Dynamical mass ejection from black hole-neutron star binaries

Koutarou Kyutoku RIKEN, iTHES

- KK, K. Ioka, M. Shibata, PRD 88 (2013) 041502(R)
- K. Kawaguchi, KK, et al., PRD 92 (2015) 024014
- KK, K. Ioka, H. Okawa, M. Shibata, K. Taniguchi, PRD 92 (2015) 044028
- K. Kawaguchi, KK, M. Shibata, M. Tanaka, ApJ 825 (2016) 52
- KK, K. Kiuchi, Y. Sekiguchi, M. Shibata, K. Taniguchi, in preparation

Plan of the talk

- 1. Introduction
- 2. Study in hydrodynamics
- 3. Study in neutrino-radiation hydrodynamics
- 4. Future direction and summary

Prefetch: Summary

- Black hole-neutron star binary mergers can eject $\sim 0.01 0.1 M_{\odot}$ with $\sim 0.2 0.3c$ dynamically in a highly anisotropic manner for various cases.
- The electron fraction of dynamical ejecta is low because they do not experience shock heating.
- Neutrinos are not important for dynamical mass ejection and do not drive a strong disk wind.
- Other disk winds could dominate mass ejection and require more investigation.

1. Introduction

Why do we investigate BH-NS?

- Gravitational-wave astronomy accessible to a larger distance than with NS-NS
- Short-hard gamma-ray burst many possibilities from the BH mass/spin diversity?
- Mass ejection and electromagnetic counterpart r-process nucleosynthesis macronova/kilonova, synchrotron radio flare, ...

Gravitational-wave detector

http://gwcenter.icrr.u-tokyo.ac.jp/wp-content/themes/lcgt/images/img_abt_lcgt.jpg

KAGRA (Kamioka)

Advanced LIGO (Hanford)

https://www.advancedligo.mit.edu/graphics/summary01.jpg

Advanced Virgo (Pisa)

http://virgopisa.df.unipi.it/sites/virgopisa.df.unipi.it.virgopisa/files/banner/virgo.jpg

Poor gravitational-wave localization

Typically ~20-30 deg^2 by multiple GW detectors

-> need EM counterparts for accurate localization

Are BH-NS promising targets?

- No observed black hole-neutron star binaries
- a Be/X-ray binary MWC 656 may be a progenitor
- If many massive black holes exist, gravitational waves are more frequent for BH-NS than NS-NS
- LIGO O2 will tell us the answer

- but if the black hole is massive, the neutron star is not likely to be disrupted for most parameters, and such binaries may not be interesting as a target of electromagnetic counterpart searches

Near-infrared excess of GRB 130603B

$$M_{\rm ej} = 0.02 \sim 0.1 M_{\odot}$$
 may be required ... BH-NS?

Channel of mass ejection

Dynamical mass ejection

gravity+pure hydrodynamics may be sufficient (we explicitly confirm this expectation later) sometimes obviously dominates disk activity

Disk activity = disk wind

- nuclear heating, viscous heating
- magnetically driven wind (cf Kiuchi+KK+ 2015)
- neutrino driven wind (Kyutoku+ in prep.)

Problem to be answered

- How the mass is ejected in the merger process of black hole-neutron star binaries?

- What are characteristic quantities of ejecta? mass, velocity, morphology, electron fraction...

- How do they depend on binary parameters?

- What are features of associated electromagnetic counterparts? (not to discuss in detail today)

Numerical-relativity simulations will give answers

Newtonian BH-NS simulation

Episodic (repeated stable) mass transfer qualitatively different from full GR results

2. Study in hydrodynamics

Merger dynamics

inspiral due to GW backreaction

NS deformation due to tidal force further drive the inspiral motion

 $r_{tidal} > r_{ISCO}$: tidal disruption mass ejection, disk formation...

