Gravitational-wave memory observables and charges of the extended BMS algebra

David A. Nichols¹

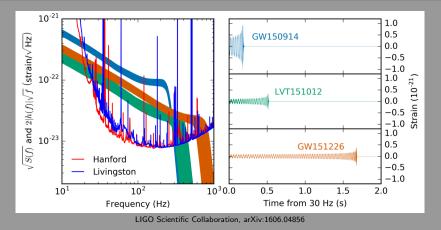
¹Dept. of Astrophysics, IMAPP, Radboud University Nijmegen In collaboration with Éanna É. Flanagan and Abraham I. Harte

Yukawa Institute for Theoretical Physics—NPCSM Meeting 10 November 2016

Outline of introduction and summary of results

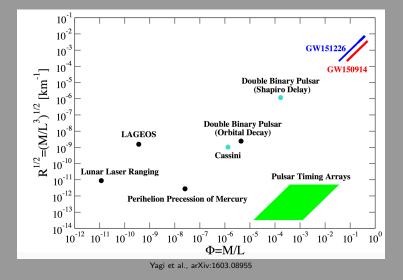
- Gravitational-wave (GW) observations as probe of nonlinear and dynamical regime of general relativity (GR)
- GW memory as an example of nonlinear, dynamical GR
- Qualitative review of GW memory
- Description of asymptotic symmetries and charges
- New memories from new symmetries of gravitational scattering
- Summary of work on computations of charges ("conserved" quantities) and memory observables
- More details about calculations after introduction

Gravitational-wave (GW) detections of binary black holes (BBHs)

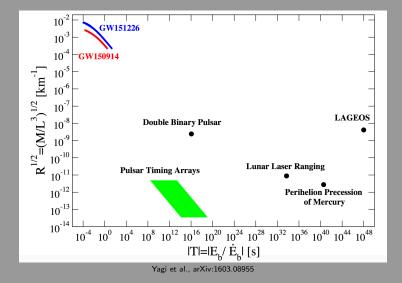


- GW150914: $> 5\sigma$, $m_1 \approx 36 M_{\odot}$, $m_2 \approx 29 M_{\odot}$, $D_L \approx 420$ Mpc
- \circ GW151226: $>5\sigma$, m_1pprox 14 M_{\odot} , m_2pprox 7.5 M_{\odot} , D_Lpprox 440 Mpc
- LVT151012: $\sim 2\sigma$, $m_1 pprox 23 M_{\odot}$, $m_2 pprox 13 M_{\odot}$, $D_L pprox 1$ Gpc

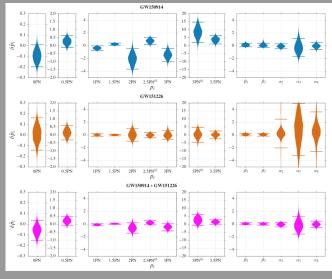
Observational GR on new lengthscales...



... and on new timescales



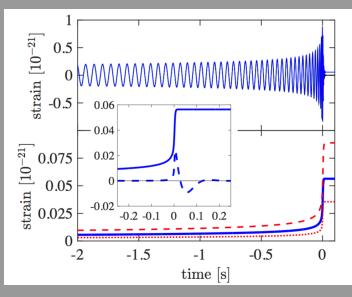
Tests of general relativity (GR) with BBHs



• $h(f) \sim Ae^{-i\Psi(f)}$ $\Psi(f) \sim \sum_j (p_j^{\mathsf{GR}} + \delta p_j) f^{(j-5)/3}$

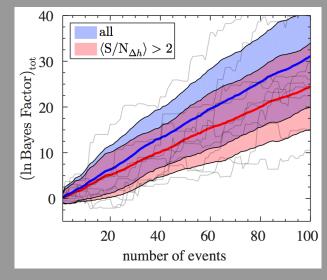
LIGO Scientific Collaboration, arXiv:1602.04856

Memory effect from GW150914 in LIGO

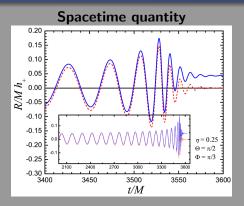


Lasky et al., arXiv:1605.01415

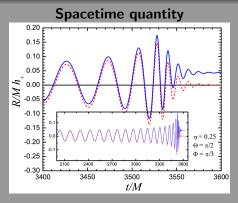
Building evidence for memory by stacking detections



