# r-Process nucleosynthesis in neutron star mergers with SkyNet

Jonas Lippuner

Luke Roberts, Rodrigo Fernández, Francois Foucart, Matt Duez, Christian Ott

# Caltech

NPCSM 2016, YTIP, Kyoto University, Kyoto, Japan

November 9, 2016

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# Outline

- 1. r-Process recap
- 2. SkyNet
- 3. Parametrized r-process study
- 4. r-Process in accretion disk outflow
- 5. r-Process in NSBH dynamical ejecta (time permitting)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで





|                                                                          |                  |                  |  |                  |                  |                  |                  |                  |      |                  |                  |                  |                  |                  | <b> </b> |  |  |
|--------------------------------------------------------------------------|------------------|------------------|--|------------------|------------------|------------------|------------------|------------------|------|------------------|------------------|------------------|------------------|------------------|----------|--|--|
| s-process: $	au_{eta^-} \ll 	au_n \sim 10^2 - 10^5$ yr                   |                  |                  |  |                  |                  |                  |                  |                  |      |                  | <sup>90</sup> Zr | <sup>91</sup> Zr | <sup>92</sup> Zr |                  |          |  |  |
| r-process: $	au_n \ll 	au_{eta^-} \sim 10  \mathrm{ms} - 10  \mathrm{s}$ |                  |                  |  |                  |                  |                  |                  |                  |      |                  |                  |                  |                  | <sup>89</sup> Y  |          |  |  |
|                                                                          |                  |                  |  |                  |                  |                  |                  |                  |      | <sup>84</sup> Sr |                  | <sup>86</sup> Sr | <sup>87</sup> Sr | <sup>88</sup> Sr |          |  |  |
|                                                                          |                  |                  |  |                  |                  |                  |                  |                  |      |                  |                  | <sup>85</sup> Rb |                  | <sup>87</sup> Rb |          |  |  |
|                                                                          |                  |                  |  |                  |                  | <sup>78</sup> Kr |                  | <sup>80</sup> Kr |      | <sup>82</sup> Kr | <sup>83</sup> Kr | <sup>84</sup> Kr |                  | <sup>86</sup> Kr |          |  |  |
|                                                                          |                  |                  |  |                  |                  |                  |                  | <sup>79</sup> Br |      | <sup>81</sup> Br |                  |                  |                  |                  |          |  |  |
|                                                                          |                  |                  |  | <sup>74</sup> Se |                  | <sup>76</sup> Se | <sup>77</sup> Se | <sup>78</sup> Se |      | <sup>80</sup> Se |                  | <sup>82</sup> Se |                  |                  |          |  |  |
|                                                                          |                  |                  |  |                  |                  | <sup>75</sup> As |                  |                  |      |                  |                  |                  |                  |                  |          |  |  |
|                                                                          |                  | <sup>70</sup> Ge |  | <sup>72</sup> Ge | <sup>73</sup> Ge | <sup>74</sup> Ge |                  | <sup>76</sup> Ge |      |                  |                  |                  |                  |                  |          |  |  |
|                                                                          |                  | <sup>69</sup> Ga |  | <sup>71</sup> Ga |                  |                  |                  |                  |      |                  |                  |                  |                  |                  |          |  |  |
| <sup>66</sup> Zn                                                         | <sup>67</sup> Zn | <sup>68</sup> Zn |  | <sup>70</sup> Zn |                  |                  |                  |                  |      |                  |                  |                  |                  |                  |          |  |  |
| <sup>65</sup> Cu                                                         |                  |                  |  |                  |                  |                  |                  |                  |      |                  |                  |                  |                  |                  | ĺ        |  |  |
|                                                                          |                  |                  |  |                  |                  |                  | nou              | tron             | drin | line             |                  |                  |                  |                  |          |  |  |

neutron drip line

closed neutron shell

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ











# Solar system abundances



5 Jonas Lippuner



- General-purpose nuclear reaction network
- ▶ ~8000 isotopes, ~140,000 nuclear reactions
- Evolves temperature and entropy based on nuclear reactions
- Input:  $\rho(t)$ , initial composition, initial entropy or temperature

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Open source (soon)
- JL, Roberts 2016, in prep.