$r_{\rm tidal} < r_{\rm ISCO}$: like BH-BH

)))

Mass shedding condition

1. BH tidal force=NS self gravity at the NS surface

$$\frac{M_{\rm BH}R_{\rm NS}}{r_{\rm tidal}^3} \sim \frac{M_{\rm NS}}{R_{\rm NS}^2} \Rightarrow r_{\rm tidal} \sim M_{\rm BH} \left(\frac{M_{\rm NS}}{M_{\rm BH}}\right)^{2/3} \left(\frac{R_{\rm NS}}{M_{\rm NS}}\right)$$

- 2. BH innermost stable circular orbit w/ spin χ $r_{\rm ISCO} = \hat{r}(\chi)M_{\rm BH}$ (\hat{r} is a decreasing function of χ)
- 3. Disruption if this value is large $\frac{r_{\text{tidal}}}{r_{\text{ISCO}}} \sim \frac{1}{\hat{r}(\chi)} \left(\frac{M_{\text{NS}}}{M_{\text{BH}}}\right)^{2/3} \left(\frac{R_{\text{NS}}}{M_{\text{NS}}}\right)$ r_{tidal} r_{tidal}

Important parameters

Three dimensionless parameters

- 1. NS compactness: $C \equiv M_{\rm NS}/R_{\rm NS}$
- 2. Mass ratio of the BH to NS: $Q \equiv M_{BH}/M_{NS}$
- 3. Dimensionless BH spin: $\chi \equiv a_{BH}/M_{BH}$

For a fixed value of the NS mass, tidal disruption if

- 1. The NS radius is large, i.e., C is small
- 2. The BH mass is small, i.e., Q is small
- 3. The BH spin is large, i.e., χ is large

Model parameters

- NS mass fixed to be $M_{\rm NS} = 1.35 M_{\odot}$
- NS radius $R_{NS} = 11.1, 12.4, 13.6, 14.4$ km piecewise polytrope (+ ideal-gas-like thermal part)

Mass ratio Q = 3, 5, 7 ($M_{BH} = 4.05, 6.75, 9.45 M_{\odot}$) BH spin parameter $\chi = 0, 0.5, 0.75$ (prograde)

+ spin inclination $i = 30^{\circ}, 60^{\circ}, 90^{\circ}$ available for $Q = 5, \chi = 0.75$ (Kawaguchi, KK+ 2015)

Movie

Characteristic quantities

Ejection is efficient when the NS radius is large

opposite to NS-NS mass ejection (Hotokezaka+KK+ 2013)

10 Kyutoku+ (2013) v=0.5c -ejecta mass 1000 9 $(0\sim)0.08M_{\odot}$ $v_{\rm ej} \sim P_{\rm ej}$ 8 (km) kinetic energy 0 7 $(0\sim)5 \times 10^{51}$ erg 6 "bulk" velocity -1000 Only unbound material $v_{\rm ej} \sim 0.1 - 0.2c$ 5 1000 -1000 0 x (km) 2016/11/8 NPCSM 2016

Crescent-like ejecta anisotropy

Comparison with NS-NS

Density profile in the meridional plane

NS-NS: hypermassive NS BH-NS: BH-disk (but the reality depends on the disk wind)

Ejecta mass

The ejecta mass is large when the NS radius is large

Misaligned BH spin

Spin inclination decreases the ejecta mass

Radiation transfer simulation

IR excess of GRB 130603B can be explained

Phenomenological model

Ejecta mass/velocity, multiband light curve

http://www2.yukawa.kyoto-u.ac.jp/~kyohei.kawaguchi/kn_calc/main.html

NPCSM 2016

Mass ratio dependence

The ejecta mass to disk mass ratio increases

as the mass ratio increases (maybe realistic cases)

Fallback material

"canonical" power law with the index -5/3

Velocity distribution

Relatively flat w/ cutoffs rather than a power law seems to be flatter than that for NS-NS ejecta

BH-NS Ejecta is very cold

Because the ejecta experience no shock heating

NPCSM 2016

Expected nucleosynthetic yield

Significant fission cycling -> 2nd/3rd peak formation

- our own nuclear network calculations are ongoing

Bright macronova/kilonova?

