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Neutron stars • One of the most dense objects in Universe: 
R~10km and M~1.5

1.Outer crust 
2.Inner crust 
3.Core

M�

N. Chamel and P. Haensel. 

Liv. R
ev. R

el. 11, 10, 2008

• The choice of inner crust EoS and the matching to the core EoS  
can be critical :

• Divided in 3 main layers:

Variations have been found of 0.5km for a M=1.4        star!M�

Crust-core transition important:

•   plays crucial role in fraction of I in crust of star:Pt
Icrust ⇠

16⇡

3

R6
tPt

Rs

which also depends on crust thickness, Rt



Describing neutron stars

1.EoS:           for a system at given       
       and 

2.Compute TOV equations 
3.Get star M(R) relation 

⇢ T
P (E)

Prescription:

Problem: Which EoS to choose?

•Phenomenological models (parameters are fitted to nuclei 
properties): RMF, Skyrme… 

•Microscopic models (starts from n-body nucleon  
interaction): (D)BHF, APR…
Solution: Need Constrains!!

Many EoS models in literature:

P.B. Demorest et al, Nature 467, 1081, 2010
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EoS Constrains
•Experiments

P. Danielewicz et al, 
Science 298, 1592, 2002

W. G. Lynch et al,  
PPNP 62, 427 2009 

•Microscopic calculations

S. Gandolfi et al,  
PRC 85, 032801, 2012 

K. Hebeler et al,  
Astrophys. J. 773,11, 2013

•Observations

J. M. Lattimer and M. Prakash,  
arXiv: 1012.3208 [astro-ph.SR] 2010 
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J. M. Lattimer and A. W Steiner,  
EPJA 50, 40, 2014 



Choosing the EoS(s)
We need unified EoS, but if we don’t have it.. 
!
Choose 1 EoS for each NS layer:

!
•Outer crust EoS (BPS or HP or RHS)   
•Inner crust EoS (1) 
•Core EoS

arXiv:1604.01944 [astro-ph.SR] 2016

M(R) not affected
pasta phases ?, unified core EoS ?

homogeneous matter

•Match OC EoS at the neutron drip with IC EoS 
•Match IC EoS at crust-core transition (2) with Core EoS 

and then

We are going to focus on (1) and (2) 

to obtain the transition densities and pressures!



The pasta phases
•Competition between Coulomb and nuclear forces leads to 
frustrated system

•Geometrical structures, the pasta phases, evolve with density 
until they melt crust-core transition

•Criterium: pasta free energy must be lower than the  
correspondent hm state

G. Watanabe et al, PRL 103, 121101, 2009

C. J. Horowitz et al, PRC 70, 065806, 2004 

QMD calculations:



Pasta phases - calculation (I)
• Thomas-Fermi (TF) approximation: 

• Nonuniform npe matter system described inside Wigner-Seitz cell:!
! Sphere, cilinder or slab in 3D (spherical symmetry), 2D (axial symmetry !
! ! around z axis) and 1D (reflexion symmetry).!
• Matter is assumed locally homogeneous and, at each point, its density is 

determined by the corresponding local Fermi momenta. !
• Fields are assumed to vary slowly so that baryons can be treated as 

moving in locally constant fields at each point. !
• Surface effects are treated self-consistently. !
• Quantities such as the energy and entropy densities are averaged over the 

cells. The free energy density and pressure are calculated from these 
two thermodynamical functions.



Pasta phases - calculation (II)
• Coexistence Phase (CP) approximation: 

• Separated regions of higher and lower density: pasta phases, and a 
background nucleon gas.!

• Gibbs equilibrium conditions:  for                        :  !
!

• Finite size effects are taken into account by a surface and a Coulomb 
terms in the energy density, after the coexisting phases are achieved.!

• Total      and total     of the system: 
            !

!
 	

µI
p = µII

p µI
n = µII

n P I = P II

T = T I = T II

F = fFI + (1� f)FII + F
e

+ ✏
surf

+ ✏
coul

F ⇢p

⇢p = ⇢e = yp⇢ = f⇢Ip + (1� f)⇢IIp

check PRC 91, 055801 2015



Pasta phases - calculation (III)
• Compressible Liquid Drop (CLD) approximation: 

The total free energy density is minimized, including the 
surface and Coulomb terms.

