in the outer layers of supernovae

A. Sieverding¹, L. Huther¹, G. Martínez-Pinedo¹, K. Langanke^{1,2},A. Heger³

¹Technische Universität Darmstadt
 ²GSI Helmholtzzentrum, Darmstadt
 ³Monash Centre for Astrophysics, Melbourne

NPCSM long-term workshop Yukawa institute for Theoretical Physics 15 Nov. 2016

Neutrino Nucleosynthesis

A. Sieverding, L. Huther, G. Martínez-Pinedo, A. Heger

Outline

Introduction

- Neutrino nucleosynthesis
- Review
- Constraints on cross-sections
- Supernova model

Results

- The ν process with updated physics
- Radioactive nuclei

3 Conclusions and Outlook

- The core of a massive star collapses after the nuclear burning phases
- Collapse stops when nuclear densities are reached
- Hydrodynamic shock triggers explosive nucleosynthesis
- Cooling core emits neutrinos
- Neutrinos can influence the nucleosynthesis in outer layers of SNe

Schematic structure of a massive star

Neutrinos are crucial for many aspects of Supernovae

- Deleptonization and Shock revival
 - Neutrino signal
 - Explosion Dynamics
- 2 Neutrino driven wind
 - setting initial p/n ratio
- 3 ν process in the ejecta
 - Ejecta composition
 - Production of radioactive isotopes

Modified, from H.T. Janka

- Emission of 10⁵⁸ neutrinos from the collapsing core
- $\langle E_{\nu}
 angle pprox 8 20 \; {
 m MeV}$
- $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle \le \langle E_{\nu_{\mu,\tau}} \rangle$

- Emission of 10⁵⁸ neutrinos from the collapsing core
- $\langle E_{\nu}
 angle pprox 8 20 \; {
 m MeV}$
- $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle \le \langle E_{\nu_{\mu,\tau}} \rangle$
- Inverse β -decay

- Emission of 10⁵⁸ neutrinos from the collapsing core
- $\langle E_{\nu}
 angle pprox 8 20 \; {
 m MeV}$
- $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle \le \langle E_{\nu_{\mu,\tau}} \rangle$
- Inverse β-decay
- Particle evaporation

- Emission of 10⁵⁸ neutrinos from the collapsing core
- $\langle E_{\nu}
 angle pprox 8 20 \; {
 m MeV}$
- $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle \le \langle E_{\nu_{\mu,\tau}} \rangle$
- Inverse β-decay
- Particle evaporation
- Capture of spallation products

- The supernova shock triggers photo dissociation and subsequent particle capture reactions
- ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures

- The supernova shock triggers photo dissociation and subsequent particle capture reactions
- ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures
- Main candidates for neutrino nucleosynthesis: ⁷Li and ¹¹B via ⁴He(ν_x , ν'_x p/n) and ¹²C(ν_x , ν'_x p) ...

- The supernova shock triggers photo dissociation and subsequent particle capture reactions
- ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures
- Main candidates for neutrino nucleosynthesis: ⁷Li and ¹¹B via ⁴He(ν_x, ν'_x p/n) and ¹²C(ν_x, ν'_x p) ...

¹⁹**F** via ²⁰Ne(ν_x, ν'_x p/n)

- The supernova shock triggers photo dissociation and subsequent particle capture reactions
- ν nucleosynthesis occurs mainly in regions with sufficient neutrino fluxes but still moderate post-shock temperatures
- Main candidates for neutrino nucleosynthesis: ⁷Li and ¹¹B via ⁴He(ν_x, ν'_x p/n) and ¹²C(ν_x, ν'_x p) ...