### Define abundance

$$Y_i = \frac{n_i}{n_B}.$$
 (1)

Consider reaction

$$p + {^7}Li \rightarrow 2 {^4}He$$
 (2)

with rate  $\lambda = \lambda(T, \rho)$ . Then

$$\dot{Y}_{4_{\text{He}}} = 2\lambda Y_{p} Y_{7_{\text{Li}}} + \cdots,$$
  
$$\dot{Y}_{p} = -\lambda Y_{p} Y_{7_{\text{Li}}} + \cdots,$$
  
$$\dot{Y}_{7_{\text{Li}}} = -\lambda Y_{p} Y_{7_{\text{Li}}} + \cdots$$
(3)

## SkyNet reaction types

### Strong

- Ordinary: n +  ${}^{196}Au \rightarrow {}^{197}Au$  (REACLIB, Cyburt+10)
- ▶ Neutron induced fission: n +  $^{235}U \rightarrow ^{118}Pd$  +  $^{118}Pd$  (Panov+10, Mamdouh+01, Wahl02)
- Spontaneous fission:  $^{301}Md \rightarrow {}^{121}Ag + {}^{180}Xe (Frankel+47)$

### Weak

- ▶ Beta decays:  ${}^{86}\text{Br} \rightarrow {}^{86}\text{Kr} + e^- + \bar{\nu}_e$  (REACLIB, Fuller+82)
- Electron capture:  ${}^{26}\text{AI} + e^- \rightarrow {}^{26}\text{Mg} + \nu_e$  (REACLIB, Fuller+82)

► Neutrino interactions and  $e^-/e^+$  capture on free nucleons:  $n + \nu_e \rightarrow p + e^-$  (Arcones+02)  $\lambda_{\nu_e} \propto \int_{w_{ec}}^{\infty} dE E^2 (E - Q)^2 (1 - f_e) f_{\nu_e}$ 

# SkyNet additional features

### Science

- Expanded Helmholtz equation of state
- Calculate nuclear statistical equilibrium (NSE)
- Calculate inverse rates from detailed balance to be consistent with NSE

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- NSE evolution mode
- Implementing screening with chemical potential corrections

### Code

- Adaptive time stepping
- Python bindings
- Extendible reaction class
- Make movie with chart of nuclides

# Parametrized r-process study

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Lippuner & Roberts, 2015, ApJ, 815, 82, arXiv:1508.03133

#### Parameters

$$\begin{array}{rl} 0.01 \leq Y_e \leq 0.50 & \text{initia} \\ 1 \, k_B \, \text{baryon}^{-1} \leq \, s \, \leq 100 \, k_B \, \text{baryon}^{-1} & \text{initia} \\ 0.1 \, \text{ms} \leq \, \tau \, \leq 500 \, \text{ms} & \text{expansion} \end{array}$$

nitial electron fraction nitial specific entropy expansion time scale

#### Density profile



#### Initial conditions

- Choose initial temperature  $T_0 = 6 \,\text{GK}$
- Find  $\rho_0$  by solving for NSE at  $T_0$  and  $Y_e$  that produces specified s

# **Movies**

http://lippuner.ca/skynet/SkyNet\_Ye\_0.010\_s\_010.000\_tau\_007.100.mp4 http://lippuner.ca/skynet/SkyNet\_Ye\_0.250\_s\_010.000\_tau\_007.100.mp4



◆ロ ▶ ◆屈 ▶ ◆臣 ▶ ◆臣 ● ● ● ● ● ●

# Final abundances vs. electron fraction



# Final abundances vs. entropy



## Impact of electron fraction



15 Jonas Lippuner

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - の Q ()

# **Example light curves**



# r-Process in accretion disk outflow

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

| au [ms]  | $M_{\rm ej}  [10^{-3}  M_{\odot}]$ | $M_{\rm ej,Y_e \le 0.25}  \left[10^{-3}  M_\odot ight]$ |
|----------|------------------------------------|---------------------------------------------------------|
| 0        | 1.8                                | 1.36                                                    |
| 10       | 1.9                                | 1.07                                                    |
| 30       | 3.3                                | 0.83                                                    |
| 100      | 7.8                                | 0.52                                                    |
| 300      | 18.0                               | 0.67                                                    |
| $\infty$ | 29.6                               | 0.69                                                    |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

JL, Fernández, Roberts, et al. 2016, in prep.

