Core-Collapse Supernova Overview

t = 287.37 ms

Christian D. Ott TAPIR, Caltech

Collaborators:

E. Abdikamalov, S. Couch, P. Diener, J. Fedrow, R. Haas, K. Kiuchi, J. Lippuner, P. Mösta, H. Nagakura, E. O'Connor, D. Radice, S. Richers, L. Roberts, A. Schneider, E. Schnetter, Y. Sekiguchi Caltech NSF

Sherman Fairchild Foundation

Collapse and Bounce

Collapse and Core "Bounce"

Central rest-mass density in the collapsing core:

An Aside on the Nuclear EOS

Available Core-Collapse Supernova EOS

Richer+16 in prep, see <u>https://stellarcollapse.org</u> for tables and references

- ~18 hot nuclear EOS available for CCSN & NS merger simulations.
- Many ruled out by experiments / astrophysical constraints (-> Jim Lattimer's talk on November 1). Need more EOS!

Situation after Core Bounce

Situation after Core Bounce

The shock always stalls:
 Dissociation of Fe-group nuclei @ ~8.8 MeV/baryon (~17 B/M_{Sun}).
 Neutrino losses initially @ >100 B/s (1 [B]ethe = 10⁵¹ ergs).

"Postbounce" Evolution

"Postbounce" Evolution

What is the mechanism that revives the shock?

Supernova Mechanisms

Neutrino Mechanism

- Neutrino heating; **turbulent convection**, standing accretion shock instability (SASI).
- Works (even in 1D) for lowest mass massive stars.
- Sensitive to (multi-D) progenitor star structure.
- Inefficient ($\eta \le 10\%$); difficulty explaining $E_{explosion}$?

Magnetorotational Mechanism

Ott+13

- Magneto-centrifugal forcing, hoop stresses.
- For energetic explosions and CCSN-LGRB connection?
- Very rapid core rotation + magnetorotational instability + dynamo for large-scale field.
- Needs "special" progenitor evolution.
- Jets unstable, may fail to explode in proto-NS phase; black hole formation, GRB central engine?

Basic Stalled-Shock Situation

http://stellarcollapse.org/

Basic Stalled-Shock Situation

http://stellarcollapse.org/

Neutrino Mechanism: Heating

Bethe & Wilson '85; also see: Janka '01, Janka+ '07

Basic Stalled-Shock Situation

GR1D simulation http://stellarcollapse.org/

2D and 3D Neutrino-Driven CCSNe

- Progress driven by advances in compute power!
- First 2D (axisymmetric) simulations in the 1990s: Herant+94, Burrows+95, Janka & E. Müller 96.

2D simulations now self-consistent & from first principles.
 E.g.: Bruenn+13,16 (ORNL), Dolence+14 (Princeton),
 B. Müller+12ab (MPA Garching), Nagakura+16 (YITP/Waseda),
 Suwa+16 & Takiwaki+14 (YITP/NAOJ/Fukoka)

Dessart+ '05

Standing Accretion Shock Instability (SASI)

Blondin+'03 Foglizzo+'06 Scheck+ '08 and many others

Movie by Burrows, Livne, Dessart, Ott, Murphy'06

The 3D Frontier – Petascale Computing!

- Some early work: Fryer & Warren 02, 04
- Much work since ~2010:

Fernandez 10, Nordhaus+10, Takiwaki+11,13,14, Burrows+12, Murphy+13, Dolence+13, Hanke+12,13, Kuroda+12, Ott+13, Couch 13, Couch & Ott 13, 15, Abdikamalov+15, Couch & O'Connor 14, Lentz+15, Melson+15ab, Kuroda+16, Roberts+16

Approximations currently made:
(1) Gravity (2) Neutrinos (3) Resolution

Ott+13 Caltech, full GR, parameterized neutrino heating -6.18 ms

Multi-Dimensional Simulations: Effects

(e.g., Hanke+13, Couch&Ott 15, Murphy+08, Murphy+13, Ott+13, Dolence+13)

Accounting for Turbulent Ram

(Couch & Ott 2015, Murphy+13)

2D & 3D Explosions!

