Black Holes in Short GRBs, Macronovae & GW150914

Kunihito IOKA (Center for Gravitational Physics, YITP, Kyoto U.)

Contents

• BH in long-lasting short GRBs

- BH v.s. Neutron star
- BH in macronovae
 - BH v.s. R-process radioactivity
- BH in GWI 50914
 - Galactic BHs as high-energy sources
 - Fermi GBM event

Black Hole or Neutron Star?

5

Short GRBs are Not Short Short GRB Too rapid decline: BAT **NOT** afterglow **BUT** central engine XRT ~100 s >> Extended emission Chandra **t**_{vis} ~ **0.1** s 2x Energy ⇒ Not BH **GRB050724** but NS? 10^{5} Magnetar? 10^{4} 0.110 100 1000 1 Time since trigger (s) Barthelmy+ 05

Plateau Emission

Merger ejecta fall back much later

Magnetic Field Topological Evolution

Mass fallback Mass ejection \Leftrightarrow B_D-increase \Leftrightarrow B_D-decrease

Black Hole Jet

Blandford-Znajek luminosity $L_{\rm jet} \propto B_{\rm large-scale poloidal}^2$ Topological evolution of B Initial $B_p \sim 10^{12} G$ (whatever happens) Final $B_{b} \sim 10^{12} G$ Mass ejection $\Leftrightarrow B_{p}$ -increase Fallback \Leftrightarrow B_D-decrease

Black Hole Jet

Black Hole Jet

Black Hole or Neutron Star?

Scattering Plateau X-ray

Contents

• BH in long-lasting short GRBs

- BH v.s. Neutron star
- BH in macronovae
 - BH v.s. R-process radioactivity
- BH in GWI 509 I 4
 - Galactic BHs as high-energy sources
 - Fermi GBM event

Engine-Powered Macronova?

Required Ejecta Mass

Cosmic Dust?

Takami, Nozawa & KI 14

 $\kappa_{geometrical} = \frac{\pi r_{dust}^2}{m_{dust}} \sim \frac{\pi \left(N^{1/3} r_A\right)^2}{Nm} \sim 10^6 N^{-\frac{1}{3}} \text{ cm}^2 \text{ g}^{-1}$ $\frac{\int 2\pi r_{dust}}{\kappa \propto \lambda^{-1}}$

Lightcurve of Dust Model

Macronova Spectrum 10⁻³ **Featureless** flux; F_{ν} (mJy) even without TH13(9day) T_{BB}=2000K broad lines 10^{-4} $T_{d,C} = 1800K$ $M_{d,C} = 8 \times 10^{-6} M_{\odot}$ Not black-body O∝λ-Ι 10^{-5} 20 2 5 0.5 10 1 wavelength (μm)

Takami, Nozawa & KI 14

Contents

• BH in long-lasting short GRBs

- BH v.s. Neutron star
- BH in macronovae
 - BH v.s. R-process radioactivity
- BH in GWI 509 I 4
 - Galactic BHs as high-energy sources
 - Fermi GBM event

We Did It!

@YITP midnight

Champagne

GW150914

 $\sim 10^{-3} c^{5}/G$ 30-350Hz bandpass First at LI 6.9+0.5-0.4ms

25

GW151226

2016/11/08

Kunihito IOKA

Galactic BHs

70 Gpc⁻³ yr⁻¹ ÷ 0.01 galaxy Mpc⁻³ × 10¹⁰ yr ~ 70000 Merged BHs/galaxy 2016/11/08

Kunihito IOKA

Galactic BHs

70 Gpc⁻³ yr⁻¹ ÷ 0.01 galaxy Mpc⁻³ × 10¹⁰ yr ~ 70000 Merged BHs/galaxy

Old Problem

- Eddington 20's
- Hoyle & Lyttleton 39
- Bondi & Hoyle 44
- Bondi 52
- Zel'dovich 64
- Salperter 64
- Lynden-Bell 69
- Shvartsman 71
- Michel 72
- Shapiro 73
- Shakura & Sunyaev 73
- Meszaros 75
- Ipser & Price 77, 82, 83