# Y<sub>e</sub> distribution vs. HMNS lifetime



# Final abundances vs. HMNS lifetime



# $\tau$ = 300 ms ejecta properties



# r-Process in NSBH dynamical ejecta

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

### Neutron star-black hole merger

- 1. Full GR simulation of NS-BH Francois Foucart (LBL), Foucart+14
- 2. Ejecta in SPH code, Matt Duez (WSU)
- Nucleosynthesis with SkyNet and varying neutrino luminosity JL and Luke Roberts (Caltech)

Roberts, JL, Duez, et al. 2016, *MNRAS in press*, arXiv:1601.07942



▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Figure credit: F. Foucart

### BHNS: Final abundances vs. neutrino luminosity



# **BHNS: Electron fraction distribution**



## BHNS: New first peak production mechanism

- Original seeds:  $A \sim 80 \rightarrow$  full r-process
- With neutrinos:
  - ▶  $\nu_e + n \rightarrow p + e^-$
  - $2p + 2n \rightarrow {}^{4}He$
  - ▶  $3^{4}He + n \rightarrow {}^{12}C + n$
- ▶ Additional low-mass seed nuclei  $\rightarrow$  enhanced 1st peak
- No combination of complete and incomplete r-process

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- SkyNet is a flexible reaction network that will be open source
- $Y_e \sim 0.25$  is the critical value for lanthanide production
- Heating rate is fairly uniform
- Disk outflow after neutron star merger produces 3rd peak regardless of  $\tau$ , but 3rd peak under-produced for  $\tau\gtrsim$  10 ms

- Black hole-neutron star merger produces very strong 3rd peak
- Neutrino irradiation can enhance 1st peak via low-mass seed nuclei

# **Extra slides**

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# $Y_e$ slices



### Nuclear reaction network

Consider reaction

$$[j] + [k] \rightarrow [m] \tag{4}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

cross section = 
$$\sigma = \frac{\# \text{ of reactions per target [j] per second}}{\text{flux of projectiles [k]}}$$
  
=  $\frac{R/(Vn_j)}{n_k v} = \frac{r}{n_j n_k v}$ , (5)

and so

$$r = \frac{R}{V} = \sigma v n_j n_k = \# \text{ of reactions per second per volume},$$
 (6)

where

R = # of reactions per second, V = volume,  $n_{j,k} =$  number density of species [j], [k], v = relative speed between [j] and [k].

### Nuclear reaction network

In general

$$r_{j,k} = \int \sigma(\|\mathbf{v}_j - \mathbf{v}_k\|) \|\mathbf{v}_j - \mathbf{v}_k\| d^3 n_j d^3 n_k,$$
(7)

using Boltzmann distribution

$$r_{j,k} = n_j n_k \langle \sigma v \rangle_{j,k} = n_j n_k \left(\frac{8}{\mu \pi}\right)^{1/2} (k_B T)^{-3/2} \int_0^\infty E \sigma(E) e^{-E/(k_B T)} dE, \quad (8)$$

where

$$\mu$$
 = reduced mass =  $\frac{m_j m_k}{m_j + m_k}$ ,  
 $T$  = temperature,  
 $k_B$  = Boltzmann constant.

Note that  $\langle \sigma v \rangle_{j,k} = \langle \sigma v \rangle_{j,k}(T)$ .

Define abundance

$$Y_i = \frac{n_i}{n_B} = \frac{\# \text{ of species [i]}}{\# \text{ of baryons}},$$
(9)

where  $n_B$  is baryon number density, then for  $[j] + [k] \rightarrow [m]$ 

$$\dot{Y}_m = \frac{r_{j,k}V}{\# \text{ of baryons}} = \frac{r_{j,k}}{n_B} = \frac{Y_j n_B Y_k n_B \langle \sigma v \rangle_{j,k}}{n_B} = Y_j Y_k \lambda_{j,k}, \quad (10)$$

where

$$\lambda_{j,k} = n_B \langle \sigma v \rangle_{j,k} = N_A \rho \langle \sigma v \rangle_{j,k} (T) = \lambda_{j,k} (T, \rho), \tag{11}$$

where  $N_A$  is Avogadro's number, and  $\rho$  is the mass density. And, of course

$$\dot{Y}_j = \dot{Y}_k = -\dot{Y}_m. \tag{12}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