¹⁹**F** via ²⁰Ne(ν_x, ν'_x p/n)

¹³⁸La and ¹⁸⁰Ta via ¹³⁸Ba(ν_e ,e⁻) and ¹⁸⁰Hf(ν_e ,e⁻)

Outline

Introduction

• Neutrino nucleosynthesis

Review

- Constraints on cross-sections
- Supernova model

Results

- The ν process with updated physics
- Radioactive nuclei

3 Conclusions and Outlook

First ideas

PRODUCTION OF THE LIGHT ELEMENTS DUE TO NEUTRINOS EMITTED BY COLLAPSING STELLAR CORES*

G. V. DOMOGATSKY Institute for Nuclear Research of the U.S.S.R., Academy of Sciences, Moscow, U.S.S.R.

> R. A. ERAMZHYAN Joint Institute for Nuclear Research, Dubna, U.S.S.R.

> > and

D. K. NADYOZHIN Institute of Applied Mathematics of the U.S.S.R., Academy of Sciences, Moscow, U.S.S.R.

(Received 18 April, 1978)

- ν absorption on nucleons and ⁴He spallation could lead to the production of D,Li,Be,B
- first estimates of the relevant reaction rates

Neutrino-induced production of radioactive aluminum-26

G. V. Domogatskii and D. K. Nadězhin

Institute for Nuclear Research, USSR Academy of Sciences, Moscow, and Institute of Theoretical and Experimental Physics, Moscow (Submitted October 9, 1979)

Pis'ma Astron. Zh. 6. 232-238 (April 1980)

When neutrinos radiated during the gravitational collapse of a stellar core interact with the material in the ejected cavelope, the radioactive ²⁶Al isotope may be produced in an abundance ²⁶Al/²¹Al=0.1-0.01, fully adequate to account for the abundance aromalies of **M** giotopes detected in metorrites.

PACS numbers: 95.30.Cq, 95.30.Sf, 97.10.Cv

 ²⁶Mg(v_e,e⁻) as possible mechanism to produce radioactive ²⁶Al

Neutrino-Induced r-Process Nucleosynthesis

Richard I. Epstein and Stirling A. Colgate Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Wick C. Haxton Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (Received 10 June 1988)

• ⁴He spallation as neutron source

Detailed calculations

SUMMARY TABLE: SPECIES DUE TO NEUTRINO NUCLEOSYNTHESIS⁸

THE v-PROCESS¹

- S. E. WOOSLEY,^{2,3} D. H. HARTMANN,^{2,3} R. D. HOFFMAN,⁴ AND W. C. HAXTON⁵ Received 1989 August 17; accepted 1989 December 11
 - extended set of neutrino nucleus reactions
 - detailed stellar models
 - analytic formula for ho(t), $T(t) \propto T_{\max} e^{-t/ au}$ for $t \geq t_0$
 - $T_{\max} \propto \left(\frac{E_{\exp l}}{10^{51} \mathrm{erg}}\right)^{1/4} \times \left(\frac{R}{10^9 \mathrm{cm}}\right)^{-3/4}$
 - constant expansion velocity

Species	н	He	С	Ne	0	NSE
⁷ Li	В		С			A
¹⁰ B		C	B			
¹¹ B		B	(A)			A
¹³ N			C	C	С	
¹⁹ F				A		
²² Na				Ě		
²⁶ Al				Е		
²⁷ Al					С	
³¹ P					Ē	
³⁵ Cl				F	Ē	•••
39K				-	E	
40K				E	p	
41 <i>V</i>			•••	Е	D	•••
430-			•••		E	•••
45a				C	ç	
**Sc	•••				С	В
*/Ti				С	С	С
⁴⁹ Ti						в
⁵⁰ V				E	В	В
⁵¹ V				С	E	E
⁵⁵ Mn						E
59Co			·			E
63Cu						B
138La				A		2
¹⁸⁰ Ta				Â		

^a A = species produced in full abundance; B = important production; C = minor production; E = enhanced significant production.