Heavy r-process elements may result in efficient, fission-dominated heating on a week time scale

Lesson from binary neutron stars

Numerical relativity with neutrino transport could be crucial for reproducing r-process abundances

3. Study in neutrino-radiation hydrodynamics

Necessity of neutrino transport

How do neutrinos affect the merger dynamics and mass ejection in black hole-neutron star mergers?

What is the electron fraction of the ejecta?

 $Y_e \equiv n_e/n_B$: #electron per #baryon (p+n) small Ye = neutron rich, <~0.1 for neutron stars

How bright is the neutrino emission? Flavors?

Is the neutrino-driven wind launched from the disk?

Numerical method

Einstein equation: BSSN formalism+puncture gauge

Radiation transfer (neutrino transport):

fully general-relativistic leakage scheme + heating fluid+trapped $\nu: \nabla_{\beta} T^{\alpha\beta} = -Q^{\alpha}_{cool} + Q^{\alpha}_{heat}$ Equation of state: tabulated finite-temperature EOS

streaming
$$v: \nabla_{\beta} T_{S}^{\alpha\beta} = Q_{cool}^{\alpha} - Q_{heat}^{\alpha}$$

An M1 closure is applied to the streaming neutrino
Model parameters

We fix some parameters as $M_{\rm NS} = 1.35 M_{\odot}$, $M_{\rm BH} = 5.4 M_{\odot}$, $\chi = 0.75$ due to limitations

- systematic study is planned in the near future

Equations of state are chosen from 3 models SFHo: 11.9km (soft) DD2: 13.2km (middle) TM1: 14.5km (stiff)

http://www.hou.usra.edu/meetings/gammaray2016/pdf/program.pdf

NPCSM 2016

Overview of the merger dynamics

Similar to the results of hydrodynamics study

- outer parts become unbound ejecta with low Y_e

Ejecta mass

Larger ejecta mass for larger neutron-star radii Agree w/ previous hydro. dynamical mass ejection

Electron fraction distribution

Strongly peaked below $Y_e = 0.1$ for all the models

i.e., original composition of neutron stars is kept

Negligible neutrino-driven wind

The ejecta properties do not depend on ν -heating - consistent with previous Newtonian simulations

Are the disk winds negligible in the mass ejection?

4. Future direction and summary

Viscously-driven wind

Should be more important than ν -driven winds, where the viscosity comes from magnetic effects

Thermally-driven wind in MHD

High-resolution MHD simulations launch winds via turbulence-like states and efficient thermalization

Diversity of the nucleosynthesis

 10^{0} When Ye is high (say >0.25), v-driven wind viscous 10^{-1} lanthanoids may not be formed Mass fraction 10^{-2} ۲0⁻³ Low velocity traps gamma-rays 10^{-4} -> bright macronova/kilonova? 10^{-5} М =0.1M10* solar r abundances 10-6 S-def S-def S-def abundances at 1 Gyr m0.01 M10 Just+ (2015) 10^{-1} 10-5 10^{-2} traction 10-6 10-7 10^{-3} solar r abundances solar r abundances undances S-def S-def S-def abundances at 1 Gyr Mass 10⁻³ α0.01 y0.8 v0.05 10^{-4} 10⁻⁵ 10⁻⁵ =0.3MΜ torus 10-6 10-7 120 200 240 80 160 50 50 100 150 200 50 100 150 200 100 150 200 0 0 mass number, A mass number, A mass number, A А

NPCSM 2016

Summary

- Black hole-neutron star binary mergers can eject $\sim 0.01 0.1 M_{\odot}$ with $\sim 0.2 0.3c$ dynamically in a highly anisotropic manner for various cases.
- The electron fraction of dynamical ejecta is low because they do not experience shock heating.
- Neutrinos are not important for dynamical mass ejection and do not drive a strong disk wind.
- Other disk winds could dominate mass ejection and require more investigation.

