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Motivation: magnetic fields
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Motivation: magnetic fields

I. Some white dwarfs are also
associated with strong magnetic
fields

Il. From observations, the surface
magnetic field: B; ~ 10°7°G

& Virial theorem: B, ~ 1013 G

0r|g|n? Duncan, Thompson, Kouveliotou

The Ultimate Convection Oven

THIS PICTURE LEAVES a basic question unanswered: Where
did the magnetic field come from in the first place? The tradi-
tional assumption was: it is as it is, because it was as it was. That

|. fossil field (B ~ 1/R?)
[1. dynamo process



How to model highly magnetized stars

Einstein Equation

Geometry Energy Content
1. Spherical: TOV 1. Matter: particles
2. Perturbation 2. Fields: magnetic

3. Fully-GR field



Fully-General Relativistic Approach

e Stationary neutron stars with no magnetic-field-dependent EoS
were studied by Bonazzola (1993), Bocquet (1995).

e magnetic fields effects in the EoS was presented in Chatterjee
(2014), for a quark EoS and, later on, we took into considaration
a much more complex system with nucleons, hyperons, mixed
phase with quarks, AMM of all hadrons (even the uncharged
ones) in Franzon (2015).

4

B field in the EoS: effects mentioned above are negligible for
calculating the final structure of highly magnetized neutron
stars.



Mathematical setup

» The energy-momentum tensor:
T =(e+ p)utu” + pg"”

1 1
+— <—b“b” + (b b)u'u” + —g"(b- b))
Mo 2

where m and B are the lengths of the magnetization and
magnetic field 4-vectors.

» In the rest frame of the fluid:

T = fluid + field

82
e+270 OB2 0
T _ 0 p+27O 0 i 0
0 0 piy, 0
BQ
0 0 0 P= 2



Mathematical setup

» Stationary and axisymmetric space-time, the metric is written
as:

ds? = —N2dt? + W2r%sin? 0(dp — N?dt)? + A2(dr? + r?d6?)
where N®, N, W and ) are functions of (r,6).
» A poloidal magnetic field satisfies the circularity condition:
A= (A:,0,0,Ay)

» The magnetic field components as measured by the observer
(Op) with n* velocity can be written as:

__1 Yo 8 — 1 0Ay 1 0Ag
Ba = —3€apyoF70" = <0= Vrsing 06 > Wsing or 0

A¢, Ay — Maxwell Equations. Static case: no electric field



3+1 foliation of space time

’E. Gourgoulhon 201Q

— One decomposes any 4D tensor into a purely spatial part:
1. onto the hypersurface ¥; with 3D spatial metric v, := g, + nun,
and

2. a purely timelike part, orthogonal to X, v, n* = 0, and aligned with
n*. A observer with n is called Eulerian observer.



3+1 decomposition of T,

» Total energy density, E = n*n"T,,: ‘Bocquet (1995)‘

E=T%(e+p)—p+4,(BB)

» and the momentum density flux, J, = —y&n” T, can be
written as:
Jp =T?(e+p)U

> 3-tensor stress, S,5 = véffyg T, components are given by:
ST o =p+ 2%0(3959 - B"B,)
Sty =p+ ﬁ(BfB, — BYBy)

5%y =p+T2(e+p)U?
with [ = (1 — U?)~z the Lorenz factor and U the fluid velocity
defined as: .

_ Wrsinf

U=""w

(- N?)




Field equations: our 4 unknowns N, N?, W, \

» Einstein equations: R, — 3Rg,, = 87GT,,
’ Bocquet (1995) ‘

A3y = 03

A(N®rsin ) = o
A[(NV — 1)rsinf] = o3
DNp(v+a) =04

Each o; contains terms involving matter and non-linear
metric terms.

» Definitions:

> 20 19 10
(WJF?EJFTZWJFW@)
Az = A3 —

_1_
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Structure of the star

> Mass
M= [ X2Wr? x [N(E + S) + 2N®W(E + p)Ursin 0] sin drdfd¢

» Circumferential Radius
Reire = \U(reqa g)req



Population change for a hybrid and cold NS star

with Mp = 2.20 M,

star center ‘
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Hybrid stars
containing
nucleons, hyperons
and quarks. See,

e.g.

[B. Franzon at all,
MNRAS (2015)]

— As one increases the magnetic field, the particle population

changes inside the star.

— stars that possess strong magnetic fields might go through a phase

transition later along their evolution.



Temperature distribution: hadronic PNS star with
Mg =2.35My and s =2,Y;, =04
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[B. Franzon, V. Dexheimer, S.Schramm PRD94 (2016) no.4, 044018]

— magnetic field influences temperature distribution in star

— The same behaviour for neutrino distribution n,  Xr, but detailed
temporal evolution necessary.



Properties of White Dwarfs

— Size similar to Earth

— Densities 105~ g/cm?

— Typical composition: C and/or O.

— Gravity is balanced by electron degenary pressure
— Masses are up to 1.4 M.

Progenitors of Type la supernovae: Chandrasekhar White Dwarfs



Standard Candles
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But, motivated by observation of supernova that appears to be
more luminous than expected (e.g. SN 2003fg, SN 2006gz, SN
2007if, SN 2009dc), it has been argued that the progenitor of
such super-novae should be a white dwarf with mass above the
well-known Chandrasekhar limit: 2.0-2.8 M, .



Mass-radius diagram for magnetized white dwarfs
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— Magpnetic field effects can considerably increase the star masses and,
therefore, might be the source of superluminous SNla.

— Recently, we included beta decay and pyconuclear reactions in the
calculation: still mass well above 1.4 M, see [arXiv:1609.05994].



Deformation due to magnetic fields

Magnetic field Enthalpy
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— Microphysics plays an important role. The critical density for

pyconuclear fusion reactions limits the central white dwarf density

and, as a consequence, its equatorial radius cannot be smaller

than R ~ 1600 km for a mass of ~ 2.0 M, [arXiv:1609.05994].



Summary

e Self-consistent stellar model including a poloidal magnetic field

e We have shown that high magnetic fields prevent the appearance
of a quark and a mixed phase.

e Magnetic fiels can also change the temperature in the core of
PNS, as well the neutrino distributions.

e Magnetized WD can be super-Chandrasekhar white dwarfs,
whose masses are higher than 1.4 M

e Observables: distinct change in the cooling.



The End



