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Outline of introduction and summary of results

Gravitational-wave (GW) observations as probe of nonlinear
and dynamical regime of general relativity (GR)

GW memory as an example of nonlinear, dynamical GR

Qualitative review of GW memory

Description of asymptotic symmetries and charges

New memories from new symmetries of gravitational
scattering

Summary of work on computations of charges (“conserved”
quantities) and memory observables

More details about calculations after introduction
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Gravitational-wave (GW) detections of binary black holes
(BBHs)

LIGO Scientific Collaboration, arXiv:1606.04856

GW150914: > 5σ, m1 ≈ 36M�, m2 ≈ 29M�, DL ≈ 420 Mpc
GW151226: > 5σ, m1 ≈ 14M�, m2 ≈ 7.5M�, DL ≈ 440 Mpc
LVT151012: ∼ 2σ, m1 ≈ 23M�, m2 ≈ 13M�, DL ≈ 1 Gpc
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Observational GR on new lengthscales. . .

Yagi et al., arXiv:1603.08955
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. . . and on new timescales

Yagi et al., arXiv:1603.08955
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Tests of general relativity (GR) with BBHs

h(f ) ∼ Ae−iΨ(f ) Ψ(f ) ∼
∑

j(p
GR
j + δpj)f

(j−5)/3

LIGO Scientific Collaboration, arXiv:1602.04856
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Memory effect from GW150914 in LIGO

Lasky et al., arXiv:1605.01415
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Building evidence for memory by stacking detections

Lasky et al., arXiv:1605.01415
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Memory: Several perspectives on the phenomenon

Spacetime quantity

M. Favata, arXiv:0811.3451

Sources

“∆h” ∼
Ordinary︷︸︸︷
∆m +r2

∫
du

(
Tuu︸ ︷︷ ︸

Linear

+

Null︷ ︸︸ ︷
T GW
uu

)
︸ ︷︷ ︸
Nonlinear

Measurable effect

No Memory With Memory

t

Symmetries
BMS supertranslation

(next slide. . . )
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Overview of asymptotic symmetries

R. Penrose, Les Houches, 1963

Memory related to
supertranslation between

early and late
non-radiative frames

Symmetry group of asymptotically
flat spacetimes (I +) is the
Bondi-Metzner-Sachs (BMS) group
Bondi et al., 1962; Sachs, 1962

BMS has semidirect form:
Supertranslations (ST) o Lorentz
(Poincaré: Translations o Lorentz)

ST: infinite-dimensional, abelian,
4D translation subgroup; roughly
“angle-dependent translations”

Corresponding charges:
4-momentum, supermomentum,
and relativistic angular momentum
(spin and center of mass)
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Memory effects and symmetries: Recent developments

Extended symmetry groups

Barnich & Troessaert ’09+: extend BMS algebra to include
locally defined (but not globally defined) symmetries

Extended algebra: ST o Virasoro

Virasoro called “superrotations” (SR) in the context of 4D
asymptotically flat case

Intuition for SR: contains Lorentz subalgebra;
“angle-dependent rotations and boosts”

Showed certain charges are finite and well defined
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Physical relevance of extended symmetries

Digression on charges, memories, symmetries of gravitational
scattering

Strominger,+ ’13+: Identify BMS subgroup of past (I −)
and future (I +) null infinity in a class of spacetimes

Supertranslation charges related: Q−α = Q+
α

S matrix satisfies: 〈out|(Q+
αS − SQ−α )|in〉 = 0

In particle basis: limω→0Mn+1 = S (0)Mn with Mn n-particle
amplitude and S (0) related to memory effect

“Triangle” of relations: soft theorem ⇔ BMS symmetry ⇔
memory effect

Similar types of relations between subleading soft theorem,
extended BMS symmetry, and a new “spin” memory effect
(Pasterski+, ’15)
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Overview of Results

1 Review asymptotic flatness, symmetries, and charges

Show how supermomentum charges are related to “ordinary”
memory

2 Compute charges conjugate to superrotation symmetries in
more general contexts than before

Find charges contain information about the total memory and
the ordinary spin memory

3 Investigate the spin memory

Show it can be measured inertially, but not locally in space

4 Look for other intertial memory effects

Besides displacement effect, there are proper-time, rotation,
and velocity memory effects
Relative displacement is the only effect that is locally
measurable at O(1/r)
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Outline of details

1 Asymptotically flat spacetimes, in brief

2 Charges (“conserved” quantities) of the BMS group

3 Memory effects and charges

4 Extended BMS algebra and its charges

5 Relation of extended charges and memory effects

6 Search for additional classical memory observables
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Bondi-Sachs framework

Work in Bondi coordinates (u, r , θA):

ds2 =− du2 − 2dudr + r2hABdθ
AdθB

+
2m

r
du2 + rCABdθ

AdθB + DBCABdθ
Adu + . . .