(e.g., Lentz+15, Melson+15ab)

1D, 2D, 3D

(Couch & Ott 2015)

(1) 2D & 3D explode with less neutrino heating.(2) 2D explodes more easily than 3D!

(see also: Couch & O'Connor 14, Hanke+13)

Some Facts about Supernova Turbulence

(e.g., Abdikamalov, Ott+ 15, Radice+15ab)

- Neutrino-driven convection is turbulent. $\mathcal{R}e=rac{lu}{l}pprox 10^{17}$
- **Kolmogorov** turbulence: Kolmogorov 1941 isotropic, incompressible, stationary.
- Supernova turbulence: anisotropic (buoyancy), mildly compressible, quasi-stationary.
- Reynolds stresses (relevant for explosion!) dominated by dynamics at largest scales.

$$R_{ij} = \overline{\delta v_i \delta v_j}$$

 $E(k) \propto k^{-5/3}$

Kolmogorov Turbulence

2D vs. 3D

(e.g., Couch 13, Couch & O'Connor 14)

Turbulent Cascade: 2D vs. 3D

Couch & O'Connor 14

see also: Dolence+13, Hanke+12,13, Abdikamalov+'15, Radice+15ab

3D: Sensitivity to Resolution

Abdikamalov+15

Resolution Comparison (Radice+16)

 semi-global simulations of neutrino-driven turbulence.

> dθ,dφ = 1.8° dr = 3.8 km

(typical resolution of 3D rad-hydro sims)

 $d\theta$, $d\phi = 0.45^{\circ}$ dr = 0.9 km

 $d\theta, d\phi = 0.3^{\circ}$ dr = 0.64 km

Turbulent Kinetic Energy Spectrum

(Radice+16)

Core-collapse supernova turbulence obeys Kolmogorov scaling!

But: Global simulations at necessary resolution currently impossible! Way forward? -> Subgrid modeling of neutrino-driven turbulence?

Summary of 2D & 3D Neutrino-Driven CCSNe

- More efficient neutrino heating, turbulent ram pressure.
- **2D simulations** explode but can't be trusted (unphysical turbulence).
- 3D simulations:
 - (1) most not yet fully self consistent (parameterized);
 - (2) numerical bottleneck in energy cascade (resolution).
- How much resolution is necessary?
- Subgrid model for 3D neutrinodriven turbulence?
 - See also Luke Robert's conference talk on Nov. 4!

Ott+13

Magnetorotational Explosions

• Differential rotation -> reservoir of free energy.

•

Spin energy tapped by magnetorotational instability (MRI)?

[LeBlanc & Wilson '70, Bisnovatyi-Kogan '70 & '74, Meier+76, Ardeljan+'05, Moiseenko+'06, Burrows+'07, Bisnovatyi-Kogan+'08, Takiwaki & Kotake '11, Winteler+ 12, Mösta+14,15]

Rapid Rotation + B-field amplification to > 10¹⁵ G (need magnetorotational instability [MRI])

MHD stresses lead to outflows.

2D: Energetic "bipolar" explosions.

Results in ms-period "proto-magnetar." -> connection to GRBs, Superluminous SNe?

Problem: Need high core spin; only in very few progenitor stars?

