Magnetic field effects on neutron stars and white dwarfs

arXiv:1609.05994

Mon.Not.Roy.Astron.Soc. 456 (2016) no.3, 2937-2945
 Phys.Rev. D94 (2016) no.4, 044018
 Mon.Not.Roy.Astron.Soc. 463 (2016) 571-579
 Phys.Rev. D92 (2015) no.8, 083006

Bruno Franzon

S. Schramm (Advisor)

Frankfurt Institute for Advanced Studies, FIAS, Germany

Nuclear Physics, Compact Stars, and Compact Star Mergers 2016 Kyoto, Japan

Plan of the talk

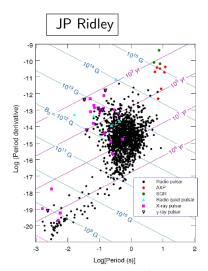
- Motivation
- ► Magnetized Neutron Stars: fully-general relativistic approach Langage Objet pour la RElativité NaumériquE (LORENE)
- Results
- Summary

Motivation: magnetic fields

Earth: $B\sim 0.5~G$

MR: B $\sim 10^3$ G

Atlas: $B{\sim}\ 10^{20}~\text{G}$



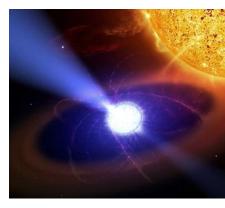
Typical NS: $B_s \sim 10^{12}$ G Magnetars: $B_s > 10^{14}$ G

 \clubsuit Virial Theorem: $B_c \sim 10^{18}~\text{G}$

Motivation: magnetic fields

- I. Some white dwarfs are also associated with strong magnetic fields
- II. From observations, the surface magnetic field: $B_s \sim 10^{6-9} \, \mathrm{G}$

 \clubsuit Virial theorem: $B_c \sim 10^{13}\,\text{G}$



Origin? Duncan, Thompson, Kouveliotou

The Ultimate Convection Oven

THIS PICTURE LEAVES a basic question unanswered: Where did the magnetic field come from in the first place? The traditional assumption was: it is as it is, because it was as it was. That

> I. fossil field ($B \sim 1/R^2$) II. dynamo process

How to model highly magnetized stars

Einstein Equation

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi GT_{\mu\nu}$$

Geometry

1. Spherical: TOV

2. Perturbation

3. Fully-GR

Energy Content

1. Matter: particles

2. Fields: magnetic

field

Fully-General Relativistic Approach

- Stationary neutron stars with no magnetic-field-dependent EoS were studied by Bonazzola (1993), Bocquet (1995).
- magnetic fields effects in the EoS was presented in Chatterjee (2014), for a quark EoS and, later on, we took into consideration a much more complex system with nucleons, hyperons, mixed phase with quarks, AMM of all hadrons (even the uncharged ones) in Franzon (2015).

 \Downarrow

B field in the EoS: effects mentioned above are negligible for calculating the final structure of highly magnetized neutron stars.

Mathematical setup

▶ The energy-momentum tensor:

$$T^{\mu\nu} = (e+p)u^{\mu}u^{\nu} + pg^{\mu\nu} + \frac{1}{\mu_0} \left(-b^{\mu}b^{\nu} + (b \cdot b)u^{\mu}u^{\nu} + \frac{1}{2}g^{\mu\nu}(b \cdot b) \right)$$

where m and B are the lengths of the magnetization and magnetic field 4-vectors.

▶ In the rest frame of the fluid:

$$T^{\mu\nu}=egin{pmatrix} e+rac{B^2}{2\mu_0} & 0 & 0 & 0 \ 0 & p+rac{B^2}{2\mu_0} & 0 & 0 \ 0 & 0 & p+rac{B^2}{2\mu_0} & 0 \ 0 & 0 & 0 & p-rac{B^2}{2\mu_0} \end{pmatrix}$$

 $T^{\mu\nu} = \text{fluid} + \text{field}$

Mathematical setup

Stationary and axisymmetric space-time, the metric is written as:

$$ds^{2} = -N^{2}dt^{2} + \Psi^{2}r^{2}\sin^{2}\theta(d\phi - N^{\phi}dt)^{2} + \lambda^{2}(dr^{2} + r^{2}d\theta^{2})$$

where N^{ϕ} , N, Ψ and λ are functions of (r, θ) .

