

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Nuclear Matter from a Self-Consistent Green's Function Approach

M = • • • • •

Spectral function, $A(k,\omega)/(2\pi)$ [MeV⁻¹]

Nuclear matter covers wide ranges of density and temperature

The phase diagram of hadronic matter

https://www.gsi.de/en/start/fair/forschung_an_fair/kernmateriephysik.htm

- Matter interacting via the strong force appears in diverse forms
- Experiments try to fill the phase diagram puzzle
- Radioactive beam facilities will probe the **neutron-rich region**
- What's the contribution from nuclear many-body theory?

2

The nuclear many-body problem

- Build reliable methods with predictive power
- The study of exotic nuclei is probing the limits of the nuclear landscape
- Constraining the equation of state (EOS) of infinite matter has a high astrophysical impact

From nuclei to nuclear matter

TECHNISCHE UNIVERSITÄT DARMSTADT

3

Why nuclear matter from chiral EFT?

4

Alexander von Humboldt

Why nuclear matter from chiral EFT?

4

Alexander von Humboldt

Self-consistent Green's functions

Dickhoff & Barbieri, PPNP 52, 377 (2004)

nerøy, ω-μ μ

The Green's function as a tool to solve the nuclear many-body problem:

$$G_{\alpha\beta}(\omega) = \sum_{m} \frac{\langle \Psi_0^N | a_\alpha | \Psi_m^{N+1} \rangle \langle \Psi_m^{N+1} | a_\beta^\dagger | \Psi_0^N \rangle}{\omega - (E_m^{N+1} - E_0^N) + i\eta} + \sum_{n} \frac{\langle \Psi_0^N | a_\beta^\dagger | \Psi_n^{N-1} \rangle \langle \Psi_n^{N-1} | a_\alpha | \Psi_0^N \rangle}{\omega - (E_0 - E_n^{N-1}) + i\eta}$$
Spectral Function

• Self-consistent nonperturbative method:

Dyson equation

Breakthrough: full formal extension to consistently include 3BFs
 Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

Self-consistent Green's functions

Dickhoff & Barbieri, PPNP 52, 377 (2004)

 \mathbb{O}

The Green's function as a tool to solve the nuclear many-body problem:

Self-consistent nonperturbative method:

Dyson equation

Breakthrough: full formal extension to consistently include 3BFs
 Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

Self-consistent Green's functions

Dickhoff & Barbieri, PPNP 52, 377 (2004)

 (\mathbf{I})

The Green's function as a tool to solve the nuclear many-body problem:

Self-consistent nonperturbative method:

Dyson equation

Breakthrough: full formal extension to consistently include 3BFs
 Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

Extended SCGF approach

Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

3. calculate self-energy distinguishing the effective terms, correct diagrams counting:

Arianna Carbone – Nuclear Matter from a Self-Consistent Green's Function Approach – 25th October 2016

The 4-pt vertex function

Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

Obtain the interacting vertex function including 3body forces:

Arianna Carbone – Nuclear Matter from a Self-Consistent Green's Function Approach – 25th October 2016

Unterstutzt von / Suppor

The 4-pt vertex function

Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

Obtain the interacting vertex function including 3body forces:

encestate ton r supported by

Alexander von Humboldt

Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

Calculate self-energy paying attention to the effective terms

8

Alexander von Humboldt

Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

Calculate self-energy paying attention to the effective terms

8

Alexander von Humboldt

Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

Calculate self-energy paying attention to the effective terms

Alexander von Humboldt

Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

Calculate self-energy paying attention to the effective terms

Alexander von Humboldt

Symmetric nuclear matter MNVS NN + 3N The spectral function A(p,w) $2\rho_0$ ρ_0 k=0**k**=0 10^{-1} 10^{-1} Slight 3BF effect in general.... 10 10 10^{-3} 10 10^{-4} Spectral function, $(2\pi)^{-1} A(k,\omega)$ [MeV⁻¹ 10⁻⁵ L0⁻⁵ `A(k,ω) [Me] N3LO + N2LO ddN3LO ► Narrower quasi-parcicle -6 k=k_F k=k_F peak at low momenta 10 $(2\mathfrak{A})$ -3 10⁻⁴ ۰0⁻⁴ Spectral function, $T=5 \text{ MeV}_{\rho=0.32 \text{ fm}^{-3}}$ T=5 MeV 10⁻⁵ 10⁻⁵ -3 ρ=0.16 fm 10⁻⁶

 $k=2k_{F}$

10⁻⁶

10

10⁻²

 10^{-3}

10⁻⁴

10⁻⁵

10⁻⁶

500

Lower energy for quasiparticle with 3NF because of the rescaling

echnische INIVERSITÄT DARMSTADT 0

Energy, ω–μ [MeV]

 10^{-1}

 10^{-3}

10

 10^{-5}

 10^{-t}

-500

-250

 $k=2k_{\rm F}$

250

500

Carbone, Rios, Polls, PRC 88, 044302 (2013)

-250

0

Energy, $\omega - \mu$ [MeV]

250

9

Alexander von Humboldt Stiftung/Foundatio

Momentum distribution n(p)

- repulsion rises with density
- o modifications due to averaging procedure visible at high density

Define a new sum rule

Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

Total energy of the system with three-body forces:

$$E^{N} = \langle \Psi^{N} | \hat{H} | \Psi^{N} \rangle = \langle \Psi^{N} | \hat{T} | \Psi^{N} \rangle + \langle \Psi^{N} | \hat{V} | \Psi^{N} \rangle + \langle \Psi^{N} | \hat{W} | \Psi^{N} \rangle$$

• Galitskii-Migdal-Koltun sumrule modified:

$$\sum_{\alpha} \int_{-\infty}^{E^N - E^{N-1}} \mathrm{d}\omega \,\omega \frac{1}{\pi} \mathrm{Im} \, G_{\alpha\alpha}(\omega) = \langle \Psi^N | \hat{T} | \Psi^N \rangle + 2 \langle \Psi^N | \hat{V} | \Psi^N \rangle + 3 \langle \Psi^N | \hat{W} | \Psi^N \rangle$$

$$\frac{E}{A} = \frac{\nu}{\rho} \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \int \frac{\mathrm{d}\omega}{2\pi} \frac{1}{2} \left\{ \frac{p^2}{2m} + \omega \right\} \mathcal{A}(p,\omega) f(\omega) - \frac{1}{2} \langle \Psi^N | \hat{W} | \Psi^N \rangle$$

Alexander von Humboldt

Define a new sum rule

Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

• Total energy of the system with three-body forces:

• Galitskii-Migdal-Koltun sumrule modified:

$$\sum_{\alpha} \int_{-\infty}^{E^N - E^{N-1}} \mathrm{d}\omega \,\omega \frac{1}{\pi} \mathrm{Im} \, G_{\alpha\alpha}(\omega) = \underbrace{\langle \Psi^N | \hat{T} | \Psi^N \rangle}_{-\infty} + 2 \underbrace{\langle \Psi^N | \hat{V} | \Psi^N \rangle}_{+3} + 3 \underbrace{\langle \Psi^N | \hat{W} | \Psi^N \rangle}_{-\infty}$$
$$\frac{E}{A} = \frac{\nu}{\rho} \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \int \frac{\mathrm{d}\omega}{2\pi} \frac{1}{2} \underbrace{\left(\frac{p^2}{2m} + \omega\right)}_{-\infty} \mathcal{A}(p,\omega) f(\omega) - \underbrace{\frac{1}{2}}_{-2} \Psi^N | \hat{W} | \Psi^N \rangle$$

12

Alexander von Humboldt

Modified Koltun sum rule

Carbone, Cipollone, Barbieri, Rios, Polls, PRC 88, 054326 (2013)

Written in other words, we are calculating:

$$\frac{E}{A} = \frac{\nu}{\rho} \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \int \frac{\mathrm{d}\omega}{2\pi} \frac{1}{2} \left\{ \frac{p^2}{2m} + \omega \right\} \mathcal{A}(p,\omega) f(\omega) - \frac{1}{2} \left(\Psi^N |\hat{W}| \Psi^N \right)$$

$$\underbrace{\bigoplus_{k=0}^{\infty} - \bigoplus_{k=0}^{\infty} - \bigoplus_{k=0$$

13

Alexander von Humboldt Stiftung/Foundation

The need for 3-body nuclear forces

The Koltun sumrule

 $\frac{E}{A} = \frac{\nu}{\rho} \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \int \frac{\mathrm{d}\omega}{2\pi} \frac{1}{2} \left\{ \frac{p^2}{2m} + \omega \right\} \mathcal{A}(p,\omega) f(\omega) - \frac{1}{2} \langle \Psi^N | \hat{W} | \Psi^N \rangle$

J.W. Holt *et al.*, PRC 81, 024002 (2010) Hebeler *et al.*, PRC 82, 014314 (2010) Carbone *et al.*, PRC 90, 054322 (2014)

Alexander von Humboldt 14

The need for 3-body nuclear forces

The Koltun sumrule

$$\frac{E}{A} = \frac{\nu}{\rho} \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \int \frac{\mathrm{d}\omega}{2\pi} \frac{1}{2} \left\{ \frac{p^2}{2m} + \omega \right\} \mathcal{A}(p,\omega) f(\omega) - \frac{1}{2} \langle \Psi^N | \hat{W} | \Psi^N \rangle$$

J.W. Holt *et al.*, PRC 81, 024002 (2010) Hebeler *et al.*, PRC 82, 014314 (2010) Carbone *et al.*, PRC 90, 054322 (2014)

- Overall repulsion due to 3BF
- Improved prediction of saturation density
- Small averaging dependence
- However saturation energy underbound

Uncertainties due to fitting procedures

Klos, Hebeler, Menéndez, Carbone, Schwenk (in preparation)

15

How neutron matter energy stiffens

- Global repulsive effect due to 3NFs
- Repulsion of 4 MeV at 0.16 fm⁻³ to 15 MeV at 0.32 fm⁻³
- Small dependence on averaging procedures

<u>3NFs fully predicted</u>
no need to fit to few-body properties

Carbone et al., PRC 90, 054322 (2014)

16

Low-density neutron matter perturbative
Bands from c1 and c3 uncertainties
First calculations including N3LO 3N at HF

Remarkable agreement between many-body methods and different Hamiltonians Hebeler et al., Ann. Rev. Nucl. Part. Sci. 65, 457 (2015)

Further results:

AFDMC - Gezerlis et al., PRC 90, 054323 (2014) Lattice EFT - Epelbaum et al., EPJA 40, 199 (2009) In-medium Chiral PT - J.W. Holt et al., PPNP 73, 35 (2013), Lacour et al., Ann. Phys. 326, 241 (2011) MBPT Wellenhofer et al, PRC 92, 015801 (2015)

17

Chiral forces within the SCGF approach

- Choose five different chiral Hamiltonians
- Test how they behave in SNM
- Check microscopic and bulk properties
- Predict PNM and estimate the symmetry energy
- Study SNM finite-T properties and the liquid-gas phase transition

18

Saturation point according to different Hamiltonians

19

Microscopic properties: the spectral function

- energy tails affected by the cutoff on the NN force
- high-momentum region also affected by cutoff and density dependence
- effects clearly visible in momentum distribution

• full description beyond quasiparticle

20

Alexander von Humboldt

From microscopic... to macroscopic

- N2LOsat higher Kin. Energy 0
- N2LOsat higher 3N Pot. Energy 0
- NN+3N Pot. Energy differs
- PNM Tot. more attractive with N2LOsat

Alexander von Humboldt

Free energy and pressure at varying temperature

- similar behaviour to zero T energy
- N2LOopt most repulsive
- less difference
 between other
 potentials
- <u>liquid-gas phase</u>
 <u>transition</u>

23

The liquid-gas phase transition and critical point

Coexistence line: equilibrium between a gas and a liquid phase

Lower critical temperature respect to estimated experimental value ~ T=18 MeV

24

Carbone, Rios, Polls (in preparation)

• Remarkable linear correlation between saturation energy and critical temperature

Alexander von Humboldt Stiftung/Foundation

Many-Body approximation uncertainties

Carbone, Rios, Polls (in preparation)

- SCGF vs BHF
- Chemical pot. provides higher uncertainty
- N2LOsat biggest spread
- Small difference at T=0 causes bigger spread for Tc

26

Alexander von Humboldt Stiftung/Foundation

Pure neutron matter at 2N + 3N at N3LO

Improved 3NF matrix elements Hebeler et al. 2015 Partial-wave based average Drischler 2014-2015

Arianna Carbone – Nuclear Matter from a Self-Consistent Green's Function Approach – 25th October 2016

27

Pure neutron matter at N3LO: many-body convergence

Improved 3NF matrix elements Hebeler et al. 2015 Partial-wave based average Drischler 2014-2015

DARMSTADT

Arianna Carbone – Nuclear Matter from a Self-Consistent Green's Function Approach – 25th October 2016

28

Thermal effects for supernovae simulations

- Thermal index includes finite-T effects
- Pth decreases after certain density
- Eth decreases monotonically
- Gamma increases then decreases after sat. density

29

The effective mass

30

Alexander von Humboldt Stiftung/Foundation

Summary

- A consistent extension of the SCGF method to include 3NFs is accomplished
- Nuclear and neutron matter with theoretical uncertainties can be calculated reliably using *ab initio* methods based on chiral Hamiltonians
- A thorough microscopic description within the SCGF method is available
- Small overall effect of 3NFs on the momentum distribution, strong repulsive effect on bulk properties
- Critical temperature can be estimated
- Gamma thermal index obtainable microscopically

Alexander von Humboldt 31

Outlook

- Chiral EFT Hamiltonian: power counting, theoretical uncertainties, limits of chiral EFT, etc.
- Many-body approximation methods: include irreducible 3B terms, improve the effective interactions, include particle-hole diagrams, asymmetric matter, etc.
- Reliable finite temperature results from *ab initio* theory: high astrophysical impact (EOSs at finite T, dynamics of neutron star merger simulations, corecollapse supernovae, etc.)

Collaborators:

TECHNISCHE C. Drischler, P. Klos UNIVERSITÄT DARMSTADT K. Hebeler, A. Schwenk

32

Thank you for your attention!

- Outlook
- Chiral EFT Hamiltonian: power counting, theoretical uncertainties, limits of chiral EFT, etc.
- Many-body approximation methods: include irreducible 3B terms, improve the effective interactions, include particle-hole diagrams, asymmetric matter, etc.
- Reliable finite temperature results from *ab initio* theory: high astrophysical impact (EOSs at finite T, dynamics of neutron star merger simulations, corecollapse supernovae, etc.)

Collaborators:

TECHNISCHE C. Drischler, P. Klos UNIVERSITÄT DARMSTADT K. Hebeler, A. Schwenk

32