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The aim of our work

Investigate how an external magnetic field affects
the phase diagram of quark matter
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• Do NJL-type models agree with LQCD (µB = 0)?

• How B affects the phase diagram within NJL-type models?
• What happens to the Critical-End-Point (CEP)?



The importance of magnetic fields

• Magnetized neutron stars: low T and high µB region

• First phases of the Universe: high T and low µB region

• Heavy-Ion Collisions (HIC): wider region of the phase diagram
• Strong magnetic fields are generated in HIC

RHIC → eBmax ≈ 5m
2

π
≈ 0.09 GeV

2

LHC → eBmax ≈ 15m
2

π
≈ 0.27 GeV

2

One of the fundamental goals of HIC experiments
is to map the QCD phase diagram

• The search for the Critical-End-Point is the major goal of several
HIC experiments

• The increase and divergence of fluctuations is the characteristic
feature of a critical point

Momentum distributions, ratios of observed particles, etc.
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The PNJL model

We use the Polyakov loop extended Nambu-Jona–Lasinio (PNJL)
model,

L = q̄ [iγµDµ − m̂c] q + Lsym + Ldet + Lvec + U
(

Φ, Φ̄; T
)

−
1

4
FµνF µν ,

where

Lsym = Gs

8
∑

a=0

[

(q̄λaq)2 + (q̄iγ5λaq)2
]

Ldet = −K {det [q̄(1 + γ5)q] + det [q̄(1 − γ5)q]}

Lvec = −GV

8
∑

a=0

[

(q̄γµλaq)2 + (q̄γµγ5λaq)2
]

The covariant derivative is given by

Dµ = ∂µ − iqf Aµ
EM − iAµ

• A static and constant B field in the z direction AEM
µ = δµ2x1B



The PNJL model

For the Polyakov loop potential we use

U
(

Φ, Φ̄; T
)

T 4
= −

a (T )

2
Φ̄Φ + b(T )ln

[

1 − 6Φ̄Φ + 4(Φ̄3 + Φ3) − 3(Φ̄Φ)2
]

Model parametrization/regularization

• NJL: P. Rehberg, et al. PRC53, 410

• Polyakov potential: S. Roessner, et al. PRD75, 034007

• Magnetic field: D. P. Menezes, et al. PRC80, 065805



Model and LQCD quark condensates

• The Magnetic Catalysis effect is present at any temperature
within the PNJL model

• A qualitatively agreement is obtained with LQCD at low
temperatures

LQCD shows Inverse Magnetic Catalysis around the transition region:
the magnetic field weakens the quark condensate



Model and LQCD quark condensates

[G. Bali, et al. PRD86(2012)071502]

• The Magnetic Catalysis effect is present at any temperature
within the PNJL model

• A qualitatively agreement is obtained with LQCD at low
temperatures

LQCD shows Inverse Magnetic Catalysis around the transition region:
the magnetic field weakens the quark condensate



The pseudocritical transition temperatures
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• The pseudocritical transition temperatures increase with B

• Though much more insensitive to B, the deconfinement
temperature is also an increasing function

In LQCD, both pseudocritical temperatures are decreasing
functions of B
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[G. Bali, et al. JHEP 1202 (2012) 044]

• The pseudocritical transition temperatures increase with B

• Though much more insensitive to B, the deconfinement
temperature is also an increasing function

In LQCD, both pseudocritical temperatures are decreasing
functions of B



Magnetic field dependent quark interaction

The divergence of low energy QCD models from LQCD must
emerge from the full dynamics of QCD

• IMC arises from the back-reaction of the quarks to nontrivial
rearrangement of the gluonic configurations (LQCD)
F. Bruckmann, et al. JHEP04 (2013) 112

Even though there is no full knowledge of the IMC underlying
dynamics, there are several theoretical arguments for its existence

• Screening effects of the gauge sector: the gluon self-energy
and strong coupling are affected by B

• N. Mueller and Jan M. Pawlowski PRD91 (2015) 116010
• A. Ayala, et al. PLB 759 (2016) 99–103
• ...

Can an agreement between the model and LQCD be
obtained by assuming a magnetic field dependence on the

scalar coupling Gs?
M. Ferreira et al. PRD89(2014)016002, D89(2014)116011
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The magnetic field dependence of Gs

• The Gs(eB) was fitted to reproduce T χ
c (B)/T χ

c (eB = 0) obtained
in LQCD

• We are reproducing the pseudocritical temperature decrease ratio

Gs(ζ) = G0

s

(

1 + a ζ2 + b ζ3

1 + c ζ2 + d ζ4

)

with ζ = eB/Λ2
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Quark condensate with Gs(eB)
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• Gs(eB) still leads to MC at low temperatures

• B enhances the quark condensate

• And it generates IMC on the transition temperature region

• B weakens the quark condensate



Polyakov loop value with Gs(eB)
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• As in LQCD results, the Polyakov loop shows the following trends:

