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Two- and Three-Baryon Forces     
from Lattice QCD 
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Big Bang 

13.8 
billion  

yrs 

10-5 s 

10 min 

38x104 yrs 

Where do we come from ? Where are we going ? 

Fate of the matter: 
Supernova  Neutron Star vs. Black Hole 

2 

Big Bang Nucleosynthesis for light elements 
(H, 2H (deuteron), 3He, 4He, 7Li, …) 

Phase transition:  Birth of (visible) matter 

Stellar Nucleosynthesis for medium elements 
(4He, …, 12C, 14N, 16O, …, 56Fe) 

Nucleosynthesis for heavy elements 
(Fe < : e.g., 197Au, 238U) 

Nucleosynthesis by human 

278
113Nh 

http://www.google.co.jp/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&cad=rja&uact=8&ved=0ahUKEwivnPyk3drMAhVJp5QKHbvYDJ0QjRwIBw&url=http://www.sankei.com/life/news/160101/lif1601010027-n1.html&psig=AFQjCNGD1pJ1AOPKWZt9KD0m25301Xy4yQ&ust=1463355257142172


1st-principle            
Lattice QCD 

ab-initio nuclear calc. 

The Odyssey from Quarks to Universe 

QCD 

  QCD vacuum Nuclei Neutron Stars / Supernovae 

© Leinweber 

Baryons 
Nucleosynthesis 

Baryon 
Forces 
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http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/Focus1.jpg


Paradigm Shift in     
Unstable Nuclei              

(New Magic Numbers !) 

Important role of 3NF 
T.Otsuka et al., PRL105(2010)032501 

2D Nuclear Chart 

 r-process Nucleosynthesis 

What is 3NF ? 

＋ ＋ 

2NF 

3NF: Forces which 
cannot be explained 

by pair-wise 2NF 
＋ 

Three-nucleon forces (3NF) 

Precise ab initio calculations 
show 3NF is indispensable 
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RIBF/FRIB 



• 3NF is crucial to understand                                  
EoS of  high density matter 

Short-range repulsive 3NF               
is phenomenologically introduced 

A.Akmal et al., 
PRC58(1998)1804 

E/
A

 

ρ 

3NF 2NF only 

Empirical 

Saturation 

Neutron Star / Supernova / Nucleosynthesis 

New Horizons w/ Three-Nucleon/Baryon Forces 

NS-NS merger aLIGO/KAGRA 

Y dof YNN(?) Hyperon Forces (YN/YY) and                       
Three-Baryon Forces (YNN etc.) important 

Nishizaki et al. (‘02), Takatsuka et al. (‘08) 

Quark matter ?  Masuda et al. (‘12) 

A. Ohnishi’s talk (Fri.) 



• Outline 
– Introduction 

– Theoretical framework 

– Three-Nucleon Forces at heavy quark masses 

– Two-Baryon Forces at physical quark masses 

– Summary / Prospects 
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Hadrons to Atomic nuclei from Lattice QCD 
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Interactions on the Lattice 

• Direct method (Luscher’s method) 
– Phase shift & B.E. from temporal correlation in finite V 

 
 

• HAL QCD method  
– “Potential” from spacial (& temporal) correlation 
– Phase shift & B.E. by solving Schrodinger eq in infinite V 

 

 
 

 

M.Luscher,  CMP104(1986)177 
                 CMP105(1986)153 
                 NPB354(1991)531 

Ishii-Aoki-Hatsuda, PRL99(2007)022001, PTP123(2010)89 
HAL QCD Coll., PTEP2012(2012)01A105 

 Pursued by Yamazaki et al. / NPL Coll. / CalLat Coll. 