In general

$$\dot{Y}_{i} = \sum_{\alpha} N_{i}^{\alpha} \lambda_{\alpha}(T, \rho) \prod_{m \in \mathcal{R}_{\alpha}} Y_{m}^{|N_{m}^{\alpha}|},$$
(13)

(ロ)、(型)、(E)、(E)、 E、 の(の)

where

Example:

$$Y_i = n_i/n_B$$
 = abundance of species [i],  
 $\alpha$  = index running over all reactions,  
 $N_i^{\alpha} = \#$  of species [i] destroyed/created in  $\alpha$ ,  
 $\lambda_{\alpha}$  = reaction rate,  
 $\mathcal{R}_{\alpha}$  = set of reactants of  $\alpha$ .

$$\dot{Y}_{4}_{He} = \underbrace{+ \cdots (14)}_{\substack{\text{decay} \\ 4\text{He} \rightarrow 2\text{d}} producing reaction} \underbrace{+ \cdots (14)}_{\substack{\text{destroying reaction}}}$$

In general

$$\dot{Y}_{i} = \sum_{\alpha} N_{i}^{\alpha} \lambda_{\alpha}(T, \rho) \prod_{m \in \mathcal{R}_{\alpha}} Y_{m}^{|N_{m}^{\alpha}|},$$
(13)

(ロ)、(型)、(E)、(E)、 E、 の(の)

where

$$Y_i = n_i/n_B$$
 = abundance of species [i],  
 $\alpha$  = index running over all reactions,  
 $N_i^{\alpha} = \#$  of species [i] destroyed/created in  $\alpha$ ,  
 $\lambda_{\alpha}$  = reaction rate,  
 $\mathcal{R}_{\alpha}$  = set of reactants of  $\alpha$ .

Example:

$$\dot{Y}_{4}_{He} = \underbrace{-\lambda_{4}_{He}}_{\text{decay}} \qquad producing reaction} \qquad \underbrace{+ \cdots}_{\text{destroying reaction}} \qquad (14)$$

$$\overset{4}{He} \rightarrow 2 d \qquad p + {}^{7}\text{Li} \rightarrow 2 {}^{4}\text{He} \qquad n + p + 2 {}^{4}\text{He} \rightarrow {}^{7}\text{Li} + {}^{3}\text{He}$$

In general

$$\dot{Y}_{i} = \sum_{\alpha} N_{i}^{\alpha} \lambda_{\alpha}(T, \rho) \prod_{m \in \mathcal{R}_{\alpha}} Y_{m}^{|N_{m}^{\alpha}|},$$
(13)

(ロ)、(型)、(E)、(E)、 E、 の(の)

where

$$Y_i = n_i/n_B$$
 = abundance of species [i],  
 $\alpha$  = index running over all reactions,  
 $N_i^{\alpha} = \#$  of species [i] destroyed/created in  $\alpha$ ,  
 $\lambda_{\alpha}$  = reaction rate,  
 $\mathcal{R}_{\alpha}$  = set of reactants of  $\alpha$ .

Example:

In general

$$\dot{Y}_{i} = \sum_{\alpha} N_{i}^{\alpha} \lambda_{\alpha}(T, \rho) \prod_{m \in \mathcal{R}_{\alpha}} Y_{m}^{|N_{m}^{\alpha}|},$$
(13)

(ロ)、(型)、(E)、(E)、 E、 の(の)

where

$$Y_i = n_i/n_B$$
 = abundance of species [i],  
 $\alpha$  = index running over all reactions,  
 $N_i^{\alpha} = \#$  of species [i] destroyed/created in  $\alpha$ ,  
 $\lambda_{\alpha}$  = reaction rate,  
 $\mathcal{R}_{\alpha}$  = set of reactants of  $\alpha$ .