Appendix

Event rate estimation (to change)

Uncertainties are orders of magnitude

IFO	Source ^a	$\dot{N}_{\rm low}~{ m yr}^{-1}$	$\dot{N}_{\rm re} { m yr}^{-1}$	$\dot{N}_{\rm high}~{ m yr}^{-1}$	$\dot{N}_{\rm max} { m yr}^{-1}$
	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
Initial	BH-BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			<0.001 ^b	0.01 ^c
	IMBH-IMBH			$10^{-4 d}$	10 ⁻³ e
	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
Advanced	BH–BH	0.4	20	1000	
	IMRI into IMBH		"Poplistic"	10 ^b	300 ^c
badie+ (2010)	IMBH-IMBH		NEalistic	0.1 ^d	1 ^e

Table 5. Detection rates for compact binary coalescence sources.

Anyway - yearly detection may be expected

Triangulation by a detector network

Determine the sky position from timing difference

Dependence of peak luminosity/time

For spherical ejecta (Li-Paczynski 1998, also Arnett 1982) The peak luminosity: $L_{\text{peak}} \propto f \kappa^{-1/2} M^{1/2} v^{1/2}$ The peak time : $t_{\text{peak}} \propto \kappa^{1/2} M^{1/2} v^{-1/2}$

Heating efficiency f and opacity k – microphysics important quantities, but not discussed today
Ejecta mass M and ejecta velocity v – macrophysics hydrodynamic calculations can give answers

Li-Paczynski model: macroscopic

Spherical ejecta with mass M and surface velocity vHomologous expansion w/ constant-density R = vt, $\rho = \frac{3M}{4\pi R^3} = \frac{3M}{4\pi v^3 t^3}$

Thermodynamic evolution for per-mass quantities

$$TdS = dE + PdV \rightarrow Tds = d\left(\frac{e}{\rho}\right) + Pd\left(\frac{1}{\rho}\right)$$

Nuclear heating and radiative cooling per mass $Tds/dt = \dot{\varepsilon} - L/M$

Li-Paczynski model: microscopic

The ejecta should be radiation-dominated P = e/3Nuclear heating may obey a power-law

$$\dot{\varepsilon} = \frac{f c^2}{t}$$

Radiative cooling is given by the diffusion approx.

$$L = 4\pi R^2 F$$
, $F = \frac{c}{3\kappa\rho} \left(-\frac{dE}{dr}\right) \approx \frac{ceR^2}{\kappa\rho}$

-> time evolution of *e* can be solved analytically the bolometric light curve is also derived

Why successful r-process?

Broad distribution of electron fraction in full GR

GR NS-NS ejecta

s [kis]

Ye 0.3

0.4

The electron fraction can be increased by strong shock heating (and also neutrino irradiation)

EOS dependence of NS-NS ejecta

Ejecta are massive when the NS radius is small due to violent activity of a compact remnant NS

Black hole mass

Mass gap around $3 - 5M_{\odot}$ is frequently debated

NPCSM 2016

Black hole spin

Uncertain but no typical value exists?

McClintock+ (2014)

System	a_*	M/M_{\odot}	References
Persistent			
Cyg X-1	> 0.95	14.8 ± 1.0	Gou et al. 2011; Orosz et al. 2011a
LMC X-1	$0.92^{+0.05}_{-0.07}$	10.9 ± 1.4	Gou et al. 2009; Orosz et al. 2009
M33 X-7	0.84 ± 0.05	15.65 ± 1.45	Liu et al. 2008; Orosz et al. 2007
Transient			
GRS $1915 + 105$	$> 0.95^{b}$	10.1 ± 0.6	McClintock et al. 2006; Steeghs et al. 2013
$4U \ 1543 – 47$	0.80 ± 0.10^{b}	9.4 ± 1.0	Shafee et al. 2006; Orosz 2003
GRO J1655 -40	0.70 ± 0.10^{b}	6.3 ± 0.5	Shafee et al. 2006; Greene et al. 2001
XTE J1550–564	$0.34_{-0.28}^{+0.20}$	9.1 ± 0.6	Steiner et al. 2011; Orosz et al. 2011b
H1743–322	0.2 ± 0.3	$\sim 8^c$	Steiner et al. 2012a
LMC X-3	$< 0.3^d$	7.6 ± 1.6	Davis et al. 2006; Orosz 2003
A0620–00	0.12 ± 0.19	6.6 ± 0.25	Gou et al. 2010; Cantrell et al. 2010

