2016/10/26 NPCSM2016

Hyperonic many-body effect in hypernuclei and neutron-star matter

Y. Yamamoto

Collaborators: T. Furumoto nuclear reaction N. Yasutake neutron star Th.A. Rijken BB interaction M. Isaka Λhypernuclei/AMD T. Harada Σhypernuclei

Hyperon puzzle !

 $\begin{array}{c} Massive \ (2M_{\odot}) \ neutron \ stars \\ 2010 \ \ PSR \ J1614-2230 \ \ (1.97\pm0.04) \ M_{\odot} \\ 2013 \ \ PSR \ J0348-0432 \ \ (2.01\pm0.04) \ M_{\odot} \end{array}$

Softening of EOS by hyperon mixing

Our aim : Try to solve the hyperon puzzle by Universal Three-Baryon Repulsion on the basis of terrestrial data

Based on BHF theory

Our story to neutron-star matter starts from the BB interaction model

Nijmegen Extended Soft-Core Model (ESC) SU₃ invariant (NN and YN) interaction

repulsive cores

A model of Universal Three-Baryon Repulsion Multi-Pomeron Exchange Potential (MPP) Same repulsions in all baryonic channels NNN, NNY, NYY, YYY

$$\mathcal{L}_{PNN} = g_{P}\bar{\psi}(x)\psi(x) \sigma_{P}(x)$$

$$\Delta_{F}^{P}(k^{2}) = +\exp(-k^{2}/4m_{P}^{2})/\mathcal{M}^{2}$$

$$V_{P}(r) = \frac{g_{P}^{2}}{4\pi}\frac{4}{\sqrt{\pi}}\frac{m_{P}^{3}}{\mathcal{M}^{2}} \exp(-m_{P}^{2}r_{12}^{2})$$

$$p_{2} - p_{2} - p_$$

$$\begin{split} V_{\text{eff}}^{(3)}(r) &= g_P^{(3)}(g_P)^3 \frac{\rho}{\mathcal{M}^5} F(r), \\ V_{\text{eff}}^{(4)}(r) &= g_P^{(4)}(g_P)^4 \frac{\rho^2}{\mathcal{M}^8} F(r), \\ F(r) &= \frac{1}{4\pi} \frac{4}{\sqrt{\pi}} \left(\frac{m_P}{\sqrt{2}}\right)^3 \exp\left(-\frac{1}{2}m_P^2 r^2\right) \end{split}$$

Effective two-body potential from MPP (3- & 4-body potentials) Three-Nucleon attraction (TNA) phenomenological

Both MPP and TNA are needed to reproduce nuclear saturation property and Nucleus-Nucleus scattering data

(MPP is essential for Nucleus-Nucleus scattering data)

density-dependent two-body attraction

 $V_A(r;\rho) = V_0 \exp[-(r/2.0)^2]\rho \exp(-\eta\rho)(1+P_r)/2$

Many-body repulsive effect in high density region (up to $2 \rho_0$)

Nucleus-Nucleus scattering data with G-matrix folding potential

Y. Yamamoto, T. Furumoto, N. Yasutake and Th. A. Rijken: Phys. Rev. C 88 (2013) 022801(R). How to determine coupling constants ${\tt g}_{3P}$ and ${\tt g}_{4P}$?

Nucleus-Nucleus scattering data with G-matrix folding potential

Double Folding

$$U(\mathbf{R}) = \int \rho_1(\mathbf{r}_1) \rho_2(\mathbf{r}_2) v_D(\mathbf{s}; \rho, E) d\mathbf{r}_1 d\mathbf{r}_2$$

$$+ \int \rho_1(\mathbf{r}_1, \mathbf{r}_1 - \mathbf{s}) \rho_2(\mathbf{r}_2, \mathbf{r}_2 + \mathbf{s}) v_{EX}(\mathbf{s}; \rho, E) \exp\left[i\frac{\mathbf{K}\cdot\mathbf{s}}{M}\right] d\mathbf{r}_1 d\mathbf{r}_2$$

$$= V_{DFM}(\mathbf{R}) + iW_{DFM}(\mathbf{R})$$
rozen-Density Approximation $\rho = \rho_1 + \rho_2$
wo Fermi-spheres separated in momentum space

