

Observing Gravitational Waves with Advanced LIGO

Laura Nuttall on behalf of the LIGO Scientific Collaboration and Virgo Collaboration Syracuse University LIGO-G1602189

LIGO

Laser Interferometer Gravitational-wave Observatory

LIGO-Hanford

LIGO-Livingston

2

The design

Weiss's 1972 design study (Weiss, *Electromagnetically Coupled Broadband Gravitational Antenna*, 1972 **Tech. Rep. MIT**)

Advanced LIGO

From iLIGO to aLIGO

Sensitivity: past, present and future

In the early hours of September 14th, 2015...

PRL 116, 061102 (2016)

- Observed on September 14th, 2015 at 09:40:45 UTC
- First observed in LIGO-Livingston then 7ms later at LIGO-Hanford
- Over 0.2 seconds the signal increases in frequency and amplitude over ~8 cycles from 35Hz to peak amplitude at 150 Hz

- Observed on September 14th, 2015 at 09:40:45 UTC
- First observed in LIGO-Livingston then 7ms later at LIGO-Hanford
- Over 0.2 seconds the signal increases in frequency and amplitude over ~8 cycles from 35Hz to peak amplitude at 150 Hz

The

Scientists found gravitational waves in outer space.

If only it were that easy to find an apartment in NYC with a walk-in closet.

Rent your own personal closet space manhattanministorage.com

> we're not scientists. but we totally got space d'Our Personal Space

tem PSR B1913+16 ient observations of

its energy loss by Taylor and Weisberg [21] demonstrated

In 1916, the year and the internationation of the new

manhattan

mini storage

GW151226

Making a detection

Template space

 To detect signals from compact-object binaries, we construct a bank of template waveforms and matched-filter the data

$$\rho = \frac{\langle s|h\rangle}{\sqrt{\langle h|h\rangle}}$$

$$\langle a|b \rangle = 4 \operatorname{Re} \int_{f_{\text{low}}}^{f_{\text{high}}} \frac{\tilde{a}(f)\tilde{b}(f)}{S_n(f)} df$$

- An event must match the same waveform template in both detectors within the light travel time between sites
- Events are assigned a detectionstatistic value that ranks their likelihood of being a gravitational wave signal

10 ms + 5 ms for uncertainly in arrival time of weak signals

Calculating Significance

- Determined by rate at which detector noise produces an event with a detection statistic value equal to or higher than the candidate event
- Background set of data is created from coincident data from multiple detectors
- Slide the timestamps of one detector's data by many multiples of 0.1s and computing a new set of coincident events

Calculating Significance

- Determined by rate at which detector noise produces an event with a detection statistic value equal to or higher than the candidate event
- Background set of data is created from coincident data from multiple detectors
- Slide the timestamps of one detector's data by many multiples of 0.1s and computing a new set of coincident events

Time shifted data

Calculating Significance

- Determined by rate at which detector noise produces an event with a detection statistic value equal to or higher than the candidate event
- Background set of data is created from coincident data from multiple detectors
- Slide the timestamps of one detector's data by many multiples of 0.1s and computing a new set of coincident events

Results from the first observing run (12th Sept 2015 - 19th Jan 2016)

Results from the first observing run

Black Holes of Known Mass

Parameters of the BBH systems

Posterior probability densities of the masses, spins and distance to the three events

Parameters of the BBH systems

Posterior probability densities of the masses, spins and distance to the three events

- For GW151226 at least one black hole has spin magnitude > 0.2
- Large spins parallel to angular momentum are disfavoured

$$\chi_{\text{eff}} = \frac{\chi_1 m_1 + \chi_2 m_2}{M}$$
$$\chi_{1,2} = \frac{c}{Gm_{1,2}^2} \vec{S}_{1,2} \cdot \hat{L}$$

Tests of General Relativity

- Allowing deviations in post-Newtonian waveform model
- Parameter deviations are reasonably consistent with zero

- GW150914 merger-ringdown regime occurred at best instrument sensitivity. Only several cycles in LIGO sensitivity band.
- GW151226 many cycles in sensitivity band. Signal provides opportunity to probe PN inspiral

Rate of BBH mergers

- Knowledge about BBH merger rates depend on the mass distribution - which we don't know very well yet!
- Assume a few different mass distributions
- Infer the BBH merger rate is in the range
 9-240 Gpc⁻³yr⁻¹