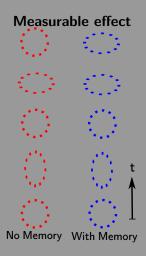
Lasky et al., arXiv:1605.01415

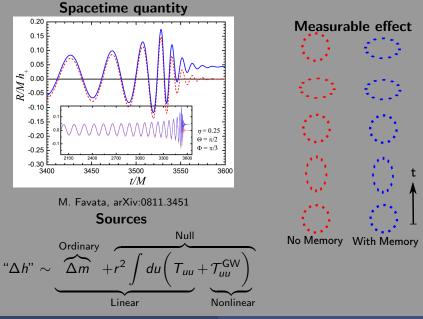


M. Favata, arXiv:0811.3451

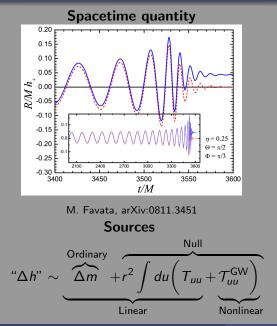


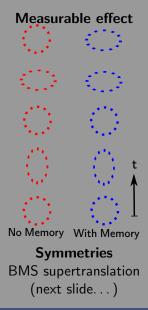
M. Favata, arXiv:0811.3451



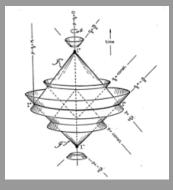


David A. Nichols GW memory and extended BMS charges





Overview of asymptotic symmetries



R. Penrose, Les Houches, 1963

Memory related to supertranslation between early and late non-radiative frames Symmetry group of asymptotically flat spacetimes (*I*⁺) is the Bondi-Metzner-Sachs (BMS) group

Bondi et al., 1962; Sachs, 1962

- BMS has semidirect form: Supertranslations (ST) ⋊ Lorentz (Poincaré: Translations ⋊ Lorentz)
- ST: infinite-dimensional, abelian,
 4D translation subgroup; roughly
 "angle-dependent translations"
- Corresponding charges:
 4-momentum, supermomentum,
 and relativistic angular momentum
 (spin and center of mass)

Extended symmetry groups

- Barnich & Troessaert '09+: extend BMS algebra to include locally defined (but not globally defined) symmetries
- Extended algebra: ST \rtimes Virasoro
- Virasoro called "superrotations" (SR) in the context of 4D asymptotically flat case
- Intuition for SR: contains Lorentz subalgebra;
 "angle-dependent rotations and boosts"
- Showed certain charges are finite and well defined

Physical relevance of extended symmetries

Digression on charges, memories, symmetries of gravitational scattering

- Strominger,+ '13+: Identify BMS subgroup of past (*I*⁻) and future (*I*⁺) null infinity in a class of spacetimes
- Supertranslation charges related: $\mathcal{Q}^-_{lpha} = \mathcal{Q}^+_{lpha}$
- S matrix satisfies: $\langle out | (Q_{\alpha}^+ S SQ_{\alpha}^-) | in \rangle = 0$
- In particle basis: $\lim_{\omega \to 0} \mathcal{M}_{n+1} = S^{(0)} \mathcal{M}_n$ with \mathcal{M}_n *n*-particle amplitude and $S^{(0)}$ related to memory effect
- "Triangle" of relations: soft theorem ⇔ BMS symmetry ⇔ memory effect

Similar types of relations between subleading soft theorem, extended BMS symmetry, and a new "spin" memory effect (Pasterski+, '15)

Overview of Results

- 1 Review asymptotic flatness, symmetries, and charges
 - Show how supermomentum charges are related to "ordinary" memory
- 2 Compute charges conjugate to superrotation symmetries in more general contexts than before
 - Find charges contain information about the total memory and the ordinary spin memory
- Investigate the spin memory
 - Show it can be measured inertially, but not locally in space
- 4 Look for other intertial memory effects
 - Besides displacement effect, there are proper-time, rotation, and velocity memory effects
 - Relative displacement is the only effect that is locally measurable at O(1/r)

- Asymptotically flat spacetimes, in brief
- 2 Charges ("conserved" quantities) of the BMS group
- 3 Memory effects and charges
- 4 Extended BMS algebra and its charges
- 5 Relation of extended charges and memory effects
- 6 Search for additional classical memory observables

Bondi-Sachs framework

Work in Bondi coordinates (u, r, θ^A) :

$$ds^{2} = -du^{2} - 2dudr + r^{2}h_{AB}d\theta^{A}d\theta^{B} + \frac{2m}{r}du^{2} + rC_{AB}d\theta^{A}d\theta^{B} + D^{B}C_{AB}d\theta^{A}du + \dots$$

Work in Bondi coordinates (u, r, θ^A) :

$$ds^{2} = -du^{2} - 2dudr + r^{2}h_{AB}d\theta^{A}d\theta^{B} + \frac{2m}{r}du^{2} + rC_{AB}d\theta^{A}d\theta^{B} + D^{B}C_{AB}d\theta^{A}du + \dots$$

• θ^A : coordinates on S^2 with 2-metric h_{AB} and covariant derivative operator D_A

•
$$m = m(u, \theta^A)$$
: Bondi mass aspect

• $C_{AB} = C_{AB}(u, \theta^{C})$: shear tensor (symmetric trace-free)

Work in Bondi coordinates (u, r, θ^A) :

$$ds^{2} = -du^{2} - 2dudr + r^{2}h_{AB}d\theta^{A}d\theta^{B} + \frac{2m}{r}du^{2} + rC_{AB}d\theta^{A}d\theta^{B} + D^{B}C_{AB}d\theta^{A}du + \dots$$

• θ^A : coordinates on S^2 with 2-metric h_{AB} and covariant derivative operator D_A

•
$$m = m(u, \theta^A)$$
: Bondi mass aspect

• $C_{AB} = C_{AB}(u, \theta^{C})$: shear tensor (symmetric trace-free)

•
$$N_{AB} = \partial_u C_{AB}$$
: news tensor (vanishes when stationary)