Two Fermi-spheres separated in momentum space can overlap in coordinate space without disturbance of Pauli principle

Fi

$^{16}O + ^{16}O$ elastic scattering cross section at E/A = 70 MeV

E/A curves

MPa/MPa⁺ including 3- and 4-body MPP : MPb/MPc including 3-body MPP only

$$E_{sym}(\rho) = \frac{E}{A}(\rho, \beta = 1) - \frac{E}{A}(\rho, \beta = 0)$$
$$L = 3\rho_0 \left[\frac{\partial E_{sym}(\rho)}{\partial \rho}\right]_{\rho = \rho_0}$$
$$K = 9\rho_0^2 \left[\frac{d^2}{d\rho^2}\frac{E}{A}(\rho, \beta = 0)\right]_{\rho = \rho_0}$$
$$\beta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$

	$ ho_0$	E/A	E_{sym}	L	K
	(fm^{-3})	(MeV)	(MeV)	(MeV)	(MeV)
MPa ⁺	0.155	-16.1	31.2	61.2	317
MPa	0.155	-16.0	31.3	60.7	270
MPb	0.155	-16.0	31.3	60.2	254
MPc	0.155	-16.1	31.1	59.9	225

For example, AV8' +UIX : E_{sym} =35.1 MeV L=63.6 MeV (Gandolfi et al.)

Four parameter sets

Stiffness of EOS : MPa⁺ > MPa > MPb > MPc K= 317 270 254 225

	$g_P^{(3)}$	$g_P^{(4)}$	V_0	η
MPa^+	1.31	80.0	-36.0	8.0
MPa	2.34	30.0	-54.0	10.0
MPb	2.94	0.0	-68.0	11.2
MPc	2.34	0.0	-100.	16.0

diffractive production of showers of particles
$$g_P^{(3)} = 1.95 \sim 2.6$$

 $pp \rightarrow pX$ $g_P^{(4)} = 33 \sim 228$

All four versions reproduces similarly ¹⁶0–¹⁶0 scattering data

	$g_P^{(3)}$	$g_P^{(4)}$	V_0	η
MPa ⁺	1.31	80.0	-36.0	8.0
MPa	2.34	30.0	-54.0	10.0
MPb	2.94	0.0	-68.0	11.2
MPc	2.34	0.0	-100.	16.0

with $n+p \beta$ -stable matter

by solving TOV eq.

Hyperon-Mixed Neutron-Star Matter using YN & YY interaction model

ESCO8c consistent with almost all experimental data of hypernuclei (S=-1,-2) MPP universal in all BB channels given in S=0 channel → ? in S=-1,-2 channel

