S yr_1

Kim et al. pulsar

aLlIGO 2010 rate compendium

Abbott et al., arXiv: 1607.07456 (2016) 24



Searching for BNS and NS-BH systems

During O1 we looking for gravitational waves from binary neutron
star (BNS) and neutron star - black hole (NS-BH) systems

Dominik et al. pop syn

de Mink & Belczynski pop syn
Vangioni et al. r-process

Jin et al. kilonova

Petrillo et al. GRB

Coward et al. GRB

Fong et al. GRB

aLlIGO 2010 rate compendium

Abbott et al., arXiv: 1607.07456 (2016)

10° 101 102
NSBH Rate (Gpc—3yr—1!)

O1 90% upper limit NS-BH rate
compared to other published rates

Dark blue assumes 1.4-5 M, and
light blue 1.4-10 M,

Constrain the merger rate of NS-
BH systems with BH at least 5 M,
to be less than 3,600 G||oc:_3 yr‘1
(assuming isotropic distribution of
component spins)

O2 and O3 BNS ranges are
assumed to be 1-1.9 and 1.9-2.7
times larger than O1



Future Network
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Future Sensitivity

Advanced LIGO's sensitivity was at the upper
end of that predicted for the first observing run

Advanced LIGO

10—21
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Abbott et al. Living Reviews in Relativity 19, 1 (2016)

Strain noise amplitude/Hz~ 1/2
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Future Rates of BBH Mergers

Abbott et al. arXiv: 1606.04856 (2016)

* [he second
observing run

1S

starting in ~month

Plan I1s to run until

christmas followed
by a break for the

holidays

until early spri
when Virgo wi

* Continue running

19

| join
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Extra Slides
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| ocalisation

Sky localization depends on:
- the location and orientation of the detectors
- time delay between signal arrival at spatially separated sites

Abbott et al., Phys. Rev. X 6, 041015 (2016)
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Electromagnetic Follow-Up

Initial GW Initial Updated GCN Circular Final
Burst Recovery GCN Circular (identified as BBH candidate) sky map
i | i [ |

Fermi GBM, LAT, MAXI, Swift Swift Fermi LAT,
IPN, INTEGRAL (archival) XRT XRT MAXI
|

Swift UVOT, SkyMapper, MASTER, TOROS, TAROT, VST, iPTF, Keck, Pan-STARRSI
Pan-STARRS1, KWFC, QUEST, DECam, LT, P200, Pi of the Sky, PESSTO, UH VST

I I 111 I 111 11ni il
VISTA

ASKAP, ASKAP, VLA,
LOFAR MWA LOFAR

BOOTES-3 MASTER TOROS

10!

I — I'merger (days)

Timeline of observations of GW150914, separated
by band and relative to the time of the gravitational
wave event

Abbott et al. ApJ 826, Number 1 (2016) 33



The first observing run (O1
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SNR
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What does better low frequency sensitivity buy us?

.ﬂi{ne In the sensitive frequency band for binary coalescence

200-200 M.
100-100 M.
50-50 M.
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Help us classity glitches!



https://www.zooniverse.org/projects/zooniverse/gravity-spy/

L IGO Magazine
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Number of Occurrences

Independence of time shifts

—0.04 —0.02 0.00 0.02 0.04
GPS time relative to 1126259462.4204 (s)

Ditferent time-shitted analyses give
independent realizations of a counting
experiment for noise background
events.

It's not the length of the template
(which can be < 0.1s) that matters, but
rather the autocorrelation function (the
width of the peak in the SNR - 1ms)

The number of background events
having p. > 9 between consecutive
time shifts, where C, denotes the
number of events in the ith time shift

0.1 s time shifts are independent trials
of a Poisson process, even with non-
Gaussian transients in the data



How do we know this was an astrophysical source
and not something the detectors made up”

We performed every check we could think of...

* Checked for correlated (solar weather, lightning

Cannot find any instrumental cause - this signal

can only be produced from two black holes
colliding

conditions

 Checked the whereabouts of every person on site
(physically and remotely connected)

 Checked for ‘injections’

* Tracked the signal throughout the interferometer



Blip Glitch

Band-limited h(t) during blip transient
B Best-match NSBH waveform
Best-match GW150914 waveform
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A blip transient in LIGO-Livingston strain data that
produced a significant background trigger in the CBC
analysis in orange, and the best-match template waveform
(amplitude-scaled tor comparison) in black, which exhibits
a few more low-SNR cycles but otherwise quite similar
morphology



