Kilonova/Macronova Emission from Compact Binary Mergers

Masaomi Tanaka (National Astronomical Observatory of Japan)

Localization ~ 600 deg² (~< 10 deg² with Advanced Virgo and KAGRA)

Detection of electromagnetic (EM) counterparts is essential

- Redshift (distance)

- Host galaxy
- Local environment

Abbott et al. 2016, ApJ, 826, L13

see Samaya Nissanke's talk

Degeneracy between inclination and distance

Local environments

Abbott et al. 2016, PRL, 116, 241102

Berger 2014 (for short GRBs)

Kilonova/Macronova Emission from Compact Binary Mergers

 EM emission from compact binary mergers
 Kilonova/macronova emission
 Lessons from past observations and prospects for EM follow-up observations

Electromagnetic signature from compact binary merger (NS-NS or BH-NS)

• On-axis short GRB

Radio afterglow

Optical/NIR emission "kilonova" or "macronova"

see talks by Nissanke, Piran, Zhang, ...

Short gamma-ray burst (GRBs)

Opening angle ~ 10 deg => probability ~ a few %

Fong et al. 2014, ApJ, 780, 118

Mass ejection from NS mergers

tidal disruptionshock heating

M ~ 10⁻³ - 10⁻² Msun v ~ 0.1 - 0.2 c

Rosswog 99, 00, Ruffert & Janka 01 Hotokezaka+13, Bauswein+13

see talks by Rezzolla, Janka, Sekiguchi, ...

Radio emission (afterglow)

Delayed by ~> years Too faint? (low environment density)

Nakar & Piran 11 Hotokezaka & Piran 15

Electromagnetic signature from compact binary merger (NS-NS or BH-NS)

Kilonova/Macronova Emission from Compact Binary Mergers

 EM emission from compact binary mergers
 Kilonova/macronova emission
 Lessons from past observations and prospects for EM follow-up observations

Mass ejection from NS mergers

tidal disruptionshock heating

M ~ 10⁻³ - 10⁻² Msun v ~ 0.1 - 0.2 c

Rosswog 99, 00, Ruffert & Janka 01 Hotokezaka+13, Bauswein+13

see talks by Rezzolla, Janka, Sekiguchi, ...

Nucleosynthesis in NS merger

Nucleosynthesis in NS merger

=> solar abundances

(e.g., Wanajo+14, Just+15, Wu+16)

see talks by Janka, Sekiguchi, ...

NS merger as a possible origin of r-process elements

Event rate

GW

R_{NSM} ~ 10⁻⁴ event/yr/Galaxy ~ 10³ Gpc⁻³ yr⁻¹ ~ 40 GW events yr⁻¹ (w/ Adv. detectors, < 200 Mpc)

Ejection per event

M_{ej}(r-process) ~ 10⁻² Msun

EM

Enough to explain the r-process abundance in our Galaxy M(Galaxy, r-process) ~ $M_{ej}(r) \times (R_{NSM} \times t_G)$ ~ $10^{-2} \times 10^{-4} \times 10^{10} \sim 10^4$ Msun

(e.g., Piran+14, Matteucci+14, Tsujimoto+14, Cescutti+15)

LIGO O1: Limit to the NS merger rate R_{NSM} ~< 10⁴ Gpc⁻³ yr⁻¹_{Abbott et al. (arXiv:1607.07456)}

see Laura Nuttall's talk

Radioactive energy => optical emission

see also Wanajo+14, Lippuner+15, Barnes+16

Supernova vs NS merger

	Supernova (Type Ia)		NS merger
Mass	1.4 Msun	>	0.01 Msun
Velocity	10,000 km/s		30,000-60,000 km/s
Kinetic energy	10 ⁵¹ erg		(1-5) x 10 ⁵⁰ erg
Composition	Fe-group, Si, S, C, O		r-process elements
Power source	⁵⁶ Ni		r-process elements

"kilonova/macronova"

