

PHYSICS/ASTRONOMY BLDG. RM C411 • BOX 351550 UNIVERSITY OF WASHINGTON • SEATTLE, WA 98195-1550 • USA

www.int.washington.edu • 206-685-3360

Stephan Stetina

Institute for Nuclear Theory Seattle, WA 98105

FULF Der Wissenschaftsfonds.

Instabilities of Relativistic Superfluids

NPCSM 2016, Yukawa Institute, Kyoto, Japan

M.G. Alford, A. Schmitt, S.K. Mallavarapu, A. Haber

[A. Haber, A. Schmitt, S. Stetina, PRD93, 025011 (2016)]
[S. Stetina, arXiv: 1502.00122 hep-ph]
[M.G. Alford, S. K. Mallavarapu, A. Schmitt, S. Stetina, PRD89, 085005 (2014)]
[M.G. Alford, S. K. Mallavarapu, A. Schmitt, S. Stetina, PRD87, 065001 (2013)]

Superfluidity in dense matter

Microscopic vs macroscopic description of compact stars

derive hydrodynamics

- groundstate of dense matter

- quantum field theory
- Bose-Einstein condensate

Pulsar glitches
R-mode instability
Asteroseismology
(...)

learn about fundamental physics

Superfluidity in dense matter

Microscopic mechanism: Spontaneous Symmetry Breaking (SSB)

- Quark matter at asymptotically high densities:
 - → colour superconductors break Baryon conservation U(1)_B [M. Alford, K. Rajagopal, F. Wilczek, NPB 537, 443 (1999)]
- Quark matter at intermediate densities:
 - → meson condensate breaks conservation of strangeness U(1)_s [T. Schäfer, P. Bedaque, NPA, 697 (2002)]
- nuclear matter:
 - \rightarrow SSB of U(1)_B (exact symmetry at any density)

Goal: translation between field theory and hydrodynamics

- SSB in U(1) invariant model at finite T \rightarrow superfluid coupled to normal fluid
- SSB in U(1) x U(1) invariant model at T=0 \rightarrow 2 coupled superfluids

Superfluidity from Quantum Field Theory

start from simple microscopic complex scalar field theory:

$$\mathcal{L} = \partial_{\mu}\varphi \partial^{\mu}\varphi^{*} - m^{2} \left|\varphi\right|^{2} - \lambda \left|\varphi\right|^{4}$$

separate condensate\fluctuations:

$$\varphi \to \varphi + \phi \qquad \phi = \rho \ e^{i\psi}$$

- → superfluid related to condensate [L. Tisza, Nature 141, 913 (1938)]
- → normal-fluid related to quasiparticles [L. Landau, Phys. Rev. 60, 356 (1941)]

 static ansatz for condensate: (infinite uniform superflow) $\rho, \partial_{\mu}\psi = \text{const.}$

• Fluctuations $\delta \rho(x, t)$ and $\delta \psi(x, t)$ around the static solution determined by classical EOM, can be thermally populated

$$ho =
ho ig(\partial_\mu \psi^2 - m^2 - \lambda
ho^2 ig) \qquad \quad \partial_\mu (
ho \partial^\mu \psi) = 0$$

 \rightarrow Goldstone mode + massive mode

Hydrodynamics from Field Theory

Relativistic two fluid formalism at finite T (non dissipative)

[B. Carter, M. Khalatnikov, PRD 45, 4536 (1992)]

$$j^{\mu} = n_s v_s^{\mu} + n_n v_n^{\mu}$$
 with: $v_s^{\mu} = \frac{\partial^{\mu} \psi}{\sigma}$ $v_n^{\mu} = \frac{s^{\mu}}{s}$ (superflow) (entropy flow)

 $P = P_s + P_n$

connection to field theory at T=0:

 $v_s^{\mu} = \partial^{\mu} \psi / \sigma$ $\sigma^2 = \partial_{\mu} \psi \partial^{\mu} \psi = \mu (1 - v_s^2)$ $\mu_s = \partial_0 \psi$ $v_s = -\nabla \psi / \mu_s$

derivation of hydrodynamic quantities at finite T: 2PI (CJT) formalism

effective Action: $\Gamma = \Gamma[\rho, S]$, $0 = \delta\Gamma/\delta\rho$, $0 = \delta\Gamma/\delta S$

\rightarrow present results in normal fluid restframe

[M.G. Alford, S. K. Mallavarapu, A. Schmitt, S. Stetina, PRD89, 085005 (2014)] [M.G. Alford, S. K. Mallavarapu, A. Schmitt, S. Stetina, PRD87, 065001 (2013)]

Classification of excitations

elementary excitations

poles of the quasiparticle propagator

energetic instabilities (negative quasiparticle energies)

collective modes (sound modes)

- fluctuations in the *density* of elementary excitations
- \rightarrow equivalent to elementary excitations at T=0
- \rightarrow introduce fluctuations for all hydrodynamic and thermodynamic quantities