• $N_A = N_A(u, \theta^B)$: Bondi angular-momentum aspect

Einstein equations and initial data

Einstein equations (evolution equations for $\dot{m} = \partial_u m$ and \dot{N}_A)

$$\dot{m} = 4\pi \hat{T}_{uu} - \frac{1}{8}N_{AB}N^{AB} + \frac{1}{4}D_A D_B N^{AB}$$

where $T_{uu} = \hat{T}_{uu}(u, \theta^A)/r^2$

Einstein equations and initial data

Einstein equations (evolution equations for $\dot{m} = \partial_u m$ and \dot{N}_A)

$$\dot{m} = 4\pi \hat{T}_{uu} - \frac{1}{8}N_{AB}N^{AB} + \frac{1}{4}D_A D_B N^{AB}$$

where $T_{uu} = \hat{T}_{uu}(u, \theta^A)/r^2$

$$\dot{N}_{A} = -8\pi \hat{T}_{uA} + \pi D_{A} \partial_{u} \hat{T}_{rr} + D_{A}m + \frac{1}{4} D_{B} D_{A} D_{C} C^{BC} - \frac{1}{4} D_{B} D^{B} D^{C} C_{CA} + \frac{1}{4} D_{B} (N^{BC} C_{CA}) + \frac{1}{2} D_{B} N^{BC} C_{CA}.$$

and $T_{uA} = \hat{T}_{uA}(u, \theta^B)/r^2$, $T_{rr} = \hat{T}_{rr}(u, \theta^A)/r^4$

Einstein equations and initial data

Einstein equations (evolution equations for $\dot{m} = \partial_u m$ and \dot{N}_A)

$$\dot{m} = 4\pi \hat{T}_{uu} - \frac{1}{8}N_{AB}N^{AB} + \frac{1}{4}D_A D_B N^{AB}$$

where $T_{uu} = \hat{T}_{uu}(u, \theta^A)/r^2$

$$\dot{N}_{A} = -8\pi \hat{T}_{uA} + \pi D_{A} \partial_{u} \hat{T}_{rr} + D_{A}m + \frac{1}{4} D_{B} D_{A} D_{C} C^{BC} - \frac{1}{4} D_{B} D^{B} D^{C} C_{CA} + \frac{1}{4} D_{B} (N^{BC} C_{CA}) + \frac{1}{2} D_{B} N^{BC} C_{CA}.$$

and $T_{uA} = \hat{T}_{uA}(u, \theta^B)/r^2$, $T_{rr} = \hat{T}_{rr}(u, \theta^A)/r^4$

- At $u = u_0$, specify $m(u_0, \theta^C)$, $N_A(u_0, \theta^C)$, $C_{AB}(u_0, \theta^C)$
- News N_{AB} unconstrained; also certain components of T_{ab}

Nearby freely falling observers

- Primary geodesic observer, P: 4-velocity $\vec{u}_P(\tau)$
- Secondary geodesic observer, S: 4-velocity $\vec{u}_S(\tau)$
- At τ_1 , P and S co-moving; S at location $\xi_1^{\hat{i}}$

 $\vec{u}(\tau)$: 4-velocity $\vec{\xi} = \xi^{\hat{i}} \vec{e}_{\hat{i}}(\tau)$: "separation"

Nearby freely falling observers

$$\vec{u}_{P}(\tau_{2}) | \vec{\xi}_{2} | \vec{u}_{S}(\tau_{2} + \delta \tau) | \vec{u}_{S}(\tau_{1}) | \vec{\xi}_{1} | \vec{\xi}_{1} | \vec{u}_{S}(\tau_{1}) | \vec{\xi}_{1} | \vec{\xi}_{1} | \vec{u}_{S}(\tau_{1}) | \vec{\xi}_{1} | \vec$$

 $\vec{u}(\tau)$: 4-velocity $\vec{\xi} = \xi^{\hat{i}} \vec{e}_{\hat{i}}(\tau)$: "separation"

- Primary geodesic observer, P: 4-velocity $\vec{u}_P(\tau)$
- Secondary geodesic observer, S: 4-velocity $\vec{u}_S(\tau)$
- At τ_1 , P and S co-moving; S at location $\xi_1^{\hat{i}}$

At
$$au_2$$
, $\xi_2^{\hat{i}} = \xi_1^{\hat{i}} + \delta \xi^{\hat{i}}$

•
$$\delta \xi^{\hat{i}} = \int d\tau \int d\tau' R^{\hat{i}}_{\hat{0}\hat{j}\hat{0}}\xi^{\hat{j}}$$

Bondi coordinates:

$$\vec{u}_P = \vec{\partial}_u + O(r^{-1}),$$

 $R^{\hat{i}}_{\hat{0}\hat{j}\hat{0}} = r^{-1}\ddot{C}_{\hat{A}\hat{B}}\delta^{\hat{i}\hat{A}}\delta^{\hat{B}}_{\hat{j}} + O(r^{-2})$
 $\delta\xi_{\hat{A}} = r^{-1}\Delta C_{\hat{A}\hat{B}}\xi^{\hat{B}} + O(r^{-2})$

BMS symmetries in Bondi coordinates

BMS transformations take the form

$$\bar{u} = [u + \alpha(\theta^A)]/\omega(\theta^A)$$
 $\bar{\theta}^A = \bar{\theta}^A(\theta^B)$

