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Neutrino-driven OQutflow in MNS Phase

© MNS phase

* Large neutrino luminosity from the
MNS and torus (~10°3 erg/s)

* The effect of neutrinos would be significant.
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© Relativistic jet for short GRBs?
Due to neutrino pair-annihilation heating
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Monte-Carlo method using Newtonian simulation
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RHD simulations for BH-torus using equilibrium torus
as initial conditions Just et al. 16
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© Relativistic jet for short GRBs?
Due to neutrino pair-annihilation heating
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/\/\ RHD simulations for BH-torus using equilibrium torus
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© Neutrino-driven winds

Fernandez & Metzger 13, Perego et al. 14
Metzger & Fernandez 14, Just et al. 15
Fernandez et al. 15

This component would contributes to
heavy element nucleosynthesis and
electromagnetic signals

Viscosity-driven wind : Fernandez’s talk




Neutrino-driven OQutflow in MNS Phase

© Relativistic jet for short GRBs?

GRB? Due to neutrino pair-annihilation heating
RB?

Recent studies :

1 ’ , Monte-Carlo method using Newtonian simulation

Richers et al. 15,

We simulate the MINS-torus system in fully general relativistic
He: y Y&
eled Manner in order to investigate the properties of neutrino-driven
syn] outflow from the NS—NS merger remnant.

_|_

We consider Vi — € e ' reaction and investigate the effects.

DCI & TCIrdInacz 14, JU

Fernndez et al. 15

This component would contributes to
heavy element nucleosynthesis and
electromagnetic signals

Viscosity-driven wind : Fernandez’s talk




Method
© Strategy

1) Merger of NS—NS and MNS formation

by 3-D full GR simulation

. (Sekiguchi et al. 15)
Equation of state : DD?2

( — The remnant is long-lived MNS)
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Method “

@) Strategy }W :
1) Merger of NS—NS and MNS formation ® Ol
by 3-D full GR simulation

(Sekiguchi et al. 15)

Equation of state : DD?2
( — The remnant is long-lived MNS)

Average over azimuthal angles around the rotational axis @
after ~50 ms after the merger, when the system settles into

. . . . . %  Angle-averaged
quasi-axisymmetic configuration. S apeygend  figuration
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Method
© Basic Equations

- Full GR axisymmetric neutrino radiation hydrodynamics simulation

* Einstein’s equation : BSSN formalism

We use Cartoon method to impose axially symmetric conditions.

* General relativistic radiation hydrodynamics :

Leakage+ scheme incorporating Moment formalism ' Pornesl
Shibata et al. 11

baryons, electrons, trapped neutrinos V1'% g = —Q(leak) A
streaming neutrinos 'V aT(S,V) < 3= Q(l cak) 3

T We solve neutrino radiation transfer using Moment formalism with M 1-closure.

T1We do not consider the viscosity in this simulation.
Thus we focus only on purely radiation-hydrodynamical effects on the system.

* Lepton fraction equations



Results : Dynamics of Fluid

Density color map of meridional plane . . 4 021 ne
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Results : Dynamics of Fluid

e First ~50 ms
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Relativistic outflow 1s not observed in this setup



Results : Dynamics of Fluid

* First ~50 ms o 7 s P e s Result w/o Pair-heating
Strong outflow due to % SSEsEES
Pair-annihilation heating ~ \ | ‘ z
fg ) - 0 028 05] | ' X ovelgczltg [Co]
0 T I
e ~100 ms later 0
60
a 50
. =< 40
Heating rate decrease <o
— outflow becomes weak
~0.2¢ -

50
£
N 30

- » I =

>< Effect Of Palr_he atlng ls large 50 40 20 20 40 60 80 -8 -60 -40 -20 20 40 60 80

x [km] x [km]

Strong outflow is not seen in the result without v v pair-annihilation.



Results : Luminosity & Pair-annihilation heating rates
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Results : Luminosity & Pair-annihilation heating rates
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© Luminosity
decreases to ~10°? erg/s in ~300ms.
and get quasi-stationary.