θA: coordinates on S2 with 2-metric hAB and covariant
derivative operator DA

m = m(u, θA): Bondi mass aspect

CAB = CAB(u, θC ): shear tensor (symmetric trace-free)

NAB = ∂uCAB : news tensor (vanishes when stationary)

NA = NA(u, θB): Bondi angular-momentum aspect
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Einstein equations and initial data

Einstein equations (evolution equations for ṁ = ∂um and ṄA)

ṁ = 4πT̂uu −
1

8
NABN

AB +
1

4
DADBN

AB

where Tuu = T̂uu(u, θA)/r2

ṄA =− 8πT̂uA + πDA∂uT̂rr + DAm +
1

4
DBDADCC

BC

− 1

4
DBD

BDCCCA +
1

4
DB(NBCCCA) +

1

2
DBN

BCCCA.

and TuA = T̂uA(u, θB)/r2, Trr = T̂rr (u, θA)/r4

At u = u0, specify m(u0, θ
C ), NA(u0, θ

C ), CAB(u0, θ
C )

News NAB unconstrained; also certain components of Tab
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Nearby freely falling observers

ξ

u (  ) 

τ1

2

u (  ) 

τ

P S

P S

P

τ1u (  ) 1

ξ2 S τu 2( )+δτ

~u(τ): 4-velocity
~ξ = ξ î~eî (τ): “separation”

Primary geodesic observer, P:
4-velocity ~uP(τ)

Secondary geodesic observer, S:
4-velocity ~uS(τ)

At τ1, P and S co-moving; S at
location ξ î1

At τ2, ξ î2 = ξ î1 + δξ î

δξ î =
∫
dτ
∫
dτ ′R î

0̂ĵ 0̂ξ
ĵ

Bondi coordinates:
~uP = ~∂u + O(r−1),

R î
0̂ĵ 0̂ = r−1C̈ÂB̂δ

î ÂδB̂ ĵ +O(r−2)

δξÂ = r−1∆CÂB̂ξ
B̂

+O(r−2)
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~ξ = ξ î~eî (τ): “separation”

Primary geodesic observer, P:
4-velocity ~uP(τ)

Secondary geodesic observer, S:
4-velocity ~uS(τ)

At τ1, P and S co-moving; S at
location ξ î1
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BMS symmetries in Bondi coordinates

BMS transformations take the form

ū = [u + α(θA)]/ω(θA) θ̄A = θ̄A(θB)

θ̄A(θB): conformal transformation of 2-sphere (6-parameter group)
ω(θA): required rescaling of u

Infinitesimal BMS symmetries on I + generated by ~ζ:

~ζ = f (θA)~∂u + Y A(θB)~∂A

f (θA) = α(θA) +
1

2
uDBY

B(θA) , 2D(AYB) − DCY
ChAB = 0

α↔ ST; Y A ↔ Lorentz transformation (` = 1 vector spherical
harmonic)
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Transformation of Bondi-metric functions

CAB , m, NA transform nontrivially

δCAB = fNAB − (2DADB − hABD
2)f − 1

2
DCY

CCAB + L~YCAB

δm =f ṁ +
1

4
NABDADB f +

1

2
DAfDBN

AB +
3

2
mψ + Y ADAm

+
1

8
CABDADBψ

δNA =3mDAf +
1

4
CABD

BD2f − 3

4
DB f (DBDCC

C
A − DADCC

BC )

+
3

8
DA(CBCDBDC f ) +

1

4
(2DADB f − hABD

2f )DCC
BC

+ f ṄAL~YNA + ψNA + . . .

Certain BMS transformations can simplify CAB , M, and NA
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Charges corresponding to asymptotic symmetries

Charges not conserved at I +, because fluxes of matter and
GW carry charges

A variant of Noether’s theorem exists to compute “conserved”
quantities conjugate to asymptotic symmetries ~ζ
Wald & Zoupas, arXiv:gr-qc/9911095

Charge Q[C, ~ζ] is linear in ~ζ and depends on cut C

Q[C, ~ζ] =

∫
C

Ξ

for a 2-form Ξ (similar to Gauss’ law)

In stationary, vacuum, & Bondi coordinates

Q[C, ~ζ] =
1

16π

∫
C
d2Ω

[
4αm − 2uY ADAm + 2Y ANA

− 1

8
Y ADA(CBCC

BC )− 1

2
Y ACABDCC

BC

]
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Fluxes of charges

Difference in charges is related to exact 3-form flux dΞ

Q[C2, ~ζ]− Q[C1, ~ζ] =

∫
I +

2,1

dΞ

(similar to EM continuity equation)

dΞ is related to Noether current,

For stationary solutions, dΞ = 0

Flux has form∫
I +

2,1

dΞ = −
∫

I +
2,1

(
1

32π
NABδCAB + T̂uaζ

a

)
du d2Ω .