 $\bar{\theta}^{A}(\theta^{B})$: conformal transformation of 2-sphere (6-parameter group) $\omega(\theta^{A})$: required rescaling of u

BMS symmetries in Bondi coordinates

BMS transformations take the form

$$\bar{u} = [u + \alpha(\theta^A)]/\omega(\theta^A) \qquad \bar{\theta}^A = \bar{\theta}^A(\theta^B)$$

 $\bar{\theta}^A(\theta^B)$: conformal transformation of 2-sphere (6-parameter group) $\omega(\theta^A)$: required rescaling of u

Infinitesimal BMS symmetries on \mathscr{I}^+ generated by $\vec{\zeta}$:

$$\vec{\zeta} = f(\theta^A)\vec{\partial}_u + Y^A(\theta^B)\vec{\partial}_A$$

$$f(\theta^{A}) = \alpha(\theta^{A}) + \frac{1}{2}uD_{B}Y^{B}(\theta^{A}), \quad 2D_{(A}Y_{B)} - D_{C}Y^{C}h_{AB} = 0$$

 $a \leftrightarrow ST; Y^{A} \leftrightarrow \text{Lorentz transformation } (\ell = 1 \text{ vector spherical armonic})$

Transformation of Bondi-metric functions

 C_{AB} , m, N_A transform nontrivially

$$\delta C_{AB} = fN_{AB} - (2D_A D_B - h_{AB} D^2)f - \frac{1}{2}D_C Y^C C_{AB} + \mathcal{L}_{\vec{Y}} C_{AB}$$

Transformation of Bondi-metric functions

CAB, m, NA transform nontrivially

$$\delta C_{AB} = fN_{AB} - (2D_A D_B - h_{AB} D^2)f - \frac{1}{2}D_C Y^C C_{AB} + \mathcal{L}_{\vec{Y}}C_{AB}$$

$$\begin{split} \delta m = &f \dot{m} + \frac{1}{4} N^{AB} D_A D_B f + \frac{1}{2} D_A f D_B N^{AB} + \frac{3}{2} m \psi + Y^A D_A m \\ &+ \frac{1}{8} C^{AB} D_A D_B \psi \\ \delta N_A = &3 m D_A f + \frac{1}{4} C_{AB} D^B D^2 f - \frac{3}{4} D_B f (D^B D_C C^C_{\ A} - D_A D_C C^{BC}) \\ &+ \frac{3}{8} D_A (C^{BC} D_B D_C f) + \frac{1}{4} (2 D_A D_B f - h_{AB} D^2 f) D_C C^{BC} \\ &+ f \dot{N}_A \mathcal{L}_{\vec{Y}} N_A + \psi N_A + \dots \end{split}$$

Certain BMS transformations can simplify C_{AB} , M, and N_A

Charges corresponding to asymptotic symmetries

- $\,\circ\,$ Charges not conserved at $\mathscr{I}^+,$ because fluxes of matter and GW carry charges
- A variant of Noether's theorem exists to compute "conserved" quantities conjugate to asymptotic symmetries $\vec{\zeta}$

Wald & Zoupas, arXiv:gr-qc/9911095

. Charge ${\cal Q}[{\cal C},ec{\zeta}]$ is linear in $ec{\zeta}$ and depends on cut ${\cal C}$

$$Q[\mathcal{C},\vec{\zeta}] = \int_{\mathcal{C}} \Xi$$

for a 2-form Ξ (similar to Gauss' law)

In stationary, vacuum, & Bondi coordinates

$$Q[\mathcal{C},\vec{\zeta}] = \frac{1}{16\pi} \int_{\mathcal{C}} d^2 \Omega \bigg[4\alpha m - 2uY^A D_A m + 2Y^A N_A - \frac{1}{8} Y^A D_A (C_{BC} C^{BC}) - \frac{1}{2} Y^A C_{AB} D_C C^{BC} \bigg]$$

Fluxes of charges

• Difference in charges is related to exact 3-form flux $d\Xi$

$$Q[\mathcal{C}_2,\vec{\zeta}] - Q[\mathcal{C}_1,\vec{\zeta}] = \int_{\mathscr{I}_{2,1}^+} d\Xi$$

(similar to EM continuity equation)

- **dΞ** is related to Noether current,
- For stationary solutions, $d \Xi = 0$
- Flux has form

$$\int_{\mathscr{I}_{2,1}^+} d\Xi = -\int_{\mathscr{I}_{2,1}^+} \left(\frac{1}{32\pi} N^{AB} \delta C_{AB} + \hat{T}_{ua} \zeta^a\right) du \, d^2\Omega \,.$$

 Using Einstein equations, can show consistency of charge and flux formulas • There exists a "canonical" frame C_c for stationary spacetimes:

$$m(\theta^A) = m_0 = \text{const.}, \quad C_{AB}(\theta^C) = 0,$$

$$N_{\mathcal{A}}(heta^{\mathcal{B}}) = \mathsf{magnetic}\,\mathsf{parity},\,\ell=1$$

Only nonzero charges

$$Q[\mathcal{C}_c, Y_{0,0}\vec{\partial}_u] = m_0 \qquad Q[\mathcal{C}_c, X_{1,m}^A \vec{\partial}_A] = N_{1,m}$$

• In essence, a vacuum, stationary, asymptotically flat spacetime is characterized by mass and spin to this order in 1/r