A. Heger^{a,b}, E. Kolbe^c, W.C. Haxton^d, K. Langanke^e, G. Martínez-Pinedo^f, S.E. Woosley^g

Table 2

Production factor relative to solar normalized to ¹⁶O production (based on [16]) as a function of $T_{\nu_{e}}$ (for charged current only) and using 6 MeV for the μ and τ neutrinos

Star	Product	(No v)	(No v_e)	4 MeV	6 MeV	8 MeV
15 M _☉	¹¹ B	0.011	1.590	1.884	3.296	
	¹⁵ N	0.396	0.481	0.487	0.531	
	¹⁹ F	0.375	0.535	0.602	0.878	
	¹³⁸ La	0.190	0.280	0.974	1.734	2.456
	¹⁸⁰ Ta	0.599	1.024	2.753	4.630	6.032
$25~M_{\odot}$	^{11}B	0.004	0.833	1.176	2.392	
	¹⁵ N	0.039	0.113	0.119	0.157	
	¹⁹ F	0.105	0.257	0.325	0.607	
	¹³⁸ La	0.106	0.192	0.901	1.605	2.246
	¹⁸⁰ Ta	1.382	2.363	4.240	6.238	7.111

- Neutrino-Nucleus cross sections based on shell model calculations for key nuclei (¹²C,¹⁶O,²⁰Ne,²⁴Mg ...)
- Hydrodynamic simulation of piston driven explosion

Gamow-Teller Strength in the Exotic Odd-Odd Nuclei ¹³⁸La and ¹⁸⁰Ta and Its Relevance for Neutrino Nucleosynthesis

G. Martínez-Pinedo,^{1,2} Y. H. Lam,¹ K. Langanke,^{2,1,3} R. G. T. Zegers,^{4,5,6} and C. Sullivan^{4,5,6}

A. Brychikov,¹ T. Adashi,² H. Fujita,³ K. Fujita,² Y. Fujita,² K. Hatanaka,⁴ A. Hegert,⁹ Y. Kalmykov,⁴ K. Kawase,⁵ K. Langake,¹⁴ G. Marinéz-Pineok, K. Nakanita,¹ Y. Pon Nerumann, Cost,¹⁴ R. Neveling,¹ A. Richter,¹ N. Sakamoto,³ Y. Sakemi,² A. Shevchenko,¹ Y. Shimbara,²¹ Y. Shimiza,² F. D. Smit,⁴ Y. Tamschige,⁵ A. Tamit,² S. E. Wooley,² and M. Yosel³

• Dedicated experiments for the determination of cross sections

 PRL 98, 192501 (2007)
 PHY SICAL REVIEW LETTERS
 www.endergy 11 MAY 200
 PHYSICAL REVIEW C85, 065807 (2012)

 Low-Energy Inelastic Neutrino Reactions on "He
 Neutrino induced reactions for P-process nucleosynthesis of ⁹²Nb and ⁹⁶TC

 Domo Gazit" and Nir Barnes¹
 Myong-Ki Choux, ¹² Emis Ha, ¹² Harvakewa, ² Satosh Chub, ¹² Ko Nstamma,⁴ Toshinka Kajino,¹⁴ and Grant J. Mathewa⁴

• Detailed calculations of cross sections

THE ASTROPHYSICAL JOURNAL LETTERS, 779:L9 (5pp), 2013 December 10 0 2003. The American Astronomical Society. All rights reserved. Printed in the U.S.A. doi:10.1088/2041-8205/779/1/L9

PRI. 106, 152501 (2011) PHYSI

PHYSICAL REVIEW LETTERS

week ending 15 APRIL 201

week ending

SUPERNOVA NEUTRINO NUCLEOSYNTHESIS OF THE RADIOACTIVE ⁹²Nb OBSERVED IN PRIMITIVE METEORITES

¹¹B and Constraints on Neutrino Oscillations and Spectra from Neutrino Nucleosynthesis

T. HAYAKAWA^{1,2}, K. NAKAMURA^{2,3}, T. KAJINO^{2,4}, S. CHIBA^{1,5}, N. IWAMOTO¹, M. K. CHEOUN⁶, AND G. J. MATHEWS⁷

Sam M. Austin, 1,2,* Alexander Heger, 3,* and Clarisse Tur1

observational constraints and uncertainties

Neutrino Spectra from state-of-the art SN simulations

Bruenn et al. (1983)