Using Einstein equations, can show consistency of charge and
flux formulas
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Charges in Bondi coordinates and in a “canonical” frame

There exists a ”canonical” frame Cc for stationary spacetimes:

m(θA) = m0 = const., CAB(θC ) = 0 ,

NA(θB) = magnetic parity, ` = 1

Only nonzero charges

Q[Cc ,Y0,0
~∂u] = m0 Q[Cc ,XA

1,m
~∂A] = N1,m

In essence, a vacuum, stationary, asymptotically flat spacetime
is characterized by mass and spin to this order in 1/r
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Charges in a supertranslated frame

Supertranslate by ∆Φ(θA) and linearize (for simplicity) from
canonical frame

m(θA) = m0 = const., NA(θB) = N`=1
A − 3

2
m0DA∆Φ ,

CAB(θC ) =
1

2
(2DADB − hABD

2)∆Φ

Supermomentum are invariant under supertranslations

Angular momentum invariant to linear order in ∆Φ, for ∆Φ
with ` > 1

Memory is not completely encoded in supermomentum
charges in a stationary region
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Memory effect, supermomenta, and
nonradiative-to-nonradiative transitions

Nonradiative transitions: Spacetimes
with NAB → 0 as u → ±∞
Consider supermomentum charges in a
“basis” of delta functions
α(θA) = 4πδ(θA − θ′A)

Supermomentum is just m(u, θA) in
nonradiative region!

Flux formula Q[C2, α~∂u]− Q[C1, α~∂u] =
∫
I +

2,1
dΞ is equivalent to

integrating Einstein’s equation

∆m = −4π∆E +D∆Φ

where D = D2(D2 + 2)/8 and ∆E =
∫
du
[
T̂uu + NABN

AB/(32π)
]
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Interpretation of memory effect

Define P as projector that removes ` = 0, 1 harmonics; can solve
for the memory

∆Φ = D−1P(∆m + 4π∆E)

1 ∆Φ: memory observable

2 ∆m: supermomentum (“ordinary” memory)

3 ∆E : energy flux (“null” memory)

Total memory not a charge; ordinary memory is though

∆Φ is supertranslation to reach canonical frame as u →∞
from canonical frame as u →∞
Total memory is observable; is there a charge for it?

David A. Nichols GW memory and extended BMS charges



Extended symmetry algebra of Barnich & Troessaert

Extended BMS algebra of form ST o Virasoro

Virasoro: infinite-dimensional, called superrotations (SR),
Lorentz subalgebra; roughly a generalization of boosts

SR are the infinite number of singular solutions Y A of

2D(AYB) − DCY
ChAB = 0

Common basis uses stereographic coords z = e iφ cot θ/2

lm = −zm+1∂z l̄m = −z̄m+1∂z̄

with and m ∈ Z
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Conjugate charges to SR

Will use Wald-Zoupas procedure to compute charges

Remains formally valid, but may encounter problems

For convenience define

N̂A = NA − uDAm −
1

16
DA(CBCC

BC )− 1

4
CABDCC

BC

SR charge in terms of N̂A is

Q[C, ~Y ] =
1

8π

∫
d2ΩY AN̂A

Charge integrals are finite for any smooth N̂A

Split N̂A = DAφ+ εABD
Bψ (electric & magnetic parity)

Decomposition of charges Q[C, ~Y ] = Qe [C, ~Y ] + Qb[C, ~Y ]
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Charges in stationary vacuum cuts

In canonical frame, Qe [Cc , ~Y ] = Qb[C, ~Y ] = 0

In frame supertranslated by ∆φ (linearized)

Qe [C, ~Y ] = −3m0

16π

∫
C
d2ΩY ADA∆Φ Qb[C, ~Y ] = 0

Qe charges contain (incomplete) information about CAB (and
thence the total memory)!