(ESC+MPP+TBA) model should be tested in hypernuclei hyperonic sector

	$-B_{\Lambda}$ base	d on ESC14		•
	V_{BB} only	w/ MBE	$-B^{ m exp}_{\Lambda}$	including
$^{9}_{\Lambda}$ Li(*)	-7.6	-8.1	$-8.50 \pm 0.12[28]$	
$^9_{\Lambda}{ m Be}$	-7.7	-8.1	$-6.71 \pm 0.04[29]$	MPP+TBA
$^{9}_{\Lambda}\mathrm{B}(*)$	-7.7	-8.2	$-8.29 \pm 0.18 [28]$	
$^{10}_{\Lambda}\mathrm{Be}(*)$	-8.6	-9.0	$-9.11 \pm 0.22[26],$	
10			$-8.55 \pm 0.18[33]$	
$^{10}_{\Lambda} B(*)$	-8.7	-9.1	$-8.89 \pm 0.12 [29]$	
$^{11}_{\Lambda}B(*)$	-9.7	-10.0	$-10.24 \pm 0.05 [29]$	
$^{12}_{\Lambda}{ m B}(*)$	-11.0	-11.3	$-11.37 \pm 0.06[29],$	
			$-11.38 \pm 0.02 [32]$	
$^{12}_{\Lambda}C(*)$	-10.8	-11.0	$-10.76 \pm 0.19 [28]$	
$^{13}_{\Lambda}{ m C}(*)$	-11.5	-11.7	$-11.69 \pm 0.19 [26]$	
$^{14}_{\Lambda}C(*)$	-12.4	-12.5	$-12.17 \pm 0.33[28]$	·····
$^{15}_{\Lambda}N$	-12.9	-12.9	$-13.59 \pm 0.15[29]$	littea within
$^{16}_{\Lambda} O(*)$	-13.3	-13.0	$-12.96 \pm 0.05[27]^{\dagger}$ 6	a few hundred keV
$^{19}_{\Lambda}$ O	-14.8	-14.3	_	
$^{21}_{\Lambda}$ Ne	-15.8	-15.5	_	
$^{25}_{\Lambda}{ m Mg}$	-17.0	-16.1	_	
$^{27}_{\Lambda}Mg$	-17.5	-16.2	_	
$^{28}_{\Lambda}$ Si	-17.8	-16.6	$-17.1 \pm 0.02[24, 39]^{\dagger}$	
$^{32}_{\Lambda}S(*)$	-19.4	-17.6	$-18.0 \pm 0.5[25]^{\dagger}$	
$^{40}_{\Lambda} m K$	-21.5	-19.4	_	
$^{40}_{\Lambda} Ca(*)$	-21.3	-19.3	$-19.24 \pm 1.1[30]^{\dagger}$	
$^{41}_{\Lambda}$ Ca	-21.5	-19.5	_	
$^{48}_{\Lambda}{ m K}$	-22.6	-20.2	_	
$^{51}_{\Lambda}V(*)$	-23.5	-20.3	$-20.51 \pm 0.13[31]^{\dagger}$	
$^{59}_{\Lambda}\mathrm{Fe}$	-24.6	-21.7	_	
χ^2 for (*)	87.7	4.63		

HyperAMD by Isaka

Σ -nucleus interaction is strongly repulsive !!!

T. Harada, Y. Hirabayashi / Nuclear Physics A 759 (2005) 143-

 ${}^{28}\text{Si}(\pi^-, K^+)$ reaction at $p_{\pi} = 1.20 \text{ GeV}/c$ (6°),

$$(V_0^{\Sigma}, W_0^{\Sigma}) = (+20 \text{ MeV}, -20 \text{ MeV})$$

(+30 MeV, -40 MeV)

In various RMF models with $U_{\Sigma} = 20 - 30$ MeV Σ^- mixing does not occur

Pauli-forbidden state

model	T	$^{1}S_{0}$	$^{3}S_{1}$	${}^{1}P_{1}$	${}^{3}P_{0}$	${}^{3}P_{1}$	${}^{3}P_{2}$	D	U_{Σ}
ESC08c	1/2	10.6	-22.1	2.0	2.1	-5.1	-0.2	-0.6	
	3/2	-12.6	30.2	-3.4	-2.1	5.2	-3.2	-0.2	+0.8
ESC08b	1/2	10.3	+25.5	1.4	2.5	-5.9	0.3	-0.8	
	3/2	-10.4	52.4	-3.0	-2.7	5.9	-4.4	-0.1	+19.8

 $U_{WS}~\approx~20\text{--}30~MeV$

How different two interactions in ${}^{28}S(K^-,K^+)$ spectrum ?

 $^{28}\text{Si}(\pi^-, K^+)$ reaction at $p_{\pi} = 1.20 \text{ GeV}/c$ (6°),

Calculation with Σ -nucleus LDA potential given by Σ N G-matrices

MPP=MPa without TNA

We use **ESCO8b** with MPa/b/c (TBA=0) for ΣN

Hyperon-mixed Neutron-Star matter with universal TBR (MPP)

EoS of $n+p+\Lambda+\Sigma+e+\mu$ system

ESC(YN) + MPP(YNN) + TBA(YNN)