Fischer et al. (2014)

•
$$f_{\nu}(E_{\nu}) \propto \frac{1}{1 + \exp(E_{\nu}/T_{\nu})}$$

 $\langle E_{\nu_e} \rangle = 12 \text{ MeV}$
 $\langle E_{\bar{\nu}_e} \rangle = 15 \text{ MeV}$
 $\langle E_{\nu, \bar{\nu}_{\mu, \tau}} \rangle = 19 \text{MeV}$
"high ν energies"

- Detailed descriptions of neutrino transport are included
- More channels for neutrino-matter interactions
- Inelastic channels reduce the average energies

A. Sieverding, L. Huther, G. Martínez-Pinedo, A. Heger

- Decreasing Luminosity $L_{
 u} \propto \exp\left(-rac{t}{ au_{
 u}}
 ight)$
- $\bullet~$ Emission of $3\times 10^{53}~\text{ergs}$
- Fermi-Dirac distributed energies, $\langle E_{
 u}
 angle = 3.15 imes T_{
 u}$

Low ν energies

•
$$\langle E_{\nu_e} \rangle = 9 \, \mathrm{MeV} (T_{\nu} = 2.8 \, \mathrm{MeV})$$

•
$$\langle E_{\bar{\nu}_e} \rangle = 13 \text{ MeV}(T_{\nu} = 4 \text{ MeV})$$

•
$$\langle E_{\nu_{\mu,\tau}} \rangle = 13 \, \mathrm{MeV}(T_{\nu} = 4 \, \mathrm{MeV})$$

- Decreasing Luminosity $L_{
 u} \propto \exp\left(-rac{t}{ au_{
 u}}
 ight)$
- $\bullet~$ Emission of $3\times 10^{53}~\text{ergs}$
- Fermi-Dirac distributed energies, $\langle E_{
 u}
 angle = 3.15 imes {\cal T}_{
 u}$

Low ν energies

•
$$\langle E_{\nu_e} \rangle = 9 \, \mathrm{MeV}(T_{\nu} = 2.8 \, \mathrm{MeV})$$

•
$$\langle E_{\bar{\nu}_e} \rangle = 13 \, \mathrm{MeV}(T_{\nu} = 4 \, \mathrm{MeV})$$

•
$$\langle E_{\nu_{\mu,\tau}} \rangle = 13 \, \operatorname{MeV}(T_{\nu} = 4 \, \operatorname{MeV})$$

High ν energies

•
$$T_{\nu_e} = 4 \text{ MeV}$$

•
$$T_{\bar{\nu}_e} = 5 \text{MeV}$$

•
$$T_{
u, ar{
u}_{\mu, au}} = 6 {
m MeV}$$

- ν signal from a multi-D simulation for a 27 M $_{\odot}$ progenitor of solar metalicity provided by T. Janka
- Points for improvement:
 - time-dependence of ν energies
 - burst luminosities
 - non- Fermi-Dirac spectra

A. Sieverding, L. Huther, G. Martínez-Pinedo, A. Heger

Outline

Introduction

- Neutrino nucleosynthesis
- Review

Constraints on cross-sections

Supernova model

Results

- The ν process with updated physics
- Radioactive nuclei

3 Conclusions and Outlook

Neutrino cross sections

Two step process: Excitation and decay
 σ^k_{X→Y}(E_ν) = ∑_i σ^{RPA}_i(X) × P_i(Y)

- Excitation cross-section based on RPA
- Decay rates from Hauser-Feshbach statistical models
- Including emission of up to 4 particles

Neutrino-Nucleus reaction cross sections

- Charged-current neutrino absorption
 - Transitions to bound states are most important
 - Dominated by J = 0⁺ and J = 1⁺ transitions