▶ A poloidal magnetic field satisfies the circularity condition:

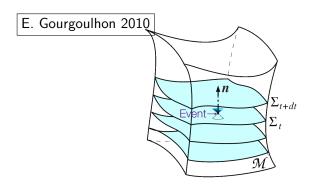
$$A_{\mu}=(A_t,0,0,A_{\phi})$$

▶ The magnetic field components as measured by the observer (\mathcal{O}_0) with n^{μ} velocity can be written as:

$$B_{lpha} = -rac{1}{2}\epsilon_{lphaeta\gamma\sigma}F^{\gamma\sigma}n^{eta} = \left(0,rac{1}{\Psi r^2\sin heta}rac{\partial A_{\phi}}{\partial heta},-rac{1}{\Psi\sin heta}rac{\partial A_{\phi}}{\partial r},0
ight)$$

 $A_t, A_\phi \rightarrow Maxwell$ Equations. Static case: no electric field

3+1 foliation of space time



- → One decomposes any 4D tensor into a purely spatial part:
- 1. onto the hypersurface Σ_t with 3D spatial metric $\gamma_{\mu\nu}:=g_{\mu\nu}+n_{\mu}n_{\nu}$ and
- 2. a purely **timelike** part, orthogonal to Σ_t , $\gamma_{\mu\nu}n^{\mu}=0$, and aligned with n^{μ} . A observer with n^{μ} is called Eulerian observer.

3+1 decomposition of $T_{\mu\nu}$

▶ Total energy density, $E = n^{\mu} n^{\nu} T_{\mu\nu}$:

Bocquet (1995)

$$E = \Gamma^2(e+p) - p + \frac{1}{2\mu_0}(B^iB_i)$$

▶ and the momentum density flux, $J_{\alpha} = -\gamma^{\mu}_{\alpha} \mathbf{n}^{\nu} T_{\mu\nu}$, can be written as:

$$J_{\phi} = \Gamma^2(e+p)U$$

▶ 3-tensor stress, $S_{\alpha\beta} = \gamma^{\mu}_{\alpha} \gamma^{\nu}_{\beta} T_{\mu\nu}$, components are given by:

$$S^r_r = p + \frac{1}{2\mu_0} (B^\theta B_\theta - B^r B_r)$$

$$S^{\theta}_{\ \theta} = p + \frac{1}{2\mu_0} (B^r B_r - B^{\theta} B_{\theta})$$

$$S^{\phi}_{\phi} = p + \Gamma^2(e+p)U^2$$

with $\Gamma = (1 - U^2)^{-\frac{1}{2}}$ the Lorenz factor and U the fluid velocity defined as:

$$U = \frac{\Psi r \sin \theta}{N} (\Omega - N^{\phi})$$

Field equations: our 4 unknowns N, N^{ϕ} , Ψ , λ

► Einstein equations: $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi GT_{\mu\nu}$

Bocquet (1995)

$$\Delta_3
u = \sigma_1$$
 $\tilde{\Delta}(N^{\phi}r\sin{ heta}) = \sigma_2$
 $\Delta_2[(N\Psi - 1)r\sin{ heta}] = \sigma_3$
 $\Delta_2(
u + lpha) = \sigma_4$

Each σ_i contains terms involving matter and non-linear metric terms.

Definitions:

$$\begin{split} \nu &= \ln \textit{N}, \ \alpha = \ln \lambda, \\ \Delta_2 &= \left(\frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial^2\theta}\right) \\ \Delta_3 &= \\ \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial^2\theta} + \frac{1}{r^2\tan\theta}\frac{\partial}{\partial\theta}\right) \\ \tilde{\Delta}_3 &= \Delta_3 - \frac{1}{r^2\sin^2\theta} \end{split}$$

Structure of the star

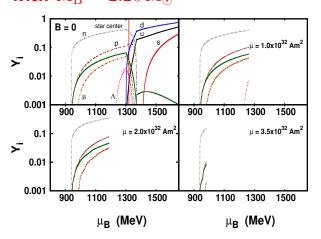
Mass

$$M = \int \lambda^2 \Psi r^2 \times \left[N(E+S) + 2N^{\phi} \Psi(E+p) U r \sin \theta \right] \sin \theta dr d\theta d\phi$$