Charges in a supertranslated frame

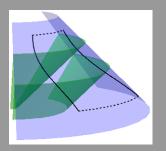
• Supertranslate by $\Delta \Phi(\theta^A)$ and linearize (for simplicity) from canonical frame

$$m(\theta^A) = m_0 = \text{const.}, \quad N_A(\theta^B) = N_A^{\ell=1} - \frac{3}{2}m_0 D_A \Delta \Phi,$$

$$C_{AB}(\theta^{C}) = \frac{1}{2}(2D_{A}D_{B} - h_{AB}D^{2})\Delta\Phi$$

- Supermomentum are invariant under supertranslations
- Angular momentum invariant to linear order in $\Delta \Phi,$ for $\Delta \Phi$ with $\ell > 1$
- Memory is not completely encoded in supermomentum charges in a stationary region

Memory effect, supermomenta, and nonradiative-to-nonradiative transitions



- Nonradiative transitions: Spacetimes with $N_{AB}
 ightarrow 0$ as $u
 ightarrow \pm \infty$
- Consider supermomentum charges in a "basis" of delta functions $\alpha(\theta^A) = 4\pi\delta(\theta^A - {\theta'}^A)$
- Supermomentum is just $m(u, \theta^A)$ in nonradiative region!

Flux formula $Q[\mathcal{C}_2, \alpha \vec{\partial}_u] - Q[\mathcal{C}_1, \alpha \vec{\partial}_u] = \int_{\mathscr{I}_{2,1}^+} d\Xi$ is equivalent to integrating Einstein's equation

$$\Delta m = -4\pi\Delta \mathcal{E} + \mathcal{D}\Delta \Phi$$

where $\mathcal{D} = D^2(D^2+2)/8$ and $\Delta \mathcal{E} = \int du \left[\hat{T}_{uu} + N_{AB} N^{AB}/(32\pi) \right]$

Interpretation of memory effect

Define ${\mathcal P}$ as projector that removes $\ell=0,1$ harmonics; can solve for the memory

$$\Delta \Phi = \mathcal{D}^{-1} \mathcal{P} (\Delta m + 4\pi \Delta \mathcal{E})$$

- 1) $\Delta \Phi$: memory observable
- 2 Δm : supermomentum ("ordinary" memory)
- 3 $\Delta \mathcal{E}$: energy flux ("null" memory)
 - Total memory not a charge; ordinary memory is though
 - $\Delta \Phi$ is supertranslation to reach canonical frame as $u \to \infty$ from canonical frame as $u \to \infty$
 - Total memory is observable; is there a charge for it?

Extended symmetry algebra of Barnich & Troessaert

- \circ Extended BMS algebra of form ST \rtimes Virasoro
- Virasoro: infinite-dimensional, called superrotations (SR), Lorentz subalgebra; roughly a generalization of boosts
- SR are the infinite number of singular solutions Y^A of

$$2D_{(A}Y_{B)} - D_CY^Ch_{AB} = 0$$

• Common basis uses stereographic coords $z=e^{i\phi}\cot heta/2$

$$I_m = -z^{m+1}\partial_z$$
 $\bar{I}_m = -\bar{z}^{m+1}\partial_{\bar{z}}$

with and $m \in \mathbb{Z}$

Conjugate charges to SR

- Will use Wald-Zoupas procedure to compute charges
- Remains formally valid, but may encounter problems
- For convenience define

$$\hat{N}_A = N_A - uD_Am - \frac{1}{16}D_A(C_{BC}C^{BC}) - \frac{1}{4}C_{AB}D_CC^{BC}$$

• SR charge in terms of \hat{N}_A is

$$Q[\mathcal{C},\vec{Y}] = rac{1}{8\pi}\int d^2\Omega \; Y^A \hat{N}_A$$

- \circ Charge integrals are finite for any smooth \hat{N}_A
- Split $\hat{N}_A = D_A \phi + \epsilon_{AB} D^B \psi$ (electric & magnetic parity)
- Decomposition of charges $Q[\mathcal{C}, \vec{Y}] = Q_e[\mathcal{C}, \vec{Y}] + Q_b[\mathcal{C}, \vec{Y}]$

Charges in stationary vacuum cuts

- In canonical frame, $Q_e[\mathcal{C}_c, \vec{Y}] = Q_b[\mathcal{C}, \vec{Y}] = 0$
- In frame supertranslated by $\Delta \phi$ (linearized)

$$Q_e[\mathcal{C},\vec{Y}] = -\frac{3m_0}{16\pi} \int_{\mathcal{C}} d^2 \Omega Y^A D_A \Delta \Phi \qquad Q_b[\mathcal{C},\vec{Y}] = 0$$

- Q_e charges contain (incomplete) information about C_{AB} (and thence the total memory)!
- $_{\odot}\,$ In more general stationary frames, $Q_{e}
 eq 0$ and $Q_{b}
 eq 0$
- Nomenclature: Q_e will call "super-center-of-mass; Q_b will call "superspin"
- For Y^A Lorentz, Q_e is center of mass, Q_b is spin