- Grindlay+ 78
- Carr 79
- McDowell 85
- Campana & Pardi 93
- Heckler & Kolb 96
- Fujita+ 98
- Popov & Prokhorov 98
- Armitage & Natarajan 99
- Agol & Kamionkowski 02
- Chisholm+ 03
- Barkov+ 12
- Motch & Pakull 12
- Fender+ 13

GWs put a lower limit on #(spinning BHs)

${dN\over d\dot{M}}$	$= N_{\rm BH} \int dm_1 \frac{dp(m_1)}{dm_1} \int dm_2 \frac{dp(m_2)}{dm_2}$	$\frac{m_1}{2}\int$	$dv\frac{d\!f(v)}{dv}$	$\int dn \frac{ds}{dt}$	$\frac{\xi(n)}{dn}$
	$ imes h(m_1,m_2,v)\delta\left[\dot{M}(n,m_1,m_2,v)- ight.$	$\left\dot{M} ight] ,$	Agol & Ka KI+ in pre	mionkowsl p.	ki 12
B	H mass: m ₁ : Salpeter, m ₂ : Flat, 5M	I_{\odot} < m_2	<m<sub>1<50</m<sub>	M _o	
V	elocity: Maxwell distribution				
+	GW recoil + ISM sound velocity	6			
D	ensity: 5 phases of ISM				

Phase	$n_1 [{\rm cm}^{-3}]$	$n_2 [{ m cm}^{-3}]$	eta	ξ_0	$c_s \; [\mathrm{km \; s^{-1}}]$	H_d
Molecular clouds	10^{2}	10^{5}	2.8	10^{-3}	10	75 pc
Cold H_I	10	10^{2}	3.8	0.04	10	$150~{ m pc}$
Warm H_I	0.3	_	_	0.35	10	$0.5 \; \mathrm{kpc}$
Warm H_{II}	0.15	_	—	0.2	10	$1 \mathrm{~kpc}$
Hot H_{II}	0.002	_	—	0.4	150	$3~{ m kpc}$

Max Acceleration Energy

Total Power

TeV Gamma-Ray Sky

HESS 1307.4690

b (deg)

290

280

270

260

(deg) unIDs dominate $TeV <math>\gamma$ -ray sky Spatially extended $R \sim \theta d \sim 3pc \left(\frac{\theta}{0.2^{\circ}}\right) \left(\frac{d}{kpc}\right)$

Tip of Iceberg

Gravitational waves X-ray binary Cosmic ray? TeV unID?

Galactic BHs

Fermi y-ray Burst Monitor

GBM detectors at 150914 09:50:45.797 +1.024s

Cold neutral disk No MRI, No accretion Accretion only at merger

Perna+15

Dead Disk Evaporation

ISM accretion ⇒ **Hot disk** ⇒ **Evaporation**

 $\dot{M}_{\text{eva}} \sim 2\pi r^2 n_i v_i m_p \sim 1 \times 10^{15} \,\text{g}\,\text{s}^{-1} \left(\frac{r}{10^{12} \,\text{cm}}\right)^{-5/2} \left(\frac{M}{60M_{\odot}}\right)^4 \left(\frac{n}{1 \,\text{cm}^{-3}}\right)^{5/2} \left(\frac{V}{40 \,\text{km}\,\text{s}^{-1}}\right)^{-9/2} \\ \mathbf{t}_{\text{eva}} \sim 10^6 \,\,\text{yr for M}_{\text{dead disk}} \sim 10^{-5} \,\text{M}_{\odot} \qquad \text{KI+ in prep.}$

Accretion occurred \Rightarrow Outflow \Rightarrow Unbound

Contents

• BH in long-lasting short GRBs

- BH v.s. Neutron star
- BH in macronovae
 - BH v.s. R-process radioactivity
- BH in GWI 509 I 4
 - Galactic BHs as high-energy sources
 - Fermi GBM event

Thank

Relativistic Shock Breakout

Shock Acceleration

Relativistic Shock Acceleration

Relativistic Outflow

Early & High-Energy

Kyutoku, KI & Shibata 12

49

FIG. 9. The posterior density on the rate of GW150914-like BBH, LVT151012-like BBH, and GW151226-like BBH mergers. The event based rate is the sum of these. The median and 90% credible levels are given in Table II.

