Kilonovae: impact of the *r*-process

Jennifer Barnes NPCSM (YITP) November 9, 2016

Roadmap

- Counterpart zoo
 - pros and cons
- Neutron precursor
 - relationship to the r-process
- traditional kilonovae
 - opacities (red or blue)
 - thermalization

EM Counterparts

 $t_m + \text{ few s}$

 $t_m + \text{few s}$

 t_m+ ~hour

 $t = t_m + days$

 $t_m + months$

~consistent			
timely follow-up			
"smoking gun"			
probe <i>r</i> -proces			

high v, low ρ , \rightarrow free neutrons

efficient neutron capture → strong *r*-process

high v, low ρ , \rightarrow free neutrons

bright t +optical brief speculative potential useful as optical triggers, but more work is needed

Questions:

- Which systems produce a sufficient amount of free neutrons?
- How will the energy from free neutron decay heat the ejecta (thermalization)
- How will thermalized energy diffuse (composition and opacity)

Kilonovae: opacities

Kilonovae

Characterizing the EM emission

$$L_{\rm peak} \sim L(t_{\rm peak})$$
 , $t_{\rm peak} \sim \left(\frac{M_{\rm ej}\kappa}{v_{\rm ej}c}\right)^{1/2}$

How much? How fast?

- merger dynamics:
 - binary type
 - mass ratio
 - NS EOS
 - BH spin
 - magnetic fields

What kind?

- composition/opacity
 - robustness of the rprocess
 - lanthanides/actinides
 - lighter elements

Kilonovae: opacities

r-process yields are relatively insensitive to nuclear mass model, but do depend on $Y_{\rm e}$

- $Y_{\rm e} = 0.25$ emerges as a threshold value
- weak interactions are clearly important

Kilonovae: opacities

r-process yields are relatively insensitive to nuclear mass model, but do depend on $Y_{\rm e}$

- $Y_{\rm e} = 0.25$ emerges as a threshold value
- weak interactions are clearly important

Goriely+15

Weak interactions: effect of system

Weak interactions: effect of system

Kasen+15

Weak interactions: viewing angle

A long-lived HMNS raises $Y_{\rm e}$ preferentially along the poles, leading to a viewing angle dependence (Metzger & Fernández 2014)

Nucleosynthesis is not the whole story; we also have to understand how the different components interact Nucleosynthesis is not the whole story; we also have to understand how the different components interact

Nucleosynthesis is not the whole story; we also have to understand how the different components interact

Kilonovae: thermalization

Thermalized energy supplies the kilonova's luminosity budget

Function of *decay mode*, *decay spectra* (including energy partition for β -decay), and the *density* and *composition* of the ejected material

See also: Hotokezaka+16

use *r*-process nuclear network calculations to determine the composition

Barnes+16

Thermalization: energy-loss rates

Dominated by Bethe-Bloch interaction (with bound electrons)

Main points:

- mild energy dependence: higher energy
 less
 efficient
 thermalization
- slight dependence on the background

Barnes+16

Thermalization: decay spectra

Barnes+16

Effect on Light Curves

New mass estimates for kN associated with GRB 130603B

Caveats:

- viewing angle
- oblateness

Barnes+16

Dependence on Decay Mode:

Dependence on Decay Mode:

translead production depends on neutron separation energies near N=130 (see Mendoza-Temis+15)

Dependence on Decay Mode:

- prevalence of α-decay increases energy generated and thermalization
- more tranlead production higher $\rightarrow L_{bol}$

Late-time Light Curves

a potential diagnostic for *r*-process robustness

- When the ejecta is optically thin, $L_{\rm bol}$ tracks the instantaneous energy generation rate.
- This could be the best chance to directly measure the prevalence of α -decay (and fission)

The bling-nova knot

a word of caution $v_{\rm ej}$ M_{ej} $\cos \iota$ $L_{\rm bol}$ κ $Y_{\mathrm{e},0}$ (color) translead/ fission