The equilibrium conditions become:

µI
n = µII

n ,

P I = P II � ✏surf
⇣ 1

2↵
+

1

2�

@�

@f
�

⇢IIp
f(1� f)(⇢Ip � ⇢IIp )

⌘

µI
p = µII

p � ✏surf
f(1� f)(⇢Ip � ⇢IIp )

,

check PRC 91, 055801 2015



Non-linear Walecka Model

nucleons electrons
mesonsem

non-linear mixing couplings

Li =  ̄i [�µiD
µ �M⇤] i

Le =  ̄e [�µ (i@
µ + eAµ)�me] e
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mesons: mediation of nuclear force

non-linear mixing couplings terms: 
responsible for density dependence of 

Esym!
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How to calculate transition density?

• Thermodynamical spinodal
• Dynamical spinodal
1) Get the instability region:

2) Intersect EoS with 
that boundary to get ⇢t

PRC 82, 055807,  2010 PRC 85, 059904(E), 2012

For   -eq. matter and 
T=0, dyn. spinodal 
very coincident with 
TF calculation 
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Thermodynamical spinodal

•The (free) energy curvature matrix for asymmetric NM is 
defined by:

check PRC 74, 024317 2006

C =
⇣ @2F
@⇢i@⇢j

⌘

•Stability conditions: Tr(C) > 0, Det(C) > 0

•The spinodal is given by for which Det(C) = 0

i.e., one of eigenvalues is negative in the region of instability 
and goes to zero at border:

�� =
1

2

⇣
Tr(C)�

p
Tr(C)2 � 4Det(C)

⌘
= 0

(T, ⇢p, ⇢n)



The crust-core transition - thermodynamical spinodal approach

D* models: scalar and vector 
self-energies depend on E: the 
couplings are adjusted to the 
optical potential in nuclear 
matter. 

Nucl. Phys. A 938, 92 2015

preliminary!

with S. Antic, S. Typel and C. Providência

a) density-dependent models
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b) non-linear mixing meson 
couplings models

e.g. PRC 81, 034323 2010

with N. Alam, B. K. Agrawal 

and C. Providência

preliminary!
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Different mixing couplings: 
different L: L(F�)=70 MeV, 
L(F2�)=46 MeV.



Dynamical spinodal

•Dynamical instabilities are given by collective modes that 
correspond to small oscillations around equilibrium state.

•These small deviations are described by linearized equations 
of motion.

•Perturbed fields:

•Perturbed distribution function:

Fi = Fi0 + �Fi

fi = fi0 + �fi

check PRC 94, 015808 2016

•Very good tool to estimate crust-core transition in cold 
neutrino-free neutron stars. check PRC 82, 055807 2010; PRC 85, 059904(E) 2012 



Dynamical spinodal (cont)

•We get a set of equations for the fields and particles, whose solutions  
form a complete set of eigenmodes, that lead to the following matrix:  

•The dynamical spinodal surface is defined by the region in          
space, for a given wave vector k and temperature T,  limited by the  
surface   
•In the  k=0 MeV limit, the thermodynamic spinodal is obtained.

(⇢p, ⇢n)

! = 0.

0

@
1 + F ppLp F pnLp Cpe

A Lp

FnpLn 1 + FnnLn 0
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1
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semiclassical approach, that is a good approximation to 
t-dependent Hartree-Fock eqs at low energies 

•The time evolution of the distribution functions is described 
 by the Vlasov equation: @fi

@t
+ {fi, hi} = 0, i = p, n, e



The crust-core transition - dynamical spinodal approach

1.The larger L, the 
smaller the spinodal 
section. 

PRC 94, 015808 2016

3.Crossing of the ωρ 
and σρ spinodals, for 
a given L, occurs 
close to the crossing 
of the β-eq EoS with 
the spinodals               

ωρ terms

⇢t

σρ terms

L<80MeV, Pt is larger for ωρ: !
direct implication in I 
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for ωρ or the σρ models about the same.

2.The term ωρ makes the 
spinodal section larger 
compared to σρ.

but



M(R) relations

Stars with unified inner crust-core EoS (black lines) have 
larger (smaller) radii than  configurations without inner 
crust (pink lines) for the NL3ωρ (NL3σρ) models.!