- Neutral-current scattering
 - Only particle emission is relevant for nucleosynthesis
 - Mainly collective excitations at higher energies

From: Paar, Vretenar, Marketin, Ring Phys. Rev. C 77(2008) 024608

Cross-sections supplemented by experimental data

Important reactions constrained by experiment

- ${}^{20}\text{Ne}(\nu,\nu'), {}^{20}\text{Ne}(\nu_e,e^-), {}^{20}\text{Ne}(\bar{\nu}_e,e^+)$ (Anderson et al. 1991
- ${}^{22}\text{Ne}(\nu_e,e^-)$ (from ${}^{22}\text{Mg}$ decay, Hardy et al. 2003)
- ${}^{24}Mg(\nu,\nu'), {}^{24}Mg(\nu_e,e^-)$ (Zegers et al. 2008)
- ${}^{26}Mg(\nu_e,e^-)$ (Zegers et al. 2005)

•
138
Ba $(
u_e,e^-)$ (Byelikov et al. 2007)

- 180 Ta (ν_e, e^-) (Byelikov et al. 2007)
- ³⁶Ar(ν
 _e,e⁺), ³⁶S(ν_e,e⁻) (Shell model calculations)
 ⁴He(ν, *) (Gazit et al., (2007), Suzuki et al. (2006))
 ¹²C(ν, *) (Woosley et al. (1990))

Outline

Introduction

- Neutrino nucleosynthesis
- Review
- Constraints on cross-sections
- Supernova model

Results

- The ν process with updated physics
- Radioactive nuclei

3 Conclusions and Outlook

Supernova model

- 1D piston driven explosions (Heger et al. 2007)
- kinetic explosion energy $E_{\text{expl}} = 1.2 imes 10^{51} \text{erg}$

Supernova model

- 1D piston driven explosions (Heger et al. 2007)
- kinetic explosion energy $E_{expl} = 1.2 \times 10^{51} erg$

Neutrino flux

- Exponentially decreasing neutrino luminosity
- Thermal Fermi-Dirac spectrum

1D vs. multi-D

• Typical 1D trajectory • 2D simulation (Harris et al.) For outer layers little qualitative differences in the individual trajectories

A. Sieverding, L. Huther, G. Martínez-Pinedo, A. Heger

Updated physics in the current project

• Simulations including detailed neutrino transport give new estimates for typical neutrino energies:

 $\langle E_{\nu} \rangle$ =8-13 MeV compared to 13-25 MeV

- Nuclear reaction data from JINA Reaclib V2.0 (2013)
- Lower neutrino energies put make charged-current reactions more important
- Neutrino-nucleus cross-sections have been calculated for almost the whole nuclear chart (L. Huther 2014, PhD. Thesis)
- Where available, cross-sections have been supplemented by experimental data and/or results of shell-model calculations

Updated physics in the current project

• Simulations including detailed neutrino transport give new estimates for typical neutrino energies:

 $\langle E_{\nu} \rangle$ =8-13 MeV compared to 13-25 MeV

- Nuclear reaction data from JINA Reaclib V2.0 (2013)
- Lower neutrino energies put make charged-current reactions more important
- Neutrino-nucleus cross-sections have been calculated for almost the whole nuclear chart (L. Huther 2014, PhD. Thesis)
- Where available, cross-sections have been supplemented by experimental data and/or results of shell-model calculations

Preliminary studies

Full reaction network calculations based on the analytic explosion trajectories (arXiv:1505.01082)

Outline

Introduction

- Neutrino nucleosynthesis
- Review
- Constraints on cross-sections
- Supernova model

Results

- The ν process with updated physics
- Radioactive nuclei

3 Conclusions and Outlook

Evaluation of CCSNe nucleosynthesis calculations

• The solar abundances provide observational information for nucleosynthesis results to compare with

Production factor

•
$$P_{A,\text{normalized}} = \left(\frac{X_A}{X_A^{\odot}}\right) / \left(\frac{X_{16_O}}{X_{16_O}^{\odot}}\right)$$

Assuming that CCSNe are the main source of solar ¹⁶O

• $P_{A, {
m normalized}} \sim 1$ indicates CCSNe as possible production site

• $P_{A,\text{normalized}} \ll 1$ hints another production site or mechanism

• IMF averaged production factor for 13-30 M_{\odot} stars (solar metallicity)

Nucleus	no ν	Low energies ¹	High energies ²
⁷ Li	0.001	0.07	0.91
¹¹ B	0.005	0.45	1.81
¹⁵ N	0.06	0.09	0.15
¹⁹ F	0.12	0.25	0.40
¹³⁸ La	0.12	0.86	1.70
¹⁸⁰ Ta*	0.6	1.49	2.67

• 1)
$$\langle E_{\nu_e} \rangle = 9$$
 MeV, $\langle E_{\bar{\nu}_e, \nu_X} \rangle = 13$ MeV

- 2) $\langle E_{
 u_e} = 13$ MeV , $\langle E_{ar{
 u}_e}
 angle = 16$ MeV, $\langle E_{
 u_{\chi}}
 angle = 19$ MeV
- *) Only about 40% of ¹⁸⁰Ta survive in the long-lived isomeric state

• IMF averaged production factor for 13-30 M_{\odot} stars (solar metallicity)

Nucleus	no $ u$	Low energies ¹	High energies ²
⁷ Li	0.001	0.07	0.91
¹¹ B	0.005	0.45	1.81
¹⁵ N	0.06	0.09	0.15
¹⁹ F	0.12	0.25	0.40
¹³⁸ La	0.12	0.86	1.70
¹⁸⁰ Ta*	0.6	1.49	2.67

• 1)
$$\langle E_{\nu_e} \rangle = 9$$
 MeV, $\langle E_{\bar{\nu}_e, \nu_X} \rangle = 13$ MeV

- 2) $\langle E_{
 u_e} = 13$ MeV , $\langle E_{ar{
 u}_e}
 angle = 16$ MeV, $\langle E_{
 u_{\chi}}
 angle = 19$ MeV
- *) Only about 40% of ¹⁸⁰Ta survive in the long-lived isomeric state

S C/O shell €

4 He shell

Si shell

- α-rich freeze-out
- Spallation of ⁴He
- after the SN shock

O/Ne shell

C/O shell

4 He shell

Si shell

- α-rich freeze-out
- Spallation of ⁴He
- after the SN shock

O/Ne shell

- Production from ¹²C and ¹⁶O
- O shell

4 He shell

Si shell

- α-rich freeze-out
- Spallation of ⁴He
- after the SN shock
- O/Ne shell
 - Production from ¹²C and ¹⁶O
- O shell
 - Production from ¹²C
- 4 He shell

Si shell

- α-rich freeze-out
- Spallation of ⁴He
- after the SN shock
- O/Ne shell
 - Production from ¹²C and ¹⁶O
- O shell
 - Production from ¹²C
- 4 He shell
 - Spallation of ⁴He
 - before the SN shock

Contributions to ¹¹B production

• ¹¹B production factors

ν induced production of light elements is particularly effective in lowmass low-metallicity stars (cf. Banerjee+ Phys. Rev. Lett. 110, 141101)

- relative contributions from different regions
- reflects stellar structure

Production of ¹⁹F

Contributions from different sites

- AGB stars
 - ► He-burning thermal pulses Lugaro et al. (2004)
 - Observationally confirmed
- Core-Collapse Supernovae
 - Neutrino spallation
 - shock-heated nucleosynthesis
 - Dominating at low metallicity Kobayashi et al. (2011)
- Wolf-Rayet stars
 - Ejection of He-burning material

Renda et al. (2004)

• Without neutrinos:

 H- and He-shell burning create regions enriched in ¹⁸O and ¹⁵N

Without neutrinos:

