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Roadmap

• Counterpart zoo 
• pros and cons 

• Neutron precursor 
• relationship to the r-process 

• traditional kilonovae 
• opacities (red or blue) 
• thermalization
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Goriely+16 Metzger+15 

Total free n mass:
7.6⇥ 10�5M�
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+Questions:
• Which systems produce a 

sufficient amount of free 
neutrons?   

• How will the energy from free 
neutron decay heat the ejecta 
(thermalization) 

• How will thermalized energy 
diffuse (composition and 
opacity)



Kilonovae: opacities



Kilonovae
Characterizing the EM emission

How much? How fast? What kind?

tpeak ⇠
✓
Mej

vejc

◆1/2

Lpeak ⇠ L(tpeak) ,

• merger dynamics: 
• binary type 
• mass ratio 
• NS EOS 
• BH spin 
• magnetic fields

• composition/opacity 
• robustness of the r-

process 
• lanthanides/actinides 
• lighter elements
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Weak interactions: effect of system
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Weak interactions: effect of system
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dependence



Weak interactions: viewing angle

HMNS

A long-lived HMNS raises     preferentially along the 
poles, leading to a viewing angle dependence 
(Metzger & Fernández 2014) 

Ye

BH



Kilonovae: interactions

Nucleosynthesis is not the whole story; we also 
have to understand how the different 
components interact
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Kilonovae: thermalization

radioactive decay re-radiated as 
thermal emission

wavelength

flu
x

sn2001b

transfer to the 
thermal pool

Function of decay mode, decay spectra (including 
energy partition for    -decay), and the density and 
composition of the ejected material

Thermalized energy supplies the kilonova’s luminosity 
budget

�

See also: Hotokezaka+16



Kilonovae: thermalization

Barnes+16

use r-process 
nuclear 
network 
calculations to 
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composition



Thermalization: energy-loss rates
Dominated by Bethe-Bloch interaction (with bound electrons)

  Main points: 
• mild energy 

dependence: 
higher energy  

             less   
   efficient 
   thermalization 
• slight 

dependence 
on the 
background 

� � rays

Barnes+16



Thermalization: decay spectra
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Effect on Light Curves

Barnes+16

New mass estimates for kN 
associated with GRB 130603B

Caveats: 
• viewing angle 
• oblateness



Dependence on Decay Mode:
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Dependence on Decay Mode:
translead production depends on neutron 
separation energies near 
(see Mendoza-Temis+15)

N = 130



Dependence on Decay Mode:
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Late-time Light Curves
a potential diagnostic for r-process robustness

• When the ejecta is optically thin,        tracks the 
instantaneous energy generation rate. 

• This could be the best chance to directly measure the 
prevalence of    -decay (and fission) 
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Hotokezaka+16more fission
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The bling-nova knot
a word of caution