Charge and flux relationship

- Also check if $\int d\Xi$ is difference in charges for SR
- Find a discrepancy

$$\int_{\mathscr{I}_{2,1}^{+}} d\Xi = Q[\mathcal{C}_{2}, \vec{Y}] - Q[\mathcal{C}_{1}, \vec{Y}]$$
$$- \frac{1}{32\pi} \int_{\mathscr{I}_{2,1}^{+}} du \ d^{2}\Omega Y^{A} \epsilon_{AB} D^{B} \mathcal{D} \Psi$$

where $C_{AB} = (D_A D_B - h_{AB}/2D^2)\Phi + D_{(A}\epsilon_{B)C}D^C\Psi$

- Can resolve by modifying flux or adding a nonlocal field $\int du \Psi$ to the charge; not a formal derivation, though
- $\circ \, \int du \, \Psi$ is closely related to new "spin memory" of Pasterski+

Spin memory, superspin, and nonradiative transitions

• Consider the change in the magnetic-parity part of \hat{N}_A , by taking the curl of its evolution equation

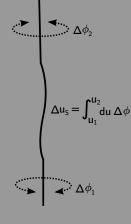
$$\Delta\epsilon^{AB}D_B\hat{N}_A=-8\pi\epsilon^{AB}D_B\Delta\mathcal{J}_A+D^2\mathcal{D}\int du\,\Psi$$

- $\Delta J_A = \int du(\hat{T}_{uA} + T_{uA})$ is the angular momentum per solid angle radiated in matter and GWs
- Can solve for spin memory

$$\int du \Psi = \mathcal{D}^{-1} \mathcal{D}^{-2} \mathcal{P} \epsilon^{AB} D_B (\Delta \hat{N}_A + \Delta \mathcal{J}_A)$$

- $\int du \Psi$: total spin memory; $\Delta \mathcal{J}_A$: null part; $\Delta \hat{N}_A$: ordinary part
- Now turn to measurablility of this memory

Spin memory (integrated Sagnac) effect



 $\Delta \phi$: Sagnac effect $\Delta u_{\rm S}$: integrated Sagnac effect Proposal of Pasterski+ to measure spin memory:

- Sagnac effect $\Delta \phi$ vanishes for inertial observers
- Must measure with "BMS observers" who accelerate to stay fixed in Bondi coordinates (i.e., noninertial)
- Effect related to *u* integral of twist $\omega_{AB} = D_{[A}a_{B]}$ for $a_B = D^C C_{BC}$
- For an "infinitesimal" detector

$$\Delta u_{\rm S}=2\int_{-\infty}^{\infty}du\,\mathcal{D}\Psi$$

However, constructing Bondi coordinates locally may not be possible

Spin memory measured by families of inertial observers

- Consider the *u* integral of the displacement memory $\delta \xi^{A}$ $\int_{-\infty}^{\infty} du \,\delta \xi^{A} = \int_{-\infty}^{\infty} du \,\left[\frac{1}{2}(2D_{A}D_{B} - h_{AB}D^{2})\Phi + D_{(A}\epsilon_{B)C}D^{C}\Psi\right]\xi^{B}$
 - $(2D_A D_B h_{AB} D^2) \Phi$ is the displacement memory; the integral will go as u as $u \to \infty$
 - Magnetic-parity part equivalent to Sagnac measurement of spin memory

$$\delta \mathsf{s}_{A} = \int_{-\infty}^{\infty} du \, D_{(A} \epsilon_{B)C} D^{C} \Psi \xi^{B}$$

• Need inertial observers distributed around source to extract magnetic-parity part (again non-local).

Are there additional local memory observables besides displacement and spin memories?

Nearby freely falling observers

$\vec{u}_{P}(\tau_{2})$	$\vec{\xi_2}$ $\vec{u_s}(\tau_2 + \delta)$	δau
J		
Р(S	
$\vec{u}_{P}(\tau_{1})$	$\vec{\xi}_1$ $\vec{u}_s(\tau_1)$	

- Primary geodesic observer, P: 4-velocity $\vec{u}_P(\tau)$
- Secondary geodesic observer, S: 4-velocity $\vec{u}_{S}(\tau)$
- $\circ~$ At $\tau_1,~{\rm P}~{\rm and}~{\rm S}$ co-moving; S at location $\xi_1^{\hat{l}}$

 $\vec{u}(\tau)$: 4-velocity $\vec{\xi} = \xi^{\hat{i}} \vec{e}_{\hat{i}}(\tau)$: "separation" (in Fermi coordinates)

Nearby freely falling observers

$$\vec{u}_{p}(\tau_{2}) | \vec{\xi}_{2}^{*} | \vec{u}_{s}(\tau_{2} + \delta \tau)$$

$$P | S$$

$$\vec{u}_{p}(\tau_{1}) | \vec{\xi}_{1}^{*} | \vec{u}_{s}(\tau_{1})$$

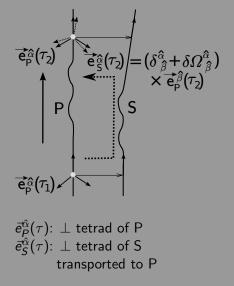
 $\vec{u}(\tau)$: 4-velocity $\vec{\xi} = \xi^{\hat{i}} \vec{e}_{\hat{i}}(\tau)$: "separation" (in Fermi coordinates)

- Primary geodesic observer, P: 4-velocity $\vec{u}_P(\tau)$
- Secondary geodesic observer, S: 4-velocity $\vec{u}_{S}(\tau)$
- At τ_1 , P and S co-moving; S at location $\xi_1^{\hat{l}}$
- At τ_2 , P and S not co-moving; S at location $\xi_2^{\hat{i}} = \xi_1^{\hat{i}} + \delta \xi^{\hat{i}}$
- $\circ\,$ Proper time elapsed for P and S differ by $\delta\tau$
- $\delta \xi^{\hat{i}}$: measurable effect of memory; "displacement" memory.