7 
 Pursued by HAL QCD Coll. 



“Potential” as a representation of S-matrix        
[HAL QCD method] 

• Nambu-Bethe-Salpeter (NBS) wave function 
 
 

– phase shift at asymptotic region 

 

• Consider the wave function at “interacting region” 
 

– U(r,r’): faithful to the phase shift by construction 
• U(r,r’): E-independent, while non-local in general 

– Non-locality  derivative expansion 

 

R L 

M.Luscher, NPB354(1991)531 

CP-PACS Coll., PRD71(2005)094504  

C.-J.Lin et al., NPB619(2001)467 

N.Ishizuka, PoS LAT2009 (2009) 119 

R L 

Aoki-Hatsuda-Ishii PTP123(2010)89 



Extension to multi-particle systems (n>=3) 

• Unitarity of S-matrix 
 
 
 
 

• NBS wave function 
 
 
 
 

 

 
 
 

S.Aoki et al. (HAL Coll.), PRD88(2013)014036 

Similar formula to 2-body system                     
(w/ diagonalization matrix U which includes dynamics) 

c.f. R.B. Newton (1974) for n = 3 

Similar asymptotic behavior to 2-body system 

c.f. Finite V spectrum, n=3 only, relativistic: Hansen-Sharpe (’14, ’15, ’16) 

(non-rela approx.) 



HAL QCD method 
L

at
tic

e 
Q

C
D

 NBS wave func. Lat Baryon Force 

Lat potential is faithful to  
phase shift by construction (at asymptotic region) 

Sc
at

te
ri

ng
 E

xp
. Phase shifts 

Analog to … 
Phen. Potential 
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• Outline 
– Introduction 

– Theoretical framework 
• Challenges for multi-body systems on the lattice 

– Three-Nucleon Forces at heavy quark masses 

– Two-Baryon Forces at physical quark masses 

– Summary / Prospects 

11 



• Challenge in traditional LQCD method : G.S. saturation 
 

 
 
 
 
 
 

 

 

 
Elastic 

       

 
Inelastic 

NNπ 

NN 

Physical Mπ 
L=8fm 

Mπ=0.5 GeV 
L=3fm 

Mπ=0.3 GeV 
L=6fm 

10-13 10-25 10-4 

(simple) 

System w/o Gap 

Signal/Noise Issue 

New Challenge for multi-body systems 12 

Parisi, Lepage(1989) 

(For both of Direct method / (old) HAL method) 



How serious is this issue ?  
~ manifestation in the Direct method ~ 

• LQCD @ m(pi)=0.51GeV, L <= 5.8 fm 
– Excitation energy E1-E0 >= 35 MeV  G.S. saturation requires  t ~ 10fm  

• People tried to bypass the issue by, e.g., tuning the operators 
–  t  ~ 1 fm by observing “plateau-like” structure as a sign of G.S. saturation 
– Bound NN states are claimed at heavy quark masses 

T. Iritani et al. arXiv:1607.06371; in prep. 

T. Yamazaki et al. PRD86(2012)074514 

“Sanity Check” 

∆E = EBB-2mB ( phase shift δE) 

“plateau-like” structure 

Yamazaki et al.  
NN 1S0 (L=5.8fm) 

t = 0.9-1.3fm 

t 

∆
E 

 



How serious is this issue ?  
~ manifestation in the Direct method ~ 

• LQCD @ m(pi)=0.51GeV, L <= 5.8 fm 
– Excitation energy E1-E0 >= 35 MeV  G.S. saturation requires  t ~ 10fm  

• People tried to bypass the issue by, e.g., tuning the operators 
–  t  ~ 1 fm by observing “plateau-like” structure as a sign of G.S. saturation 
– Bound NN states are claimed at heavy quark masses 

T. Iritani et al. arXiv:1607.06371; in prep. 

T. Yamazaki et al. PRD86(2012)074514 

Effective Range Expansion (ERE) 
w/ Luscher’s finite V formula 

 1/a ~= −∞, r ~=−∞ 

(very unrealistic !) 

We cannot bypass this issue   
We have to confront it ! 