Hyperon-mixed neutron matter

Starting from single particle potentials calculated with the <u>G-matrix theory</u>:

$$\begin{split} U_B(k) &= \sum_{B'} U_B^{(B')}(k) \quad \text{with} \quad B, B' = n, p, \Lambda, \Sigma^- \\ U_B^{(B')} \text{ means a single particle potential of } B \text{ particle in } B' \text{ matter} \\ \hline \mathbf{Energy \ density} \\ \varepsilon &= \varepsilon_{mass} + \varepsilon_{kin} + \varepsilon_{pot} \end{split}$$

$$= 2\sum_{B} \int_{0}^{k_{F}^{B}} \frac{d^{3}k}{(2\pi)^{3}} \left[M_{B} - M_{n} + \frac{\hbar^{2}k^{2}}{2M_{B}} + \frac{1}{2}U_{B}(k) \right]$$

$$\varepsilon_{mass} = \sum_{B} (M_{B} - M_{n})\rho_{B}$$

$$\varepsilon_{kin} = \sum_{B} \frac{3}{5} \frac{\hbar^{2}(k_{F}^{B})^{2}}{2M_{B}} \rho_{B} = \sum_{B} \frac{3}{5} \frac{\hbar^{2}}{2M_{B}} (3\pi^{2})^{2/3} (\rho_{B})^{5/3}$$

$$\varepsilon_{pot} = 2\sum_{B} \int_{0}^{k_{F}^{B}} \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{2}U_{B}(k) = \frac{1}{2}\sum_{B} \int_{0}^{k_{F}^{B}} \frac{k^{2}dk}{\pi^{2}} U_{B}(k)$$

Chemical potential : $\mu_B = \frac{\partial \varepsilon}{\partial \rho_B}$

 ε

Chemical potential : $\mu_B = \frac{\partial \varepsilon}{\partial \rho_B}$

Chemical equilibrium conditions:

 $\mu_n = \mu_p + \mu_e$ $\mu_e = \mu_\mu$ $\mu_{\Sigma^-} = \mu_n + \mu_e$ $\mu_\Lambda = \mu_n$

Baryon-number conservation : $y_n + y_p + y_\Lambda + y_{\Sigma^-} = 1$ Charge neutrality : $y_p = y_{\Sigma^-} + y_e + y_\mu$

Hyperon-mixed neutron-star matter $\Lambda \Sigma^{-}$

Maximum mass for MPb/MPc (no 4-body repulsion) is less than $2 M_{\rm solar}$

	M_{max}/M_{\odot}	$R(M_{max})$	$R(1.5M_{\odot})$	$\rho_c(M_{max})/\rho_0$
		(km)	(km)	
MPa	1.99	10.6	12.6	6.6
MPb	1.81	10.1	12.1	7.6
MPc	1.68	10.1	11.9	7.8

In what situation do hyperons disappear ?

no onset

MPa(hyp) is more repulsive than MPb(nuc)

MPc+MPa (hyp) no hyperon mixing

MPa and MPc reproduce $^{16}O^{-16}O$ data well

Adopting MPc (nuc) and MPa (hyp), 4BR in hyperon channel only

 $2 M_{\odot}$ star with no hyperon mixing

Case: MPc (hyp) < MPa (nuc)

Ξ - mixing

Maximum mass is not changed by Ξ^- mixing

Conclusion

ESC+MPP+TBA model

- * MPP strength determined by analysis for $^{16}O+^{16}O$ scattering
- * TNA adjusted phenomenologically to reproduce saturation properties
- * Consistent with hypernuclear data
- * No ad hoc parameter to stiffen EOS

MPa set including 3- and 4-body repulsions

leads to massive neutron stars with $2M_{\odot}$ in spite of significant softening of EOS by hyperon mixing

MPb/c including 3-body repulsion only lead to
 slightly smaller values than 2M_☉ quantitatively
MPP(hyp) > MPP(nuc) and MPP(hyp) < MPP(nuc) lead to
 large reduction and enhancement of softening
 by hyperon mixing, respectively</pre>

Final comment:

Decisive superiority of our approach to universal repulsion MPP works among everything (not only N,Y, but also \triangle , K⁻, q, etc) MPP prevent softening of EOS from everything