• $\delta \tau$: a "proper-time" memory

Additional memory observables

- Two additional observable effects:
 - $\delta \Omega^{\hat{i}}_{\hat{j}}$: Relative rotation of triad $\bar{e}_{S}^{\hat{i}}(\tau)$ with respect to inertial standards at P.
 - 2 $\delta \Omega^{i}_{\hat{0}} \equiv \delta \dot{\xi}^{i}$: Relative boost of S with respect to geodesic P
- 1 is a "rotation" memory and 2 is a "velocity" memory
- 1 is measurable in principle with inertial gyroscopes



Expressions for memory observables

Velocity and rotation memories

Covariant Riemann3+1 Split of Riemann
$$\delta \dot{\xi}^{\hat{i}}(\tau) = -\int_{\tau_1}^{\tau} d\tau' R^{\hat{i}}_{\hat{0}\hat{j}\hat{0}}(\tau') \xi^{\hat{j}}$$
 $\delta \dot{\xi}^{\hat{i}} = -\int_{\tau_1}^{\tau} d\tau' (\mathcal{E}^{\hat{i}}_{\hat{j}} - 4\pi T^{\hat{i}}_{\hat{j}}) \xi^{\hat{j}}$
 $-\frac{4\pi}{3} \int_{\tau_1}^{\tau} d\tau' (2T^{\hat{k}}_{\hat{k}} + T_{\hat{0}\hat{0}}) \xi^{\hat{i}}$ $\delta \Omega_{\hat{i}\hat{j}} = -\int_{\tau_1}^{\tau} d\tau' R_{\hat{i}\hat{j}\hat{0}\hat{k}}(\tau') \xi^{\hat{k}}$ $\delta \Omega_{\hat{i}\hat{j}} = \int_{\tau_1}^{\tau} d\tau' (8\pi T_{\hat{0}[\hat{i}}\xi_{\hat{j}]} - \epsilon_{\hat{i}\hat{j}\hat{k}} \mathcal{B}^{\hat{k}}_{\hat{n}} \xi^{\hat{n}})$ Recall $\mathcal{E}_{\hat{i}\hat{j}} = C_{\hat{0}\hat{i}\hat{0}\hat{j}}$ $\mathcal{B}_{\hat{i}\hat{j}} = *C_{\hat{0}\hat{i}\hat{0}\hat{j}}$

Expressions for memory observables

Velocity and rotation memories

Covariant Riemann3+1 Split of Riemann
$$\delta \xi^{\hat{i}}(\tau) = -\int_{\tau_1}^{\tau} d\tau' R_{\hat{i}\hat{j}\hat{j}\hat{0}}(\tau')\xi^{\hat{j}}$$
 $\delta \xi^{\hat{i}} = -\int_{\tau_1}^{\tau} d\tau' (\mathcal{E}_{\hat{j}}^{\hat{i}} - 4\pi T_{\hat{j}}^{\hat{i}})\xi^{\hat{j}}$
 $-\frac{4\pi}{3}\int_{\tau_1}^{\tau} d\tau' (2T_{\hat{k}}^{\hat{k}} + T_{\hat{0}\hat{0}})\xi^{\hat{i}}$ $\delta \Omega_{\hat{i}\hat{j}} = -\int_{\tau_1}^{\tau} d\tau' R_{\hat{i}\hat{j}\hat{0}\hat{k}}(\tau')\xi^{\hat{k}}$ $\delta \Omega_{\hat{i}\hat{j}} = \int_{\tau_1}^{\tau} d\tau' (8\pi T_{\hat{0}[\hat{i}}\xi_{\hat{j}]} - \epsilon_{\hat{i}\hat{j}\hat{k}}\mathcal{B}^{\hat{k}}_{\hat{n}}\xi^{\hat{n}})$ Recall $\mathcal{E}_{\hat{i}\hat{j}} = C_{\hat{0}\hat{i}\hat{0}\hat{j}}$ $\mathcal{B}_{\hat{i}\hat{j}} = *C_{\hat{0}\hat{i}\hat{0}\hat{j}}$

Displacement and proper-time memories

$$\delta \xi^{\hat{i}}(au) = \int_{ au_1}^{ au} d au' \delta \dot{\xi}^{\hat{i}}(au') \qquad \delta au = -rac{1}{2} \delta \dot{\xi}^{\hat{i}} \xi_{\hat{i}}$$

In Bondi-type coordinates (u, r, θ^A) , peeling implies

$$\mathcal{E}_{rr} = r^{-3} E_{rr}^{(0)} + O(r^{-4})$$

$$\mathcal{E}_{r\hat{A}} = r^{-2} E_{r\hat{A}}^{(0)} + O(r^{-3})$$

$$\mathcal{E}_{\hat{A}\hat{B}}^{(\mathsf{TF})} = r^{-1} E_{\hat{A}\hat{B}}^{(0)} + O(r^{-2})$$