© Total pair-annihilation heating rate
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1°" is >10° erg/s in first 50 ms, but

decreases to ~10% erg/s in ~300 ms
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Results: The Properties of the Ejecta
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* Unbound mass ~ 3x10* M

 Kinetic energy ~ 5x10%® erg

Subdominant compared to

dynamical ejecta
(~103 Mg, 2x10* erg for DD2 EOS)
(Sekiguchi et al. 15)

* Average velocity

L ~0.1-02¢

X Effect of Pair-heating is large.

Without pair-heating process, we underestimate
the amount and kinetic energy of the neutrino-driven outflow.




Results : Electron fraction & Entropy distribution

© Mass histogram of ejected material @ t=400 ms
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* Material of Y _>0.25 is mainly ejected. Typical value : ~0.4.
A small amount (~10°M ) of material has very large specific entropy.

Pair-annihilation process (v + 7 — €~ + €™ ) can inject energy
regardless of baryon density.



r-process in v-driven outflow
© Estimate following Hoffman et al. 97.

(assuming T, ~ 50 ms)
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In the most of the neutrino-driven outflow,
heavy nucle1 of A>130 are hardly produced via r-process.
Detailed nucleosynthesis study — Next work
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Pair-annihilation Heating by Ray-tracing Method

Current treatment of neutrino transfer:
Moment formalism with M1-closure relation (Shibata et al. 11)

This method cannot treat the crossing of two beams.
Pair-annihilation heating rate should be compared to more Ab initio calculation.

Calculate the pair-annihilation heating rate by ray-tracing method
using snapshots of the simulation. (Ruffert et al. 97)

1 C1+C
Quy— 100 __C1tCh / 101, / 4 L6, + {(€),)(1 — cos6,,)?
4c(mec?)? 3 v
dQI., = Qeﬁﬂ
Log Total neutrino emissivity [erg/s/cm3] Y e — 2|2

*We ignore general relativistic effects.



Pair-annihilation Heating Rate by Ray-tracing method

Pair-annihilation heating rate along z-axis
using snapshot at t = 100ms
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Heating rate estimated with (simple) ray-tracing method
~10 times larger that that with moment formalism.
Heating rate would be underestimated.



Summary

Long-term simulations for MNS-torus system to investigate the neutrino-
driven mass ejection from the system.

* Neutrinos
— Luminosity ~10°° — 10°? erg/s in ~100ms.

— Pair-annihilation heating > 10°Y erg/s at first (nN~0.3%),
but decreases to ~ 10% erg/s (M~ 0.03%).

* Ejected mass
— Unbound mass : M; ~ (10*-107) M,
— The kinetic energy : E,.. ~ 10% — 10% erg.
— Subdominant compared to dynamical component.

T Investigating viscosity-driven wind : near future!



Moment Form alism Thorne 81, Shibata et al. 11
B Variables

MeB — / d‘/}9 < pﬁ f (p) 3;) (Energy-momentum tensor of neutrino)
— Fn“ nB + F%n p + Fﬁna + PO‘5 n*: normal of the time slice

B Evolution Eqs.  (3+1 decomposition of VzM*” = (Source Terms)* )

O(VAE) + 0;[\A(aF? — B7E)]
= a\/’T,f[Pinij — ij)j Ina — 5%y,
O(VF) + 05V (aR’ — B F)
= ﬁ[ — Ed;a + F0; 8" + %ijaﬂ’jk + Q‘Sa’Yz'a] :

B Closure relation (M1-closure)

. y FiF
. thin Pl =F———
opt. thin — S FFET
opt. thick— pij — [(2w? = 1)v" —4V'VI] + 1 [F'VI+ FIV'] + 2 [—w?y7 + VIV
2w? + 1 w w(2w? 4+ 1)

~i (if u'=0)



Energy loss rate due to reaction (opt-thin limit)

Q% = Qreac( p,Ye, T) — (electron, positron-capture of nuclei)
+ (pair-production)

due to diffusion (opt-thick limit)

leak En(E)
@ = /dETdiff(E)

Effective energy loss rate

Qeff _ (1 . e—T)Qleak 4+ 6—7'Qreac

€ — (1 . €_T)€leak +e
eleak _ Qleak/Rleak
greac QreaC/Rreac

—T _reac
€

diffusion time

() = " ()

Solving this Eq.
— obtain ¢