• for a given temperature, it increases with B and changes strongly on
the transition region

• The inflexion point moves to smaller temperatures with increasing B



Pseudocritical temperatures with Gs(eB)
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• Both chiral and deconfinement pseudocritical temperatures
decrease with B

• They have a very similar dependence on B

• T χ
c − T Φ

c can be reduced by adjusting the T0 (Polyakov potential)



Chiral phase transition at zero temperature

• The effect of Gs(eB) on the chiral transition at T = 0
without vector interaction (GV = 0)
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• Up to B = 1019 Gauss, the ρcrit
B remains close in both cases



Phase diagram at finite chemical potential: the CEP

If a Critical-End-Point (CEP) exists and its location is
determined the general structure of the phase diagram

can be outlined

• To study the impact of the magnetic field on the CEP’s location, the
following scenarios are analyzed:

• With a constant scalar coupling Gs = G0
s (no IMC)

• No vector interaction GV = 0
• Constant vector interaction GV = αG0

s

• With a magnetic dependent scalar coupling Gs(eB) (with IMC)

• No vector interaction GV = 0
• Constant vector interaction GV = αG0

s

• Magnetic dependent vector interaction GV = αGS(eB)

[P. Costa, et al. PRD92(2015)036012]



Magnetized QCD phase diagram

• Constant scalar coupling Gs = G0
s

• No vector interaction GV = 0



Phase diagram for Gs = G
0
s and GV = 0

• The location of the CEP as a function of the magnetic field

GeV2 GeV2

• The µCEP decreases up to eB ≈ 0.4 GeV2 and then increases for
higher B

• The temperature and baryonic density of the CEP is an increasing
function of B



Magnetized QCD phase diagram

• Constant scalar coupling Gs = G0
s

• No vector interaction GV = 0
• Constant vector interaction GV = αG0

s



Vector interaction

• Phase diagram for zero magnetic field

• The CEP’s location depends on the GV value

• As it increases, the CEP moves to lower T and higher µ (lower ρB)
• The CEP disappears for the critical value Gcrit

V
= 0.71G0

s



Multiple phase transitions at low temperatures

• For eB . 0.03, there is only one phase transition for both GV = 0
and GV = 0.25G0

s

• There is only one CEP at finite temperature



Multiple phase transitions with vector interaction

• For eB . 0.03, there is only one phase transition for both GV = 0
and 0.25G0

s

• There is only one CEP at finite temperature

• For eB ∼ 0.09, two phase transitions occur for GV = 0

• Two CEPs at finite temperature



Multiple phase transitions with vector interaction

• For eB . 0.03, there is only one phase transition for both GV = 0
and 0.25G0

s

• There is only one CEP at finite temperature

• For eB ∼ 0.09, two phase transitions occur for GV = 0

• Two CEPs at finite temperature

• For eB ∼ 0.09, three phase transitions are present for GV = 0.25G0
s

• Three CEPs



CEP’s location as a function of B with GV = 0.25G
0
s

⇒ Gs = G0
s (no IMC)

Case IA: GV = 0

Case IB: GV = 0.25G0
s

Case IB: GV = 0.71G0
s

• eB < 0.1 GeV2:
T CEP ↓ and µCEP ↑

• 0.1 < eB . 0.4 GeV2:
T CEP ↑ and µCEP ↓

• eB > 0.4 GeV2:
T CEP ∼ and µCEP ↑

• For 0.01 . eB . 0.1 GeV2 a
structure of multiple CEPs
appears at low T.

• For eB > 0.1 GeV2 just one
CEP remains
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Magnetized QCD phase diagram

• Constant scalar coupling Gs = G0
s

• No vector interaction GV = 0
• Constant vector interaction GV = αG0

s

• Magnetic dependent scalar coupling Gs(eB)

• No vector interaction GV = 0



Impact of Gs(eB) on CEP

The effect of IMC (Case IIA) on CEP:

• For eB & 0.3 GeV2, it leads to a lower T CEP and ρCEP
B .

• The µCEP
B is a decreasing function of B.

• For higher B, the crossover at µB = 0 might change to a
first-order phase transition
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Role of the vector interaction

Case I ⇒ Gs = G0

s

I B: GV = 0.25G0

s

Case II ⇒Gs= Gs(eB)

II B: GV = 0.25Gs(eB)

II C: GV = G0

s



Role of the vector interaction (with IMC)
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Conclusions

• An agreement of effective models with LQCD results is crucial for
an accurate prediction of the magnetized QCD phase diagram

• Using the GS(eB), we were able to conclude that the IMC effect
affects the QCD phase structure

• The CEP’s location strongly depends on whether the IMC is taked
into account

• For high magnetic fields the CEP moves towards µB = 0, indicating
that the transition might change from a crossover to a first-order
phase transition

• The vector interaction strength plays an important role on the
CEP’s location in a magnetized medium