Circumferential Radius

$$R_{circ} = \Psi(r_{eq}, \frac{\pi}{2})r_{eq}$$

Population change for a hybrid and cold NS star with $M_B = 2.20 \, \mathrm{M}_{\odot}$



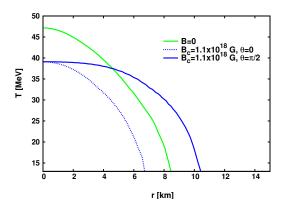
Hybrid stars containing nucleons, hyperons and guarks. See, e.g. Hempel M. at all (2013); Dexheimer V., Schramm S. (2008, 2010)

[B. Franzon at all, MNRAS (2015)]

- → As one increases the magnetic field, the particle population **changes** inside the star.
- → stars that possess strong magnetic fields might go through a phase transition later along their evolution.

Temperature distribution: hadronic PNS star with

$${
m M_B} = 2.35\,{
m M_{\odot}}$$
 and ${\it s_B} = 2,\,{\it Y_L} = 0.4$



[B. Franzon, V. Dexheimer, S.Schramm PRD94 (2016) no.4, 044018]

- → magnetic field influences **temperature** distribution in star
- \rightarrow The same behaviour for **neutrino distribution** $n_{\nu_{e^-}} \times r$, but detailed **temporal evolution** necessary.

Properties of White Dwarfs

- \rightarrow Size similar to Earth
- \rightarrow Densities $10^{5-9} \, \mathrm{g/cm^3}$
- → Typical composition: C and/or O.
- → Gravity is balanced by electron degenary pressure
- \rightarrow Masses are up to 1.4 M_{\odot} .

Progenitors of Type la supernovae: Chandrasekhar White Dwarfs

Standard Candles

EXPANSION OF THE UNIVERSE 2011

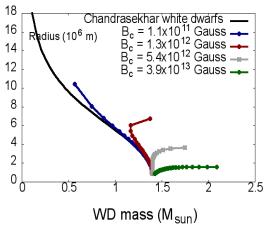
Saul Perlmutter

Brian P. Schmidt

Adam G. Riess

But, motivated by **observation** of supernova that appears to be **more luminous** than expected (e.g. SN 2003fg, SN 2006gz, SN 2007if, SN 2009dc), it has been argued that the **progenitor** of such super-novae should be a white dwarf with mass above the well-known Chandrasekhar limit: **2.0-2.8** M_{\odot} .

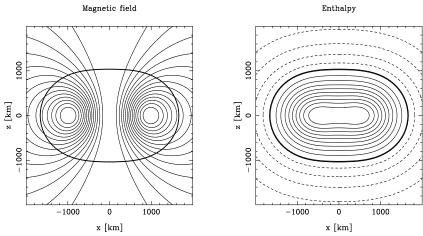
Mass-radius diagram for magnetized white dwarfs



[B. Franzon and S.Schramm, Phys.Rev. D92 (2015) 083006]

- ightarrow Magnetic field effects can considerably increase the star masses and, therefore, might be the source of superluminous SNIa.
- \rightarrow Recently, we included **beta decay** and **pyconuclear reactions** in the calculation: still mass well above 1.4 M_{\odot} , see [arXiv:1609.05994].

Deformation due to magnetic fields



 \rightarrow **Microphysics** plays an important role. The critical density for pyconuclear fusion reactions limits the central white dwarf density and, as a consequence, its equatorial **radius cannot be smaller** than $R \sim 1600$ km for a mass of $\sim 2.0 M_{\odot}$ [arXiv:1609.05994].

Summary

- Self-consistent stellar model including a poloidal magnetic field
- We have shown that high magnetic fields prevent the appearance of a quark and a mixed phase.
- Magnetic fiels can also change the temperature in the core of PNS, as well the neutrino distributions.
- \bullet Magnetized WD can be super-Chandrasekhar white dwarfs, whose masses are higher than 1.4 M_{\odot}
- Observables: distinct change in the cooling.

The End