Lesson: 

ERE 

“Sanity Check” 



Time-dependent HAL method 

G.S. saturation  “Elastic state” saturation 

N.Ishii et al. (HAL QCD Coll.) PLB712(2012)437 

E-indep of potential U(r,r’)  (excited) scatt states share the same U(r,r’)                 
They are not contaminations, but signals   

Original (t-indep) HAL method 

 Many states 
contribute 

. . . 
New t-dep HAL method 

All equations can be combined as 

 
Elastic 

       

 
Inelastic 

NNπ 

NN 

potential [Exponential Improvement] 

System w/ Gap 



• High-stat study for BB-system (@m(pi)=0.5GeV) 
– Benchmark  w/ two LQCD setup (wall & smeared src) 

 
 

 

Reliability Test for LQCD methods 

Inconsistent “signal”  (red (wall) vs blue (smeared)) 
 cannot judge which (or neither) is reliable 

t-dep HAL method (new) 

Veff (r) from wall &              
VLO(r) from wall+smeared    
are consistent 

Direct method (traditional) 

T. Iritani et al. (HAL Coll.) 
arXiv:1607.06371 

 Physical outputs should NOT depend on these setup 

Euclidean time t 

(∆E  phase shift) (V(r)  phase shift) 



The origin of “fake plateaux” in Direct method 

 Excited State Contaminations 

“real plateau”     
at t ~ 10fm 

∆
E 

(M
eV

) 

∆
E 

(M
eV

) 

Red:  wall 
Blue: smeared 

0 20 100 40 60 80 
t/a “fake plateaux” 

at t ~ 1fm 
HAL method is crucial ! 

Analysis based on 
HAL potential 
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Red:  wall 
Blue: smeared 

0 20 100 40 60 80 
t/a “fake plateaux” 

at t ~ 1fm 

The origin of “fake plateaux” in Direct method 

 Excited State Contaminations 

Analysis based on 
HAL potential 

“real plateau”     
at t ~ 10fm 

HAL method is crucial ! 



• Outline 
– Introduction 

– Theoretical framework 

– Three-Nucleon Forces at heavy quark masses in HAL method 
• Identification of genuine Three-Nucleon Forces 
• Computational Cost Issue 
• Results 

– Two-Baryon Forces at physical quark masses 

– Summary / Prospects 

19 



3NF from NBS wave function                  
[HAL QCD method] 

• Nambu-Bethe-Salpeter (NBS) wave function 
 
 

• Obtain 3NF through 

 

• NBS is obtained by 6pt. correlator 

by 2N calc 

 time-dependent HAL QCD method 

20  Ground state saturation is NOT necessary ! 



3NF calculation in Lat QCD 
 We fix the geometry of 3N   ( this is not an approximation) 

 

 We study linear setup 
 
 
 

 

  L(1,2)-pair = Ltotal = 0 or 2 only 
  Bases are only three, labeled by  1S0, 3S1, 3D1 for (1,2)-pair 
 

 Linear setup with various distance “r2” 
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We consider 
Triton channel 

(1) 
(3) 

(2) 

long “r2” setup short “r2” setup 

Study r2-dependence of 3NF 



 Genuine 3NF can be extracted from 3x3 coupled channel 
 Both of parity-even 2NF and parity-odd potential required  

 

 

 

 

 S/N : parity-even 2NF > parity-odd 2NF in Lat QCD 
  Desirable to extract 3NF w/ parity-even 2NF only 

 (1) Identification of Genuine 3NF 

Target to be 
determined 

22 c.f. K. Murano et al. (HAL Coll.) PLB735(2014)19 
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 We can construct the wave function in which any 2N pair 
is spin/isospin anti-symmetric 
 
 
  L=even for any 2N pair automatically guaranteed 

 Bases are rotated as  
 

 

Solution using 
“symmetric” wave function  

All pair P=even 

No V(P=odd) 
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 We can construct the wave function in which any 2N pair 
is spin/isospin anti-symmetric 
  L=even for any 2N pair automatically guaranteed 

 3x3 coupled channel is reduced to 
 one channel with only 3NF unknown 
 two channels with VC

I,S=0,0, VC
I,S=1,1, VT

I,S=1,1,(3NF) unknown 
 
 
 
 
 

  Even without parity-odd V, we can determine one 3NF 
 This method works for any fixed 3D-geometry other than linear 

Solution using 
“symmetric” wave function  

No V(P=odd) Target to be 
determined 



• Enormous comput. cost for multi-baryon correlators 
– Wick contraction (permutations) 