In more general stationary frames, Qe 6= 0 and Qb 6= 0

Nomenclature: Qe will call “super-center-of-mass; Qb will call
“superspin”

For Y A Lorentz, Qe is center of mass, Qb is spin
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Charge and flux relationship

Also check if
∫

dΞ is difference in charges for SR

Find a discrepancy∫
I +

2,1

dΞ =Q[C2, ~Y ]− Q[C1, ~Y ]

− 1

32π

∫
I +

2,1

du d2ΩY AεABD
BDΨ

where CAB = (DADB − hAB/2D2)Φ + D(AεB)CD
CΨ

Can resolve by modifying flux or adding a nonlocal field∫
du Ψ to the charge; not a formal derivation, though∫
du Ψ is closely related to new “spin memory” of Pasterski+
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Spin memory, superspin, and nonradiative transitions

Consider the change in the magnetic-parity part of N̂A, by
taking the curl of its evolution equation

∆εABDBN̂A = −8πεABDB∆JA + D2D
∫

du Ψ

∆JA =
∫
du(T̂uA + TuA) is the angular momentum per solid

angle radiated in matter and GWs

Can solve for spin memory∫
du Ψ = D−1D−2PεABDB(∆N̂A + ∆JA)

∫
du Ψ: total spin memory; ∆JA: null part; ∆N̂A: ordinary

part

Now turn to measurablility of this memory
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Spin memory (integrated Sagnac) effect

∫

Δϕ

u
S

Δ

1

2
ϕ

du
u

2

1

ΔϕΔu =

∆φ: Sagnac effect
∆uS: integrated
Sagnac effect

Proposal of Pasterski+ to measure spin
memory:

Sagnac effect ∆φ vanishes for inertial
observers

Must measure with “BMS observers”
who accelerate to stay fixed in Bondi
coordinates (i.e., noninertial)

Effect related to u integral of twist
ωAB = D[AaB] for aB = DCCBC

For an “infinitesimal” detector

∆uS = 2

∫ ∞
−∞

duDΨ

However, constructing Bondi coordinates
locally may not be possible
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Spin memory measured by families of inertial observers

Consider the u integral of the displacement memory δξA∫ ∞
−∞

du δξA =

∫ ∞
−∞

du

[
1

2
(2DADB − hABD

2)Φ + D(AεB)CD
CΨ

]
ξB

(2DADB − hABD
2)Φ is the displacement memory; the integral

will go as u as u →∞
Magnetic-parity part equivalent to Sagnac measurement of
spin memory

δsA =

∫ ∞
−∞

du D(AεB)CD
CΨξB

Need inertial observers distributed around source to extract
magnetic-parity part (again non-local).

Are there additional local memory observables besides
displacement and spin memories?
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Nearby freely falling observers

ξ

u (  ) 

τ1

2

u (  ) 

τ

P S

P S

P

τ1u (  ) 1

ξ2 S τu 2( )+δτ

~u(τ): 4-velocity
~ξ = ξ î~eî (τ): “separation”
(in Fermi coordinates)

Primary geodesic observer,
P: 4-velocity ~uP(τ)

Secondary geodesic
observer, S: 4-velocity ~uS(τ)

At τ1, P and S co-moving; S
at location ξ î1

At τ2, P and S not
co-moving; S at location
ξ î2 = ξ î1 + δξ î

Proper time elapsed for P
and S differ by δτ

δξ î : measurable effect of
memory; “displacement”
memory.

δτ : a “proper-time” memory
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Additional memory observables

Two additional observable
effects:

1 δΩî
ĵ : Relative rotation of

triad ~e îS(τ) with respect
to inertial standards at P.

2 δΩî
0̂ ≡ δξ̇ î : Relative

boost of S with respect to
geodesic P

1 is a “rotation” memory
and 2 is a “velocity”
memory

1 is measurable in principle
with inertial gyroscopes

1

e^

P S

P e^(  ) 2τα
S =( )α̂

β

δΩ
× ^
δ β̂

α̂

β̂+
e

P
(  ) 2τ

(  ) 2τα

e
P̂

(  ) τα

~eα̂P(τ): ⊥ tetrad of P
~eα̂S (τ): ⊥ tetrad of S

transported to P
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Expressions for memory observables

Velocity and rotation memories

Covariant Riemann 3+1 Split of Riemann

δξ̇ î (τ) = −
∫ τ
τ1
dτ ′R î

0̂ĵ 0̂(τ ′)ξ ĵ δξ̇ î = −
∫ τ
τ1
dτ ′(E î ĵ − 4πT î

ĵ)ξ
ĵ

− 4π
3

∫ τ
τ1
dτ ′(2T k̂

k̂ + T0̂0̂)ξ î

δΩî ĵ = −
∫ τ
τ1
dτ ′Rî ĵ 0̂k̂(τ ′)ξk̂ δΩî ĵ =

∫ τ
τ1
dτ ′(8πT0̂[îξĵ] − εî ĵ k̂B

k̂
n̂ξ

n̂)

Recall Eî ĵ = C0̂î 0̂ĵ Bî ĵ = ∗C 0̂î 0̂ĵ

Displacement and proper-time memories

δξ î (τ) =

∫ τ

τ1

dτ ′δξ̇ î (τ ′) δτ = −1

2
δξ̇ îξî
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∫ τ
τ1
dτ ′(8πT0̂[îξĵ] − εî ĵ k̂B

k̂
n̂ξ

n̂)

Recall Eî ĵ = C0̂î 0̂ĵ Bî ĵ = ∗C 0̂î 0̂ĵ

Displacement and proper-time memories

δξ î (τ) =

∫ τ

τ1

dτ ′δξ̇ î (τ ′) δτ = −1

2
δξ̇ îξî
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Asymptotic fall off of fields

In Bondi-type coordinates (u, r , θA), peeling implies

Err =r−3E
(0)
rr + O(r−4)

Er Â =r−2E
(0)

r Â
+ O(r−3)

E(TF)

ÂB̂
=r−1E

(0)

ÂB̂
+ O(r−2)

Similar for Bij ; finiteness and conservation of stress-energy implies

Tuu =r−2T
(0)
uu + O(r−3)

TuÂ =r−3T
(0)

uÂ
+ O(r−4)

Other components of Tµν fall off faster with r
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Leading memory effects

At O(r−1), the leading memory effects have the form,

δξ̇Â(0) =−
∫

du E ÂB̂
(0) ξB̂

δΩ
(0)

r̂ Â
=−

∫
du εr̂ ÂB̂B

B̂Ĉ
(0) ξĈ

δξÂ(0) =

∫
du δξ̇Â(0) δτ(0) = −1

2
δξ̇Â(0)ξÂ

Now specialized to linearized gravity

Solve for
∫
du E ÂB̂

(0) , etc., in terms of Tµν and E
(0)
rr and B

(0)
rr

using the Bianchi identities ∇dRabc
d = 0 Bieri & Garfinkle, arXiv:1312.6871

Consider formal limit u → ±∞
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Sources of memory effects

Using Bianchi identities, displacement memory is

δξÂ(0) 6= 0∫ ∞
−∞

du

∫ u

−∞
du′E

(0)
AB =

1

2
(DADB − 2hABD

2)Φ(0)

1

2
(D4 + 2D2)Φ(0) = ∆E

(0)
rr − 8π

∫ ∞
−∞

du T
(0)
uu

DA ↔ covariant derivative on S2; hAB metric on S2

From Bianchi identities, velocity, rotation, & proper-time

memories determined by
∫∞
−∞ du E

(0)
AB

For asymptotic stationarity as u → ±∞ require∫∞
−∞ du E

(0)
AB = 0 and all other leading memories vanish

δτ(0) = δξ̇
(0)

Â
= δΩ

(0)

r̂ Â
= 0
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Subleading memory effects

At O(r−2), all effects nonvanishing, but extremely weak!
Velocity and proper-time memories:

∆ξ̇
(1)
r̂ =−

∫ ∞
−∞

du E
(0)

r̂ Â
ξA

∆ξ̇
(1)

Â
=−

∫ ∞
−∞

du (E
(1)

ÂB̂
ξB̂ + E

(0)

r̂ Â
ξ r̂ − 4πT

(0)
uu ξÂ)

δτ =− 1

2
(δξ̇ r̂ξr̂ + δξ̇ÂξÂ)

Rotation memory:

δΩ
(1)

r̂ Â
=− εr̂ Â

B̂

∫ ∞
−∞

du(B
(1)

B̂Ĉ
ξĈ + B

(0)

r̂ B̂
ξ r̂ )

δΩ
(1)

ÂB̂
=−

∫
du εÂB̂

r̂B
(0)

r̂ Ĉ
ξĈ

From Bianchi identities, effects are determined by ∆E
(0)
rr ,∫

du T
(0)
uu , and change in 4-momentum!
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Conclusions

GW memory is an observable effect, a prediction of GR, and a
probe of the strong-field, dynamical part of the theory

Memory also understood as transformation between the
canonical frames

Supermomentum charge corresponds to ordinary memory;
super-CoM contains total memory

Superspin charge corresponds to ordinary spin memory

Relative displacement is the only effect that is locally
measurable at O(1/r)

Proper-time, rotation, and velocity effects are all O(1/r2)

The spin memory is a new O(1/r) effect, but it involves a
nonlocal measurement in space to observe
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