Burrows+'07

۰.		۰.		۰.		1		4				1			1				1		
Y		5		Ŀ		4		4	٠						¥				¢		
٠		۶.		ъ											4				*		
۲		٠		ъ		٠		٠				۰.			٠				×.		
۶		۰.		÷.		٠						٠			1				*		
v		8		÷		٠		•	٠						¢				*		
٠		٠		٠		٠		•	-						٠				*		
۶.		٠		٠		٠		•	٠			٠			٠				*		
۰.		×		٠		٠		•	-			٠			٠						
۰.		•		٠		•		-				٠			٠						
۰.		٠		٠		•		-	-						٠				*		
•		٠				4		•		×					•				-		
٠		٠		÷				•	•			•			٠				÷		
٠		٠		٠		2			•			۰.			4						
•		۰.				4													-		
•		٠		٠		1									÷				-		
٠		٠		٠		٩.		*	•						×				•		
۰.		٠		٠		4			٠.			•			٠				*		
۰.		•		•		۰.				۰.					٠				*		
۰.		٠		٠		•		-	-						٠				*		
٠		٠		٠		٠		•				٠			٠				*		
٠		8		٠		٠		•	•						4				•		
۶.		٠		٠		٠		•	٠			٠			٠				4		
٠		٠		٠		٠		•	•			٠			٠				*		
٠		۶.		۴		٠			٠			٠			٩				•		
۶		٠		۰		٠		•	•			•			٩				•		
٠		٠		۳		٠		٠	٠			۰.	۴		15	D 1 -	à	204		÷	
٠		۲		۴		۲			٠			٩		IN	10	8.F	iel	d			
s.		•		8		٠		٠	٠			٩		T	me		183	1.5	ms		
1		٠		۴				ЧĽ.	1			٠.	F	Radius = 500.00 km							

Burrows+'07

(10¹¹ G seed field)

3D Dynamics of Magnetorotational Explosions

New, full 3D GRMHD simulations. Mösta+ 2014, ApJL. Initial configuration as in Takiwaki+11, 10¹² G seed field.

 $t = -3.00 \, \text{ms}$

Pseudocolor Var: HYDROBASE-entropy - 10.00

Max: 4.135 Min: 1.187

Octant Symmetry (no odd modes)

t = -3.00 ms

Mösta+ 2014 ApJL

Observing the Heart of a Supernova

Probes of Supernova & Nuclear Physics:

- Neutrinos
- Gravitational Waves
- EM waves (optical/UV/X/Gamma): secondary information, late-time probes.

Red Supergiant Betelgeuse

SN 1987A: Neutrino Detection!

Supernova Neutrino "Lightcurves"

Probing Stellar Structure and the Nuclear EOS with Pre-Explosion Neutrinos

O'Connor & Ott '13, ApJ

- Neutrino signal in the pre-explosion phase determined by (1) the accretion rate of the stellar envelope,
 (2) by the core temperature of the collapsing star.
- EOS dependence: softer EOS -> more compact proto-NS -> harder spectrum, higher luminosity

$$\xi_M = \frac{M/M_{\odot}}{R(M_{\text{bary}} = M)/1000 \,\text{km}} \Big|_{t=t_{\text{bounce}}}$$

"compactness parameter" (O'Connor & Ott '11)

Probing Stellar Structure with Pre-Explosion Neutrinos

O'Connor & Ott '13, ApJ

EOS Dependence of the Early Neutrino Signal

O'Connor & Ott '13, ApJ

EOS Dependence of the Early Neutrino Signal

O'Connor & Ott '13, ApJ

Note: Extracting EOS information will require precise knowledge of distance to source.

Gravitational Wave (GW) Refresher

• Emission: Accelerated quadrupole bulk mass-energy motion.

- -> must measure relative displacements of 10⁻²²
- Detection:

Measure changes in separations of test masses with laser interferometry. ->Advanced LIGO, Kagra Advanced Virgo, LIGO India.

Gravitational-Waves from Core-Collapse Supernovae

Reviews: Kotake 11, Fryer & New 11, Ott 09

Need:

$$h_{jk}^{TT}(t, \vec{x}) = \left[\frac{2}{c^4} \frac{G}{|\vec{x}|} \ddot{I}_{jk}(t - \frac{|\vec{x}|}{c})\right]^{TT} \longrightarrow$$

accelerated aspherical (quadrupole) mass-energy motions

Candidate Emission Processes:

- Turbulent convection
- Rotating collapse & bounce
- 3D MHD/HD instabilities
- Aspherical mass-energy outflows

GWs from Convection & Standing Accretion Shock Instability

Recent work: Murphy+09, Kotake+09, 11, Yakunin+10,16, E. Müller+12, B.Müller+13

Time-Frequency Analysis of GWs

Murphy, Ott, Burrows 09, see also B. Müller+13, Sotani & Takiwaki 16

Detectability?