 
– color/spinor contractions 

 

– Unified Contraction Algorithm (UCA) 
– A novel method which unifies two contractions 

 
 

(2) Computational Challenge 

25 

TD, M.Endres,  CPC184(2013)117 

(x add’l. speedup) 

See also subsequent works: Detmold et al., PRD87(2013)114512 
Gunther et al., PRD87(2013)094513 

t=t(src) t=t(sink) 

(A: mass number) 

Sum over color/spinor unified list 

Permuted Sum 

Drastic Speedup 

See also T. Yamazaki et al., 
PRD81(2010)111504 
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Lattice simulation setup 
 Nf=2 dynamical clover fermion + RG improved gauge action 

 a-1=1.269GeV, a=0.1555fm (beta=1.95) 
 163 X 32 lattice, L=2.5fm 

 Masses: (π, N, ∆) = (1.13, 2.15, 2.31) GeV 
 Kappa(ud)=0.13750 
 599 configs x 32 measurements, t+1=[5,12] 

 Masses: (π, N, ∆) = (0.925, 1.85, 2.02) GeV 
 Kappa(ud)=0.13900 
 686 configs x 32 measurements, t+1=[5,12] 

 Masses: (π, N, ∆) = (0.757, 1.61, 1.81) GeV 
 Kappa(ud)=0.14000 
 686 configs x 32 measurements, t+1=[5,12] 

 

CP-PACS Coll. S. Aoki et al., 
Phys. Rev. D65 (2002) 054505  

Wall source w/ Coulomb gauge  



2NF on the lattice 
C

entral 
Tensor 

Lighter mass corresponds to… 

• Longer interaction range 
• Larger Repulsive Core 
• Stronger Tensor Force 
 

 (t-t0=7.5) 

Central in 1S0 
3S1-3D1 channel 



T.D. et al. (HAL QCD Coll.) PTP127(2012)723  

mπ=1.1GeV 

3N-forces (3NF) on the lattice 
+ t-dep method updates etc. 

Triton channel 

(breakup at t-t0=7.5) 

Sink time dependence is small 

Lap tdep 

Repulsion 
Discretization artifact ~ r=0 

(artifact ?) 



mπ=0.93GeV 

3N-forces (3NF) on the lattice 

Triton channel 

(breakup at t-t0=7.5) 

Sink time dependence is small 

Lap tdep 

Repulsion 



mπ=0.76GeV 

3N-forces (3NF) on the lattice 

Triton channel 

(breakup at t-t0=7.5) 

(Sink time dependence is small ?) 

Lap tdep 

Repulsion 



Nf=2 clover (CP-PACS), 1/a=1.27GeV, 
L=2.5fm, mπ=0.76-1.1GeV, mN=1.6-2.1GeV Triton channel 

T.D. et al. (HAL QCD Coll.) PTP127(2012)723  + t-dep method updates etc. 

3N-forces (3NF) in mπ >=0.76 GeV 

Naïve comparison to 
phenomenological 3NF 

 Lighter quark mass important ? 

Short-range 
Repulsive 3NF 

(t-t0 = 7.5) 

(artifact ?) 



K-computer  
[10PFlops] 

Toward lighter mass: LQCD Setup 
• Nf = 2 + 1 gauge configs 

– clover fermion + Iwasaki gauge action 
– m(pi) = 0.51 GeV, m(N) = 1.32 GeV 
– V=(64a)4 = (5.8fm)4, 1/a=2.19GeV, a=0.090fm 

 

• Measurement 
– Triton channel, linear (& triangle) geometries 
– #stat = 327 confs x 4 rot x  32 wall src 
– Unified Contraction Algorithm (UCA) 

– K-computer is used 
– Special code tuning for K-computer                                                                      
 Kernel ~50%, total ~20+ % efficiency achieved 

• Kernel requires memory bandwidth B/F ~=4 
• K-computer: B/F(L2 cache)=2, B/F(memory)=0.5  
•  ~ perfect L2 cache hit is achieved 

T. Yamazaki et al., PRD86(2012)074514 

t=t(src) t=t(sink) 

32 



C
entral 

Tensor 

t-dependence is small 
for t-t0 >= 10 

3S1-3D1 channel 

2N-forces (2NF) @ m(pi)=0.51GeV 
1S0 channel 



Triton channel 

(very-short-range attractive 3NF ?) 