Example:

$$\dot{Y}_{4}_{He} = \underbrace{-\lambda_{4}_{He}Y_{4}_{He}}_{\text{decay}} \underbrace{+2\lambda_{p,7_{Li}}}_{\text{producing reaction}} \underbrace{+2\lambda_{p,7_{Li}}}_{\text{destroying reaction}} \underbrace{+ \cdots}_{\text{destroying reaction}} (14)$$

In general

$$\dot{Y}_{i} = \sum_{\alpha} N_{i}^{\alpha} \lambda_{\alpha}(T, \rho) \prod_{m \in \mathcal{R}_{\alpha}} Y_{m}^{|N_{m}^{\alpha}|},$$
(13)

(ロ)、(型)、(E)、(E)、 E、 の(の)

where

$$Y_i = n_i/n_B$$
 = abundance of species [i],  
 $\alpha$  = index running over all reactions,  
 $N_i^{\alpha} = \#$  of species [i] destroyed/created in  $\alpha$ ,  
 $\lambda_{\alpha}$  = reaction rate,  
 $\mathcal{R}_{\alpha}$  = set of reactants of  $\alpha$ .

Example:

$$\dot{Y}_{4}_{He} = \underbrace{-\lambda_{4}_{He} Y_{4}_{He}}_{\text{decay}} \underbrace{+2\lambda_{p,7_{Li}} Y_{p} Y_{7_{Li}}}_{\text{producing reaction}} \underbrace{+2\lambda_{p,7_{Li}} Y_{p} Y_{7_{Li}}}_{\text{destroying reaction}} + \cdots (14)$$

In general

$$\dot{Y}_{i} = \sum_{\alpha} N_{i}^{\alpha} \lambda_{\alpha}(T, \rho) \prod_{m \in \mathcal{R}_{\alpha}} Y_{m}^{|N_{m}^{\alpha}|},$$
(13)

(ロ)、(型)、(E)、(E)、 E、 の(の)

where

$$Y_i = n_i/n_B$$
 = abundance of species [i],  
 $\alpha$  = index running over all reactions,  
 $N_i^{\alpha} = \#$  of species [i] destroyed/created in  $\alpha$ ,  
 $\lambda_{\alpha}$  = reaction rate,  
 $\mathcal{R}_{\alpha}$  = set of reactants of  $\alpha$ .

Example:

$$\dot{Y}_{4}_{He} = \underbrace{-\lambda_{4}_{He} Y_{4}_{He}}_{\text{decay}} \underbrace{+2\lambda_{p,7_{Li}} Y_{p} Y_{7_{Li}}}_{\text{producing reaction}} \underbrace{-2\lambda_{n,p,2} {}^{4}_{He}}_{\text{destroying reaction}} + \cdots (14)$$

In general

$$\dot{Y}_{i} = \sum_{\alpha} N_{i}^{\alpha} \lambda_{\alpha}(T, \rho) \prod_{m \in \mathcal{R}_{\alpha}} Y_{m}^{|N_{m}^{\alpha}|},$$
(13)

(ロ)、(型)、(E)、(E)、 E、 の(の)

where

$$Y_i = n_i/n_B$$
 = abundance of species [i],  
 $\alpha$  = index running over all reactions,  
 $N_i^{\alpha} = \#$  of species [i] destroyed/created in  $\alpha$ ,  
 $\lambda_{\alpha}$  = reaction rate,  
 $\mathcal{R}_{\alpha}$  = set of reactants of  $\alpha$ .

Example:

$$\dot{Y}_{4_{He}} = \underbrace{-\lambda_{4_{He}}Y_{4_{He}}}_{\text{decay}} \underbrace{+2\lambda_{p,7_{Li}}Y_{p}Y_{7_{Li}}}_{\text{producing reaction}} \underbrace{-2\lambda_{n,p,2}{}^{4_{He}}Y_{n}Y_{p}Y_{4_{He}}^{2}}_{\text{destroying reaction}} + \cdots$$
(14)  
$$\underbrace{-2\lambda_{n,p,2}{}^{4_{He}}Y_{n}Y_{p}Y_{4_{He}}^{2}}_{\text{destroying reaction}} + \cdots$$
(14)

# Time stepping method



# au slices



35 Jonas Lippuner

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

### Light curves vs. electron fraction



### Light curves vs. electron fraction



37 Jonas Lippuner

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで