Neutrino-driven Mass Ejection from the Remnant of Binary Neutron Star Merger

Sho Fujibayashi (Kyoto U), Yuichiro Sekiguchi (Toho U), Kenta Kiuchi (YITP), and Masaru Shibata (YITP)

Evolution After Remnant of Binary NS Merger

Shibata et al. 2005,2006 Sekiguchi et al, 2011 Hotokezaka et al. 2013

MNS phase

- Large neutrino luminosity from the MNS and torus (~10⁵³ erg/s)
- The effect of neutrinos would be significant.

© Relativistic jet for short GRBs? Due to neutrino pair-annihilation heating

Relativistic jet for short GRBs?
 Due to neutrino pair-annihilation heating
 Recent studies :
 Monte-Carlo method using Newtonian simulation
 Richers et al. 15,
 RHD simulations for BH-torus using equilibrium torus as initial conditions

© Relativistic jet for short GRBs?

Due to neutrino pair-annihilation heating

Recent studies :

Monte-Carlo method using Newtonian simulation Richers et al. 15,

Hea eler syn We simulate the MNS-torus system in fully general relativistic manner in order to investigate the properties of neutrino-driven outflow from the NS–NS merger remnant.

We consider $\nu \bar{\nu} \rightarrow e^- e^+$ reaction and investigate the effects.

GRB?

Fernandez et al. 15

us

This component would contributes to heavy element nucleosynthesis and electromagnetic signals

Viscosity-driven wind : Fernandez's talk

Method

i) Merger of NS–NS and MNS formation by 3-D full GR simulation

(Sekiguchi et al. 15)

Equation of state : DD2

 $(\rightarrow$ The remnant is long-lived MNS)

Method

O Strategy

i) Merger of NS–NS and MNS formation
 by 3-D full GR simulation

(Sekiguchi et al. 15)

Equation of state : DD2

 $(\rightarrow$ The remnant is long-lived MNS)

Average over azimuthal angles around the rotational axis after ~50 ms after the merger, when the system settles into quasi-axisymmetic configuration. $\int_{6}^{Log Dens} e^{10} e^{10}$

ii) Long-term Axisymmetric 2-D simulation using angle-averaged configuration as a initial condition

MNS & innermost part of the torus have large neutrino emissivity !

Method

O Basic Equations

- Full GR axisymmetric neutrino radiation hydrodynamics simulation
- Einstein's equation : BSSN formalism We use Cartoon method to impose axially symmetric conditions.
- General relativistic radiation hydrodynamics :

Leakage+ scheme incorporating Moment formalism Thorne 81 Shibata et al. 11 baryons, electrons, trapped neutrinos $\nabla_{\alpha}T^{\alpha}{}_{\beta} = -Q_{(\text{leak})\beta}$ streaming neutrinos $\nabla_{\alpha}T_{(\text{S},\nu)}{}^{\alpha}{}_{\beta} = Q_{(\text{leak})\beta}$

† We solve neutrino radiation transfer using Moment formalism with M1-closure.
††We do not consider the viscosity in this simulation. Thus we focus only on purely radiation-hydrodynamical effects on the system.

• Lepton fraction equations

Results : Dynamics of Fluid

The density around the rotational axis falls rapidly. Outflow with $\sim 0.5 c$. Relativistic outflow is not seen.

Results : Dynamics of Fluid

• First ~50 ms

Strong outflow due to Pair-annihilation heating

- ~100 ms later
 - Heating rate decrease \rightarrow outflow becomes weak $\sim 0.2 \text{ c}$

Relativistic outflow is not observed in this setup

Results : Dynamics of Fluid

• First $\sim 50 \text{ ms}$

Strong outflow due to Pair-annihilation heating

- $\sim 100 \text{ ms}$ later
 - Heating rate decrease \rightarrow outflow becomes weak $\sim 0.2 \text{ c}$

Strong outflow is not seen in the result without $v \overline{v}$ pair-annihilation.

Results : Luminosity & Pair-annihilation heating rates

Results : Luminosity & Pair-annihilation heating rates

Results: The Properties of the Ejecta

- Unbound mass $\sim 3{\times}10^{\text{--}4}~M_{\odot}$
- Kinetic energy ~ 5×10^{48} erg

Subdominant compared to dynamical ejecta (~10⁻³ M_{\odot} , 2×10⁴⁹ erg for DD2 EOS) (Sekiguchi et al. 15)

• Average velocity $V_{\rm ej} = \sqrt{\frac{2E_{\rm kin}}{M_{\rm b,ej}}} \sim 0.1 - 0.2 \text{ c}$

X Effect of Pair-heating is large.

Without pair-heating process, we underestimate the amount and kinetic energy of the neutrino-driven outflow.

Results : Electron fraction & Entropy distribution

◎ Mass histogram of ejected material @ t=400 ms

- Material of $Y_e > 0.25$ is mainly ejected. Typical value : ~0.4.
- A small amount (~10⁻⁶M_☉) of material has very large specific entropy.
 Pair-annihilation process (*ν* + *ν̄* → *e*⁻ + *e*⁺) can inject energy regardless of baryon density.

r-process in v-driven outflow

© Estimate following Hoffman et al. 97.

In the most of the neutrino-driven outflow, heavy nuclei of A>130 are hardly produced via r-process. Detailed nucleosynthesis study \rightarrow Next work

Pair-annihilation Heating by Ray-tracing Method

Current treatment of neutrino transfer: Moment formalism with M1-closure relation (Shibata et al. 11)

This method cannot treat the crossing of two beams. Pair-annihilation heating rate should be compared to more Ab initio calculation.

Calculate the pair-annihilation heating rate by ray-tracing method using snapshots of the simulation. (Ruffert et al. 97)

$$Q_{\nu\bar{\nu}} = \frac{1}{4} \frac{\sigma_0}{c(m_e c^2)^2} \frac{C_1 + C_2}{3} \int d\Omega I_{\nu} \int d\Omega' I_{\bar{\nu}} [\langle \epsilon \rangle_{\nu} + \langle \epsilon \rangle_{\bar{\nu}}] (1 - \cos \theta_{\nu\bar{\nu}})^2 d\Omega I_{\nu} = Q_{\nu}^{\text{eff}} \frac{d^3 x'}{\pi |x - x'|^2}$$

Pair-annihilation Heating Rate by Ray-tracing method

Heating rate estimated with (simple) ray-tracing method ~10 times larger that that with moment formalism. Heating rate would be underestimated.

Long-term simulations for MNS-torus system to investigate the neutrinodriven mass ejection from the system.

- Neutrinos
 - Luminosity $\sim 10^{53} \rightarrow 10^{52}$ erg/s in ~ 100 ms.
 - $$\label{eq:pair-annihilation heating} \begin{split} &- \mbox{ Pair-annihilation heating} > 10^{50} \mbox{ erg/s at first } (\eta \sim 0.3\%), \\ &\mbox{ but decreases to} & \sim 10^{49} \mbox{ erg/s} & (\eta \sim 0.03\%). \end{split}$$
 - heating rate would be underestimated.
- Ejected mass
 - Unbound mass : $M_{\rm ej} \sim (10^{-4} 10^{-3}) M_{\odot}$.
 - The kinetic energy : $E_{\rm kin} \sim 10^{48} 10^{49}$ erg.
 - Subdominant compared to dynamical component.

† Investigating viscosity-driven wind : near future!

Moment Formalism Thorne 81, Shibata et al. 11

Variables $M^{\alpha\beta} = \int dV_p p^{\alpha} p^{\beta} f(p,x)$ (Energy-momentum tensor of neutrino) $= En^{\alpha}n^{\beta} + F^{\alpha}n^{\beta} + F^{\beta}n^{\alpha} + P^{\alpha\beta} \qquad n^{\alpha}: \text{ normal of the time slice}$

(3+1 decomposition of $\nabla_{\beta} M^{\alpha\beta} = (\text{Source Terms})^{\alpha}$) **Evolution Eqs.**

$$\begin{aligned} \partial_t(\sqrt{\gamma}E) &+ \partial_j[\sqrt{\gamma}(\alpha F^j - \beta^j E)] \\ &= \alpha \sqrt{\gamma}[P^{ij}K_{ij} - F^j \partial_j \ln \alpha - S^\alpha n_\alpha], \\ \partial_t(\sqrt{\gamma}F_i) &+ \partial_j[\sqrt{\gamma}(\alpha P_i^{\ j} - \beta^j F_i)] \\ &= \sqrt{\gamma}\Big[-E\partial_i \alpha + F_k \partial_i \beta^k + \frac{\alpha}{2}P^{jk}\partial_i \gamma_{jk} + \alpha S^\alpha \gamma_{i\alpha}\Big], \end{aligned}$$

Closure relation (M1-closure)

opt. thin
$$\rightarrow P^{ij} = E \frac{F^i F^j}{\gamma_{kl} F^k F^l}$$

opt. thick $\rightarrow P^{ij} = \frac{E}{2w^2 + 1} \left[(2w^2 - 1)\gamma^{ij} - 4V^i V^j \right] + \frac{1}{w} \left[F^i V^j + F^j V^i \right] + \frac{2F^k u_k}{w(2w^2 + 1)} \left[-w^2 \gamma^{ij} + V^i V^j \right]$
 $= \frac{1}{3} E \gamma^{ij} \quad (\text{if } u^i = 0)$

• Energy loss rate due to reaction (opt-thin limit)

$$Q^{\text{reac}} = Q^{\text{reac}}(\rho, Y_e, T) = (\text{electron, positron-capture of nuclei}) + (\text{pair-production})$$

• due to diffusion (opt-thick limit)

$$Q^{\text{leak}} = \int dE \frac{En(E)}{\tau_{\text{diff}}(E)}$$

$$\tau_{\rm diff}(E) = \frac{\tau^2(E)}{c} l_{\rm mfp}(E)$$

• Effective energy loss rate

$$\begin{split} Q^{\text{eff}} &= (1 - e^{-\tau})Q^{\text{leak}} + e^{-\tau}Q^{\text{reac}} \\ &\epsilon &= (1 - e^{-\tau})\epsilon^{\text{leak}} + e^{-\tau}\epsilon^{\text{reac}} \\ &\epsilon^{\text{leak}} &= Q^{\text{leak}}/R^{\text{leak}} \\ &\epsilon^{\text{reac}} &= Q^{\text{reac}}/R^{\text{reac}} \end{split}$$
Solving this Eq.