(Discretization Artifact ?) 

3N-forces (3NF) @ m(pi)=0.51GeV 

Short-range 
Repulsive 3NF No visible  

mid-range 3NF 
34 



Nf=2, mπ=0.76-1.1 GeV  

Quark mass dependence of 3NF 

Magnitude of 3NF is similar for all masses 
Range of 3NF tend to get longer (?) for m(pi)=0.5GeV 

Nf=2+1, mπ=0.51 GeV  

35 
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What is the origin of Lat 3NF ? 

 2πE-type 3NF (Fujita-Miyazawa) is unlikely 
 Strongly suppressed by mπ >= 0.5GeV 

 It may be attributed to quark/gluon dynamics directly 
 Recall generalized 2BF in SU(3)f … 

  Pauli principle works well 

 c.f. Recent work in Quark Model 
 Pauli effect in norm kernel 

 c.f. OPE (pert. QCD) predicts repulsive 3NF at short distance 
S.Aoki et al., New J. Phys (’12) arXiv:1112.2053 

π 
π 

Repulsive 3NF from AdS/CFT (Hashimoto-Iizuka) 

Nakamoto-Suzuki, arXiv:1606.07225 



• Outline 
– Introduction 

– Theoretical framework 

– Three-Nucleon Forces at heavy quark masses 

– Two-Baryon Forces at (almost) physical quark masses 

• Hyperon Forces 

• Impact on dense matter 

– Summary / Prospects 
[Theory]  

HAL QCD method 

[Hardware] 
K-computer [10PFlops] Unified Contraction 

[Software] 



Lattice QCD Setup 
• Nf = 2 + 1 gauge configs 

– clover fermion + Iwasaki gauge w/ stout smearing 
– V=(8.1fm)4, a=0.085fm (1/a = 2.3 GeV) 

– m(pi) ~= 145 MeV, m(K) ~= 525 MeV 
– #traj ~= 2000 generated 
 

• Measurement 
– #stat = 414 confs x 4 rot x  28 wall src (calc in progress) 

– All of NN/YN/YY for central/tensor forces in P=(+) (S, D-waves) 
 

K.I. Ishikawa et al., PoS LAT2015, 075 

Hyperon forces provide precious predictions 



39 [ K. Sasaki ] 



S=-2 interactions suitable to grasp       
whole NN/YN/YY interactions 

40 

Central Force in Irrep-base (diagonal)  

(off-diagonal component is small) [ K. Sasaki ] 



S=-2 interactions suitable to grasp       
whole NN/YN/YY interactions 

Tensor Force in Irrep-base (diagonal)  

(off-diagonal component neglected) 

We fit by (central) 

(tensor) 

We calculate single-particle energy of hyperon 
in nuclear matter w/ LQCD baryon forces 



42 [ T. Inoue ] 



43 [ T. Inoue ] 



44 [ T. Inoue ] 



45 [ T. Inoue ] 



Summary and Prospects 

• Baryon forces: bridge between particle/nuclear/astro-physics 
– HAL QCD method is crucial for a reliable calculation 

• Three-nucleon forces from LQCD 
– Nf=2, mπ=0.76-1.1GeV & Nf=2+1, mπ=0.51 GeV 
– Repulsive 3NF at short distance observed 
– Quark mass dependence small but tends to show up 

• Two-baryon forces (NN/YN/YY) from LQCD 
– The first simulations w/ ~physical masses 
– Hyperon forces  Properties of dense matter 
– Much more coming 

• Outlook 
 Three-baryon forces (NNN/YNN/YYN/YYY) w/ lighter ud masses 
 Two-baryon forces in parity-odd channel, LS-forces 
 New Era is dawning w/ LQCD Baryon Forces ! 

Post-K computer  
(Exascale) 
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