50

LIGO OI 16

Really r-Process?

Yes?	
Macronova with GRB 060614?	Yang+ 15
- M _{ejecta} ~0.1M _☉ ⇒ BH-NS?	lint 14
Macronova with GRB 050709?	JIII' 10
$- M_{e_{jecta}} \sim 0.05 M_{\odot}$, Wind signature?	
Deep-sea plutonium ²⁴⁴ Pu (t _{1/2} ~81Myr)	Hotokezaka+ 15
• r-process in an ultra-faint dwarf galaxy	Ji+ 16
No?	•
Required M _{ejecta} is too large?	Grossmann+ 14
• Dust emission?	Takami+ 14 Kyutoku & KI 16
• r-process cosmic rays are unreasonably v	veak?

Kunihito IOKA

External Shock Variability

Max Mass of Neutron Star

Condensation Temperature

Dust Yield

r-process dusts are not formed

Carbon dusts are possible!

Iron dusts may be formed but at t>10 days

Takami, Nozawa & KI 14

Density

Photons diffuse out when $\rho \kappa_r r \sim \frac{c}{v}$

$$t_{\text{diff}} \sim \frac{\ell_{\text{mfp}}}{c} \left(\frac{r}{\ell_{\text{mfp}}}\right)^2 \sim \frac{r^2 \rho \kappa}{c} \qquad \ell_{\text{mfp}} = (\rho \kappa)^{-1}$$
$$t_{dyn} \sim \frac{r}{v}$$

v=0.2c

Density at ~7 days

$$\rho_e \sim \frac{1}{\kappa_{\gamma} r_e} \frac{c}{v} \sim 1.4 \times 10^{-16} \,\mathrm{g \, cm^{-3}} \left(\frac{\kappa_{\gamma}}{10 \,\mathrm{cm^2 \, g^{-1}}}\right)^{-1}$$

Expected Dust Size

Once T<T_{condense}, colliding dusts stick together

$$\tau_{\rm N} \sim \rho_e \kappa_{\rm N} v_{\rm N} t \sim 200 \left(\frac{\kappa_{\gamma}}{10 \ {\rm cm}^2 \ {\rm g}^{-1}}\right)^{-1} \left(\frac{N}{12}\right)^{-3/2}$$

$$v_{\rm N} = \sqrt{2k_B T/m_N}, \, \kappa_{\rm N} = \pi r_{\rm N}^2/m_{\rm N}, \, r_{\rm N} = 10^{-8} \, {\rm cm}, \, \, m_{\rm N} = N m_p$$

If $\kappa \sim 0.1 \text{ cm}^2/\text{g}$ without r-process, the density can be large

$$\tau_{\rm N} \sim \rho_e \kappa_{\rm N} v_{\rm N} t \sim 20000 \left(\frac{\kappa_{\gamma}}{0.1 \text{ cm}^2 \text{ g}^{-1}} \right)^{-1} \left(\frac{N}{12} \right)^{-3/2}$$

Heavy elements are difficult to form dusts

2016/11/08

Kunihito IOKA

Takami, Nozawa & KI 14

Figure 3. Inferred peculiar velocity as a function of black hole mass. Black points denote low-mass X-ray binaries, and the red point represents the high-mass X-ray binary Cygnus X-1. A larger sample is required to make robust inferences about any potential correlation between black hole (or companion) mass and natal kicks. Miller-Jones 14

59

Swift/XRT data of GRB 160821B