GWs from Rotating Collapse & Bounce

Recent work: Dimmelmeier+08, Scheidegger+10, Ott+12, Abdikamalov+14

- Axisymmetric: ONLY h₊
- Simplest GW emission process: Rotation + mass of the inner core + gravity + stiffening of nuclear EOS
- Strong signals for rapid rotation (-> millisecond proto-NS).
- Magnetorotational mechanism.

Probing Multi-Dimensional Supernova Dynamics

• Rotating core collapse: Correlated neutrino and gravitational-wave signal. Ott+2012

EOS Dependence of the GW Signal?

Richers+2016, in preparation, talk on November 10.

- 2D general-relativistic hydrodynamics.
- 18 EOS, taken from http://stellarcollapse.org
 - ~1800 **Parameter Value** simulations. $M_{\rm max} > 1.97 \, M_{\odot}$ $220 \,\mathrm{MeV} < K < 260 \,\mathrm{MeV}$ $28 \,\mathrm{MeV} < S(0) < 34 \,\mathrm{MeV}$ ☆ $20 \,\mathrm{MeV} < L(0) < 120 \,\mathrm{MeV}$ Λ \mathbf{N} max ☆ ☆ ☆ Constrained $1.\,97\,M_{\odot}$ min Parameters between the lines satisfy constraints. LS220 LS375 SFHo HShen SFHx HShenH 180HSDD2 BHBL HSIUF HSFSG GSFSU1.7 **GSNL3 HSNL3** BHBLF HSTMA **HSTM1 3SFSU2.**

EOS Dependence of the GW Signal?

Richers+2016, in preparation, talk on November 10.

Example result:

Sherwood Richers

- Rotating core collapse
 GW signal:
 determined by mass
 and angular mom. of
 inner core.
- Dependence on nuclear EOS is weak.

Summary

- Core-Collapse Supernovae are fundamentally 3D: Turbulence (not resolved!), magnetic field
- 2D/3D simulations: neutrino-driven explosions with limitations -> "supernova problem" not yet solved. Main issues:
 - Progenitor star structure (-> Suwa & Müller 16).
 - Neutrino transport & gravity approximations.
 - Numerical resolution.
 - Neutrino oscillations? (v-v interactions)
 - Input microphysics (EOS, v interactions).
- Probably need magnetorotational mechanism to explain hypernovae.
- Neutrino and GW signals carry information on supernova thermodynamics, dynamics, and nuclear EOS.

Supplemental Slides

Technical Details: The Caltech CCSN Code

[Ott+09, Ott+12, Reisswig+13, Ott+13, Roberts+16]

 Based on the open-source Einstein Toolkit (<u>http://einsteintoolkit.org</u>) and the Cactus Framework.

- Fully general-relativistic using numerical relativity.
- Cartesian AMR grids, cubed-sphere generalized grids.
- Spacetime solvers based on BSSN formalism of numerical relativity.
- Finite-volume GR hydrodynamics, magnetohydrodynamics.
- Microphysical finite-temperature nuclear equations of state.
- Neutrino treatment:

(1) Multi-group two-moment + analytic closure relation.

(2) Extremely efficient gray "leakage"+heating scheme.

- 12 first-order hyperbolic *evolution* equations.
- 4 elliptic *constraint* equations
- 4 coordinate gauge degrees of freedom: α , β^i .