Gravitational waves without disruption

Late inspiral: tidal deformability

Early inspiral: mass, spin

Gravitational waves with disruption

Late inspiral: tidal deformability

Early inspiral: mass, spin

Tidal disruption cutoff: NS radius

Numerical relativity

The Einstein equation $G_{ab} = 8\pi T_{ab}, \qquad (G = c = 1)$

Local energy-momentum conservation equation $\nabla_b T^{ab} = 0$,

Rest-mass (or particle number) continuity equation $\nabla_a(\rho u^a) = 0$

+ equation of state e.g., $P = P(\rho), P(\rho, T, Y_e) \dots$

also solve Magneto/Radiation-HD Eqs. if you want

Numerical method

Initial data: LORENE (spectral method) quasiequilibrium states of BH-NS binaries

Dynamical simulation: SACRA (Yamamoto+ 2008)

- BSSN formalism of the Einstein equation
 4th order finite difference in time and space
- ideal hydrodynamics

3rd order PPM reconstruction + central scheme

- adaptive mesh refinement

Periastron advance: zoom-whirl

Various ejecta opening angle

Late-time evolution

- homologous evolution (crescent to half-disk)
- radial-motion dominated (angu. mom conserv.)

Mass remaining outside the BH

Nicely correlated with the NS compactness (radius)

Average velocity of the ejecta

Also tends to increases as the mass ratio increases

-> the ejecta from a large Q binary is energetic

Bulk velocity of the ejecta

The ejecta has a bulk linear momentum and velocity

Kick velocity of the remnant BH

Two kinds of "kick velocity" of the remnant BH - ejecta kick: large for strong disruption

$$V_{\rm ej} \approx \frac{P_{\rm ej}}{M_{\rm remnant}}$$

- gravitational-wave kick: large for weak disruption

$$V_{\rm GW} \approx \frac{P_{\rm GW}}{M_{\rm remnant}}$$

Anti-correlation of the kick direction

Possible explanation

Opposite motion of the ejecta <-> plunge material

Plunge motion: fastest in the coalescence

dominant to the recoil

Which of two kick velocities wins?

Change at $M_{\rm ej} \approx 0.01 M_{\odot}$

The ejecta kick velocity could be as large as ~1000km/s

Kyutoku+ (2015)

Model	$M_{\sim}[M_{\odot}]$	$V \cdot (\mathrm{kms^{-1}})$	$V_{\rm cuv}$ (km s ⁻¹)
ADD 4 00 FF	0.01	7 ej (km 8)	VGW (KIIIS)
APR4-Q3a75	0.01	100	90
ALF2-Q3a75	0.05	500	60
H4-Q3a75	0.05	500	60
MS1-Q3a75	0.07	800	20
APR4-Q3a5	2×10^{-3}	20	70
ALF2-Q3a5	0.02	300	70
H4-Q3a5	0.03	300	50
MS1-Q3a5	0.05	600	50
APR4-Q3a0	2×10^{-5}	< 1	60
ALF2-Q3a0	3×10^{-3}	20	30
H4-Q3a0	6×10^{-3}	70	40
MS1-Q3a0	0.02	200	40
APR4-Q5a75	8×10^{-3}	30	20
ALF2-Q5a75	0.05	400	40
H4-Q5a75	0.05	400	70
MS1-Q5a75	0.08	700	50
APR4-Q5a5	9×10^{-5}	< 1	30
ALF2-Q5a5	0.01	30	30
H4-Q5a5	0.02	200	50
MS1-Q5a5	0.05	400	50
APR4-Q7a75	5×10^{-4}	< 1	40
ALF2-Q7a75	0.02	40	30
H4-Q7a75	0.04	200	40
MS1-Q7a75	0.07	400	30
APR4-Q7a5	3×10^{-6}	< 1	30
ALF2-Q7a5	2×10^{-4}	< 1	30
H4-Q7a5	3×10^{-3}	6	20
MS1-Q7a5	0.02	30	20