Similar for \mathcal{B}_{ij} ; finiteness and conservation of stress-energy implies

$$T_{uu} = r^{-2} T_{uu}^{(0)} + O(r^{-3})$$
$$T_{u\hat{A}} = r^{-3} T_{u\hat{A}}^{(0)} + O(r^{-4})$$

Other components of $T_{\mu\nu}$ fall off faster with *r*

Leading memory effects

• At $O(r^{-1})$, the leading memory effects have the form,

$$\begin{split} \delta \dot{\xi}_{(0)}^{\hat{A}} &= -\int du \, E_{(0)}^{\hat{A}\hat{B}} \xi_{\hat{B}} \\ \delta \Omega_{\hat{r}\hat{A}}^{(0)} &= -\int du \, \epsilon_{\hat{r}\hat{A}\hat{B}} B_{(0)}^{\hat{B}\hat{C}} \xi_{\hat{C}} \\ \delta \xi_{(0)}^{\hat{A}} &= \int du \, \delta \dot{\xi}_{(0)}^{\hat{A}} \qquad \delta \tau_{(0)} = -\frac{1}{2} \delta \dot{\xi}_{(0)}^{\hat{A}} \xi_{\hat{A}} \end{split}$$

- Now specialized to linearized gravity
- Solve for $\int du \, E_{(0)}^{\hat{A}\hat{B}}$, etc., in terms of $T_{\mu\nu}$ and $E_{rr}^{(0)}$ and $B_{rr}^{(0)}$ using the Bianchi identities $\nabla_d R_{abc}{}^d = 0$ Bieri & Garfinkle, arXiv:1312.6871
- Consider formal limit $u \to \pm \infty$

Sources of memory effects

• Using Bianchi identities, displacement memory is

$$\delta \xi_{(0)}^{\hat{A}} \neq 0$$

$$\int_{-\infty}^{\infty} du \int_{-\infty}^{u} du' E_{AB}^{(0)} = \frac{1}{2} (D_A D_B - 2h_{AB} D^2) \Phi^{(0)}$$

$$\frac{1}{2} (D^4 + 2D^2) \Phi^{(0)} = \Delta E_{rr}^{(0)} - 8\pi \int_{-\infty}^{\infty} du T_{uu}^{(0)}$$

- $D_A \leftrightarrow$ covariant derivative on S^2 ; h_{AB} metric on S^2
- From Bianchi identities, velocity, rotation, & proper-time memories determined by $\int_{-\infty}^{\infty} du \, E_{AB}^{(0)}$
- For asymptotic stationarity as $u \to \pm \infty$ require $\int_{-\infty}^{\infty} du \, E_{AB}^{(0)} = 0$ and all other leading memories vanish

$$\delta\tau_{(0)} = \delta\dot{\xi}^{(0)}_{\hat{A}} = \delta\Omega^{(0)}_{\hat{r}\hat{A}} = 0$$

Subleading memory effects

At O(r⁻²), all effects nonvanishing, but extremely weak!
Velocity and proper-time memories:

$$\begin{aligned} \Delta \dot{\xi}_{\hat{r}}^{(1)} &= -\int_{-\infty}^{\infty} du \, E_{\hat{r}\hat{A}}^{(0)} \xi^{A} \\ \Delta \dot{\xi}_{\hat{A}}^{(1)} &= -\int_{-\infty}^{\infty} du \, (E_{\hat{A}\hat{B}}^{(1)} \xi^{\hat{B}} + E_{\hat{r}\hat{A}}^{(0)} \xi^{\hat{r}} - 4\pi \, T_{uu}^{(0)} \xi_{\hat{A}}) \\ \delta \tau &= -\frac{1}{2} (\delta \dot{\xi}^{\hat{r}} \xi_{\hat{r}} + \delta \dot{\xi}^{\hat{A}} \xi_{\hat{A}}) \end{aligned}$$

• Rotation memory:

$$\delta\Omega_{\hat{r}\hat{A}}^{(1)} = -\epsilon_{\hat{r}\hat{A}}{}^{\hat{B}} \int_{-\infty}^{\infty} du (B_{\hat{B}\hat{C}}^{(1)}\xi^{\hat{C}} + B_{\hat{r}\hat{B}}^{(0)}\xi^{\hat{r}})$$
$$\delta\Omega_{\hat{A}\hat{B}}^{(1)} = -\int du \epsilon_{\hat{A}\hat{B}}{}^{\hat{r}} B_{\hat{r}\hat{C}}^{(0)}\xi^{\hat{C}}$$

• From Bianchi identities, effects are determined by $\Delta E_{rr}^{(0)}$, $\int du T_{uu}^{(0)}$, and change in 4-momentum!

Conclusions

- GW memory is an observable effect, a prediction of GR, and a probe of the strong-field, dynamical part of the theory
- Memory also understood as transformation between the canonical frames
- Supermomentum charge corresponds to ordinary memory; super-CoM contains total memory
- Superspin charge corresponds to ordinary spin memory
- Relative displacement is the only effect that is locally measurable at O(1/r)
- Proper-time, rotation, and velocity effects are all $O(1/r^2)$
- The spin memory is a new O(1/r) effect, but it involves a nonlocal measurement in space to observe