Li & Paczynski 98, Metzger+10, Kasen+13, Barnes & Kasen 13 MT & Hotokezaka 13, MT+14

~ 19-20 mag @200 Mpc (=> 1m telescope)

*Opacity of Fe is assumed (b-b transitions)

3D frequency-dependent radiative transfer for NS merger

MT & Hotokezaka 2013, ApJ, 775, 113

with different opacity database (more complete table for a few elements)

Lanthanide => high opacity

Lanthanide

"Complexity"

$$C = \Pi_i \frac{g_i!}{n_i!(g_i - n_i)!}$$

g: number of sublevels

$$g = 2(2l+1)$$

n: number of electrons

Number of lines ~ C²

Luminosity

previous expectation (Fe opacity)

Barnes & Kasen 13

Luminosity

Spectrum

Absolute magnitude

Red spectrum (peak at near-infrared) Extremely broad-line (feature-less) spectra

MT 2016

BH-NS Mergers

see e.g., Shibata & Taniguchi 06, Duez+08, Kyutoku+10,11 Deaton+13, Foucart+14

N(<800 Mpc) ~ 10 (0.2-300) / yr

Emission can be bluer (higher T) MT+14

Kawaguchi+16 Poster I-10

Formation of the disk around hypermassive NS/BH

Bartos et al. 2012

Mass ejection from the disk

"Blue kilonova"

Higher Ye => Lower opacity (if Lanthanide free) => Brighter emission at earlier epochs

Emission properties depend on

- lifetime of hypermassive neutron star (<= EOS)
- presence of preceding ejecta (Lanthanide rich)

(Metzger & Fernandez 14, Kasen+15, Fernandez & Metzger 16)

MT 2016

Kilonova/Macronova Emission from Compact Binary Mergers

 EM emission from compact binary mergers
 Kilonova/macronova emission
 Lessons from past observations and prospects for EM follow-up observations

Test with short GRBs

(C) ESO

Kann+11

GRB 130603B

z=0.356

Tanvir+13, Berger+13

Very red source (R-H > 2.5 mag) consistent with theoretical models (mass ejection of ~0.02-0.06 Msun)

Possible probe of NS radius (EOS)

soft EOS
(smaller NS radius)
=> stronger shock
=> brighter emission

*NOTE: contribution from disk wind is NOT taken into account

GRB 060614 Yang+15, Jin+15 z=0.125

Mej ~0.1 Msun - Disk wind? - Disk wind? - BH-NS? - Different mechanism associated X-ray emission?? (Kisaka+15a,15b)

GRB160821b @ z = 0.16!!

see also Jin+16 for possible excess in GRB 050709 z=0.16

Constraints from short GRBs

Fong+16

MT 2016

GW150914: EM follow-up

LVC and EM follow-up groups, 2016, ApJ, 826, L13

see talks by Nissanke and Tominaga for more details

Lessons from EM follow-up

Pan-STARRS and PESSTO (i ~20 mag)

Smartt et al. 2016 (see also Kasliwal et al. 2016; Soares-Santos et al. 2016; Morokuma et al. 2016)

50 deg² survey w/ 25 mag depth

>~ 1000 supernovae
and 1 GW source!

Efficient selection is essential

Selection of GW sources (from larger number of SNe)

0. Association w/ nearby galaxies

1. Short timescale <= lower mass

2. Faintness <= lower energy budget

3. Red colors <= higher opacity

Smoking gun Extremely broad line spectrum <= higher velocity

Summary

- NS merger: possible origin of r-process elements
- Kilonova/macronova emission
 - Powered by radioactive decay of r-process nuclei
 - Short timescale, faint emission
 - Peaks at red optical or near infrared
 - Constrains from short GRBs: consistent with models
 - Uncertainty in disk wind (mass and composition)
- Prospects for GW-EM observations
 - Selection by timescale, faintness, and color
 - Smoking gun: the extremely broad-line spectra

GW+EM+Theory => Origin of r-process elements