Effect on Mmax is negligible, not true for the radius!!

a) effect of pasta:

b) effect of different inner crust EoS

 with L close to core EoS:

σρ give slightly larger radii than ωρ models, the 
differences being larger for M >~ 1.4M⊙. For 1.4M⊙ star, 
difference is of ∼ 100 m.!

the error on the determination of the radius is negligible 
for all masses!

tested for other models (TM1 and Z271): same result!!
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exceptions: NL3σρ6, difference of ~50 m (∼ 40 m) for a 
1M⊙ ( 1.4M⊙) star; NL3ωρ6, ∼ 20 m for a 1M⊙ star

We get the transition density from a dyn. spin. calculation. 
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If we combine the 3 constrains, 
we get the following models:

NL3 did not pass exp. constrain

Z271*: extra potential dependent on σ meson, that makes M* to stop 
decreasing above saturation density, as suggested in K. A. Maslov, E. E. 
Kolomeitsev, and D. N. Voskresensky, Phys. Rev. C 92, 052801 (2015).  

For 1.4M⊙ stars, these models predict 
R=13.6 ± 0.3 km and a crust thickness 
of 1.36 ± 0.06km.

Z271 did not pass obs. constrain

exceptions:

and but



ext. Nambu—Jona-Lasinio Model
PRC 93, 065805 2016

•Set of models with chiral symmetry included, unlike RMFs
•Since chiral symmetry is satisfied, EoS valid at higher 
densities!

short range repulsionshort range attraction

density dependence of scalar coupling


isospin asymmetric nuclear matter


to make restoration of the 
chiral symmetry less abrupt


make the symmetry energy softer


L =  ̄(i�µ@µ �m) 
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eNJL models
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• In this study, we used  eNJLx, eNJLxωρy, and eNJLxσρy type of models
• We also considered models with a current mass: eNJLxm, and eNJLxmσρy.
• To make Esym softer: *ωρ* and *σρ* models, where we fixed the Esym at ρ=0.1 at the 

same value of eNJLx (eNJLxm), and we calculated the new Gρ, fixing the Gvρ (Gsρ) 
constant.

without current mass with current mass



eNJL models-Constrains
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But the models need to fulfil the constrains…

Experiments

Microscopic calculations

only 2 models passed: 
eNJL3σρ1 and eNJL2mσρ1



M(R) relations
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CP or CLD: no difference in M(R)

eNJL3σρ1:

eNJL2mσρ1:

2) integrate TOV

3) get M(R)

R(M=1.4M⊙)=13.212 km, with ∆R(M=1.4M⊙)=1.405km.

R(M=1.4M⊙)=13.084 km, with ∆R(M=1.4M⊙)=1.408km.



M(R) relations (cont)

Considering hybrid stars:
• quark core described within SU(3) NJL model
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We are still able to describe stable 
2M⊙ stars with a quark core!!

The deconfinement phase transition 
decreases maximum mass

though…

• perform a Maxwell construction to get hadronic to quark transition



Summary
•Inclusion of the inner crust EoS has strong effect on 
the radius of low and intermediate mass neutron stars! 


•Unified EoS are needed!

but… 


•Inner crust EoS with similar symmetry energy 
properties as the core EoS: effect on radii for stars 
with M > 1 M⊙ is negligible!


•For RMF models, R(M=1.4M⊙)=13.6±0.3km, with 
∆R(M=1.4M⊙)=1.36±0.06km.


•Inner-crust—core unified EoS with chiral symmetry and 
pasta allows the description of 2 M⊙ stars, with 
R(M=1.4M⊙)=13.148±0.064km. 




Strong correlations of neutron star radii with the slopes of nuclear matter 
incompressibility and symmetry energy at saturation

set of 24 Skyrme-type effective forces and 18 RMF 
models, and 2 microscopic calculations, all 
describing 2M⊙ neutron stars.

Unified EoSs for the inner-crust-core region 
have been built for all the phenomenological 
models, both relativistic and non-relativistic.

accep. PRC (R), arXiv:
1610.06344[nucl-th]
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We started by calculating correlation 
of R with K, M and L…



We found strong correlation of the neutron star R with 
linear combination of M and L, and almost independent 
of the neutron star mass in the range 0.6-1.8M⊙.
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and….

This correlation can be linked to the empirical relation between R and P at a 
nucleonic density between 1-2 saturation density, and the dependence of P on 
K, M and L.



Thank you!