"Equation of State" of Turbulent Pressure

(Radice+15a)

- Reynolds tensor: $R_{rr} \approx R_{\theta\theta} + R_{\phi\phi}$ (buoyancy) $R_{ij} = \delta v_i \delta v_j$
- Specific turbulent energy: $\epsilon_{turb} = \frac{1}{2} |\delta \mathbf{v}|^2$

$$|\delta \mathbf{v}^2| = (\delta v_r)^2 + (\delta v_\theta)^2 + (\delta v_\phi)^2 \approx 2 (\delta v_r)^2$$
 (buoyancy)

$$(\delta v_r)^2 \approx \frac{1}{2} |\delta \mathbf{v}|^2 = \epsilon_{\text{turb}}$$

Rankine-Hugoniot with turbulence:

$$P_d + \rho_d v_d^2 + \rho_d (\delta v_r)^2 = \rho_u v_u^2 \qquad \Gamma_{\rm th} \approx 4/3$$

$$(\gamma_{\rm th} - 1)\rho\epsilon_{\rm th} + \rho_d v_d^2 + \rho(\delta v_r)^2 = \rho_u v_u^2 \qquad \Gamma_{\rm turb} \approx 2$$

$$(\gamma_{\rm th} - 1)\rho\epsilon_{\rm th} + \rho_d v_d^2 + \rho\epsilon_{\rm turb} = \rho_u v_u^2$$

$$(\gamma_{\rm th} - 1)\rho\epsilon_{\rm th} + \rho_d v_d^2 + (\Gamma_{\rm turb} - 1)\rho\epsilon_{\rm turb} = \rho_u v_u^2$$

How much resolution is needed?

• Must (at least) capture correct rate of kinetic energy flux from largest scales. Normalized kinetic energy flux.

Can this work at all?

Mösta+15, Nature

- All simulations of the magnetorotational mechanism **assume**: MRI works + large-scale field created by dynamo.
- So far impossible to resolve fastest-growing MRI mode in global 3D simulations.
- Unstable regions (roughly): $\frac{d\ln\Omega}{dr} < 0$
- Precollapse field 10¹⁰ G,
 ~10¹⁴ G at bounce.
- Fastest growing mode:
 λ ~ 1 km.

Simulation Setup

Mösta+15, Nature

- Rapidly spinning, magnetized proto-NS.
- Global simulation in quadrant symmetry: 70 km x 70 km x 140 km box
- Resolutions: 500 m/200 m/100 m/50 m
- hot nuclear eq. of state, neutrinos, fixed gravity, GRMHD.
- Simulations on 130,000 CPU cores on NSF Blue Waters, simulate for 10-20 ms.

Key questions:

- Does the MRI efficiently build up dynamically relevant field?
- Saturation field strength? Global field structure?

Global Field Structure

Mösta+15, Nature

dx = 500 m

Caltech

C. D. Ott @ NPCSM 2016

Local Magnetic Field Saturation

Mösta+15, Nature

- Initial exponential growth resolved with 100m/50m simulations.
- Saturated turbulent state within 5 ms.

Energy Spectra

Mösta+15, Nature

Magnetic energy spectrum very resolution dependent.

Energy Spectra

Mösta+15, Nature

- Turbulent saturated state after ~3 ms.
- Inverse cascade (dynamo) afterwards.

B-Field Growth at Large Scales

Mösta+15, Nature

- k=4; corresponding roughly to width of shear layer
- Field will grow to saturation at large scales within ~60 ms.

Implications: Magnetars, Hypernovae, GRBs

- MRI+dynamo -> prompt formation of "proto-magnetar."
 - -> magnetorotational explosions possible -> hypernovae?
 -> could drive relativistic jet at late times -> GRB? (Metzger+11)

Artist's impression of the magnetar in Westerlund 1

- Power
 "superluminous
 supernovae"?
 (Kasen & Bildsten 10)
- ~10% of Milky Way neutron stars are magnetars.

What is happening here?

Mösta+14, ApJL

• B-field near proto-NS: $B_{tor} >> B_z$

- Unstable to MHD screw-pinch kink instability.
- Similar to situation in Tokamak fusion reactors!

Credit: Moser & Bellan, Caltech

Braithwaite+ '06

C. D. Ott @ NPCSM 2016

Explosion?

t = -4.95 ms

Mösta+ 2014 ApJL Plasma β

$$\beta = \frac{P_{\text{gas}}}{P_{\text{mag}}}$$

Neutrinos: Mean Energies