 $x \rightarrow x_0 + \delta x(\mathbf{x}, t)$ $x = \{P_s, P_n, n_s, n_n, \mu_s, T, \vec{v}_s\}$

 \rightarrow solutions to a given set of (linearized) hydro equations

$$\partial_\mu j^\mu = 0$$
 , $\ \partial_\mu s^\mu = 0$ and $\ \partial_\mu T^{\mu
u} = 0$

dynamic instabilities (complex sound modes)

Elementary excitations

- → critical temperature: condensate has "melted" completely
- \rightarrow critical velocity: negative Goldstone dispersion relation (angular dependency)

Generalization of Landau critical velocity

- normal and super frame connected by Lorentz boost
- back reaction of condensate on Goldstone dispersion

sound excitations

Scale invariant limit

- → pressure can be written as $\Psi = T^4 h(T/\mu)$ [C. Herzog, P. Kovtun, and D. Son, Phys.Rev.D79, 066002 (2009)]
- \rightarrow second sound still complicated! Compare e.g. to ⁴He:

[E. Taylor, H. Hu, X. Liu, L. Pitaevskii, A. Griffin, S. Stringari, Phys. Rev. A 80, 053601 (2009)]

Role reversal, no superflow $m=\{0, 0.6 \mu\}$

Role reversal including superflow

System of two coupled superfluids

$U(1) \times U(1)$ invariant microscopic model:

- \rightarrow two coupled complex scalar fields
- quantum fields $\phi_{1,2} \to \phi_{1,2} + \phi_{1,2}$ $\phi_{1,2} = \rho_{1,2} e^{i\psi_{1,2}}$
- couplings: $h |\varphi_1|^2 |\varphi_2|^2$, $g \varphi_1 \varphi_2^* \partial_\mu \varphi_1^* \partial^\mu \varphi_2 + c.c.$ (gradient coupling)

Relativistic two fluid formalism at T=0 (non dissipative)

- two conserved *charge* currents: $\partial_{\mu} j_{1}^{\mu} = 0$, $\partial_{\mu} j_{2}^{\mu} = 0$
- momenta: $\partial_{\mu}\psi_1$, $\partial_{\mu}\psi_2$

 $\rightarrow \ \mu_1 = \partial_0 \psi_1, \ \mu_2 = \partial_0 \psi_2, \ v_{s,1} = -\nabla \psi_1 / \mu_1, \ v_{s,2} = -\nabla \psi_2 / \mu_2 \ \text{etc.}$

Excitations in two coupled superfluids

Regions of stability of homogeneous SF

- Energetic instability (I)
- **Dynamical** instability (II)
- Single superfluid preferred (III)

[A. Haber, A. Schmitt, S. Stetina; Phys. Rev. D 93, 025011 (2016)]

Outlook

- excitations of *coupled superfluids at finite temperature* (3 component fluid)
 - \rightarrow study instabilities
- *impact of pairing*, start from Dirac Lagrangian
- consider inhomogeneous condensates and vortices

 \rightarrow what happens to the energetic instability?

- add *dissipative terms*
- consider *explicit symmetry breaking*: what happens to superfluidity?

ありがとうございました (Thank you!)

Role reversal - comparison to r-modes

Conventional picture:

Amplitude of r-modes:

$$\partial_t \alpha = -\alpha \big(\tau_{grav}^{-1} + \tau_{diss}^{-1}\big)$$

 τ_{grav} time scale of gravitational radiation τ_{visc} time scale of viscous diss. (damping)

 $A \rightarrow B$: - star spins up (accretion)

- T increase is balanced by ν cooling
- $\mathbf{B} \rightarrow \mathbf{C}$: unstable r-modes are excited
 - r modes radiate gravitational waves (spin up stops)
 - star heats up (viscous dissipation of r-modes)

[images: M. Gusakov, talk at "the structure and signals of neutron stars", 24. – 28.3. 2014, Florence, Italy]

Role reversal - comparison to r-modes

\rightarrow why are fast spinning stars observed in nature?

possible resolutions:

- Increase viscosity by a factor of 1000
 - all stars are in stable region (unrealistic for p, n, e^- , μ^-)
- Consider more exotic matter with high bulk viscosity (hyperons, quark matter)

→ impact of superfluidity on r-modes?

[M. Gusakov, A. Chugunov, E. Kantor Phys.Rev.Lett. 112 (2014) no.15, 151101]

[images: M. Gusakov, talk at "the structure and signals of neutron stars", 24. – 28.3. 2014, Florence, Italy]

Role reversal - comparison to r-modes

• Close to avoided crossing:

normal mode \rightarrow SFL mode (enhanced dissipation, left edge of stability peak)

SFL mode \rightarrow normal mode (reduced dissipation, right edge of stability peak)

Excitation of normal fluid and superfluid modes

- avoided crossing if modes are coupled
- superfluid modes: faster damping $au_{diss}^{SFL} \ll au_{diss}^{normal}$