NPCSM 2016
Reason of the power-law index 5/3

Rees 1988, Phinney 1989 for SMBH-MS disruption Orbital period – semimajor axis – binding energy $P \propto a^{3/2} \propto |E|^{-3/2}$

The fallback rate ~ the period distribution $\dot{M} = \frac{dM}{dP} = \frac{dM}{dE} \frac{dE}{dP} \propto \frac{dM}{dE} P^{-5/3} = \frac{dM}{dE} t^{-5/3}$

Why dM/dE is constant? Not fully understand yet [e.g., Lodato+ 2009 for SMBH-MS]

Standing spiral shock in the disk

Formed as a result of the self-collision of tidal tail Drive mass accretion even for the perfect fluid

Macronova/kilonova simulation

Red spectrum with opacity from r-process line lists

Absence of r-process lines

No line may be found with all the r-process lines...

NPCSM 2016

Bright macronova/kilonova

For spherical ejecta (Li-Paczynski 1998)

The peak luminosity: $L_{\text{peak}} \propto f \kappa^{-1/2} M^{1/2} v^{1/2}$ The peak time : $t_{\text{peak}} \propto \kappa^{1/2} M^{1/2} v^{-1/2}$

Heating efficiency f and opacity κ – microphysics important quantities, but are not discussed here Ejecta mass M and ejecta velocity v – NR simulation large ejecta mass -> bright and long emission

Effect of anisotropy

Viewing-angle dependence High luminosity $L_{\text{peak}} \sim f M_{\text{ej}}/t_{\text{peak}} \sim 10^{41} \text{ erg/s}$ 1500 10 KK+ (2013) v=0.5c --9 low luminosity 1000 z (km) 8 $\sim \theta_{\rm ej} L_{\rm peak}$ 7 500 10⁴² 6 APR4Q3a75 UVOIR luminosity (erg s⁻¹) Average 5 +Z 0⁴¹ 1000 500 1500 -X polarization? 10⁴⁰ radiation transfer deformed (3D Monte Carlo) photosphere Tanaka, KK+ (2014) 10³⁹ 10 Days after the merger

2016/11/8

Synchrotron radio emission

Ejecta decelerate when accumulate M_{ei} from ISM For a spherical ejecta (with $n_{\rm H} = 1 \,{\rm cm}^3$) $R_{\rm dec,s} \sim \left(3M_{\rm ej}/4\pi m_{\rm p}n_{\rm H}\right)^{1/3} \sim 0.7 {\rm pc}$ R_{dec,s} $t_{\rm dec.s} \sim R_{\rm dec.s} / v \sim 7 {\rm yr}$ For crescent-like BH-NS ejecta $R_{\rm dec} \sim 1.7 \,{\rm pc} \,\theta_{\rm ej,1/5}^{-1/3} \varphi_{\rm ej,\pi}^{-1/3}$ $t_{\rm dec} \sim 18 {\rm yr} \, \theta_{\rm ej,1/5}^{-1/3} \varphi_{\rm ej,\pi}^{-1/3}$

Proper motion of radio images

Typical proper motion in terms of the angle $v_{\rm ej}t_{\rm dec}/D \sim 1 {\rm pc}/100 {\rm Mpc} \sim 1 {\rm mas}$

Heating rate

R-process elements decay back to beta-stability

 beta decay: releases about ~90% of energy goes to electron -> totally thermalize the ejecta neutrino -> totally escape

gamma-ray -> escape at the releant epoch

- (spontaneous) fission: releases about ~10%
nearly all the energy thermalize the material
This ratio is determined by detailed microphysics