Searching for BNS and NS-BH systems

During O1 we looking for gravitational waves from binary neutron star (BNS) and neutron star - black hole (NS-BH) systems

- O1 90% upper limit BNS rate compared to other published rates
- Constrain the merger rate of BNS systems with component masses of 1.35±0.13
 M_☉ to be less than 12,600 Gpc⁻³ yr⁻¹

Searching for BNS and NS-BH systems

During O1 we looking for gravitational waves from binary neutron star (BNS) and neutron star - black hole (NS-BH) systems

- O1 90% upper limit NS-BH rate compared to other published rates
- Dark blue assumes 1.4-5 M_{\odot} and light blue 1.4-10 M_{\odot}
 - Constrain the merger rate of NS-BH systems with BH at least 5 M_o to be less than 3,600 Gpc⁻³ yr⁻¹ (assuming isotropic distribution of component spins)
- O2 and O3 BNS ranges are assumed to be 1-1.9 and 1.9-2.7 times larger than O1

Future Network

Future Sensitivity

Advanced LIGO's sensitivity was at the upper end of that predicted for the first observing run

Future Rates of BBH Mergers

The second observing run is starting in ~month

 Plan is to run until christmas followed by a break for the holidays

 Continue running until early spring when Virgo will join

LIGO Scientific Collaboration and Virgo Collaboration

www.ligo.org

1000+ members, 90 institutions, 16 countries

Slide: Gabriela González

Extra Slides

MAMAAAAAA Gravitational Wave Periods

Milliseconds	Minutes	Years	Billions		
	to Hours	to Decades	of Years		

Localisation

Sky localization depends on:

- the location and orientation of the detectors
- time delay between signal arrival at spatially separated sites

Electromagnetic Follow-Up

Initial GW Burst Recovery	Initial GCN Circular			Updated GCN Circular (identified as BBH candidate)			
<i>Fermi</i> GBM, LAT, M IPN, <i>INTEGRAL</i> (arc	(AXI, chival)	Swift XRT	Swift XRT				Fermi LAT, MAXI
BOOTES-3	MASTER	<i>Swift</i> UVOT, SkyM Pan-STARRS1, KWFC	lapper, MA , QUEST, I	STER, TOROS, DECam, LT , P2 0	TAROT, VS 0, Pi of the S VISTA	T, iPTF, Keck , Pan-STAl Sky, PESSTO , UH	RRS1 TOROS
			MWA	ASKAP, LOFAR	ASKAP, MWA	VLA, LOFAR	VLA, LOFAR VLA
	1	00	$t-t_{\rm m}$	erger (days)	10 ¹	· · · · ·	10 ²

Timeline of observations of GW150914, separated by band and relative to the time of the gravitational wave event

The first observing run (O1)

Abbott et al. Phys. Rev. Lett. 116, 131103 (2016)

What does better low frequency sensitivity buy us?

GravitySpy

https://www.zooniverse.org/projects/zooniverse/gravity-spy/

Help us classify glitches!

Help scientists at LIGO search for gravitational waves, the elusive ripples of spacetime.

Get started!

LIGO Magazine

Independence of time shifts

- Different time-shifted analyses give independent realizations of a counting experiment for noise background events.
- It's not the length of the template (which can be < 0.1s) that matters, but rather the autocorrelation function (the width of the peak in the SNR - 1ms)
- The number of background events having $\rho_c > 9$ between consecutive time shifts, where C_i denotes the number of events in the ith time shift
- 0.1 s time shifts are independent trials of a Poisson process, even with non-Gaussian transients in the data

How do we know this was an astrophysical source and not something the detectors made up?

We performed every check we could think of...

• Checked for correlated (solar weather, lightning

Cannot find any instrumental cause - this signal can only be produced from two black holes colliding

conditions

- Checked the whereabouts of every person on site (physically and remotely connected)
- Checked for 'injections'
- Tracked the signal throughout the interferometer

Blip Glitch

A blip transient in LIGO-Livingston strain data that produced a significant background trigger in the CBC analysis in orange, and the best-match template waveform (amplitude-scaled for comparison) in black, which exhibits a few more low-SNR cycles but otherwise quite similar morphology