- H- and He-shell burning create regions enriched in ¹⁸O and ¹⁵N
- High shock temperatures enhance ¹⁵N(α,γ) and ¹⁸O(p,γ)

Production of ¹⁹F

Without neutrinos:

- H- and He-shell burning create regions enriched in ¹⁸O and ¹⁵N
- High shock temperatures enhance ¹⁵N(α,γ) and ¹⁸O(p,γ)

 Neutral-current and charged-current neutrino reactions on ²⁰Ne

Production of ^{19}F for a 15 M_{\odot} progenitor

• Explosive nucleosynthesis without neutrinos

Production of ^{19}F for a 15 M_{\odot} progenitor

• Including neutrino interactions

• Using the description of the explosion as in Woosley+(1988) corresponding to an explosion energy of 1.0×10^{51} erg

• ¹⁹F yields up to solar even without neutrinos

Sensitivity to ${}^{15}\mathsf{N}(lpha,\gamma)$ reaction rate

- Without neutrinos
 - Yield: $7.3 \times 10^{-5} M_{\odot}$
- Low energy spectrum
 Yield: 8.0 × 10⁻⁵ M_☉
- High energy spectrum
 - Yield: $9.2 \times 10^{-5} M_{\odot}$
- High energy spectrum, ${}^{15}N(\alpha,\gamma)$ from Caughlan&Fowler
 - ▶ Yield: $4.8 \times 10^{-5} M_{\odot}$

low energy spectra: $\langle E_{\nu_{\chi},\bar{\nu}_{e}} \rangle = 13 \text{MeV}$, $\langle E_{\nu_{e}} \rangle = 9 \text{MeV}$ high energy spectra: $\langle E_{\nu_{\chi}} \rangle = 19 \text{MeV}$, $\langle E_{\nu_{e},\bar{\nu}_{e}} = 13 \text{MeV}$ 2016 Neutrino Nucleosynthesis

Outline

Introduction

- Neutrino nucleosynthesis
- Review
- Constraints on cross-sections
- Supernova model

Results

- The ν process with updated physics
- Radioactive nuclei

3 Conclusions and Outlook

Impact of neutrinos on the nucleosynthesis

• Large range of radioactive nuclei are affected

Isotope	Decaytime	Decay Chain	γ-Ray Energy (keV)
⁷ Be	77 d	$^{7}\text{Be} \rightarrow ^{7}\text{Li}^{*}$	478
⁵⁶ Ni	111 d	${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co}^* \rightarrow {}^{56}\text{Fe}^{*+}e^+$	847, 1238
⁵⁷ Ni	390 d	$^{57}Co \rightarrow ^{57}Fe^*$	122
²² Na	3.8 y	$^{22}Na \rightarrow ^{22}Ne^{*}+e^{+}$	1275
⁴⁴ Ti	89 y	$^{44}\text{Ti}\rightarrow^{44}\text{Sc}*\rightarrow^{44}\text{Ca}*+e^+$	1157, 78, 68
26 Al	1.04 10 ⁶ y	$^{26}\text{Al} \rightarrow ^{26}\text{Mg}^* + e^+$	1809
⁶⁰ Fe	2.0 10 ⁶ y	$^{60}\text{Fe} \rightarrow ^{60}\text{Co}^*$	1173, 1332

Isotope	Decaytime	Decay Chain	γ-Ray Energy (keV)
⁷ Be	77 d	$^{7}\text{Be} \rightarrow ^{7}\text{Li}^{*}$	478
⁵⁶ Ni	111 d	${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co}^* \rightarrow {}^{56}\text{Fe}^{*+}e^+$	847, 1238
⁵⁷ Ni	390 d	$^{57}Co \rightarrow ^{57}Fe^*$	122
²² Na	3.8 y	$^{22}Na \rightarrow ^{22}Ne^{*}+e^{+}$	1275
⁴⁴ Ti	89 y	$^{44}\text{Ti}\rightarrow^{44}\text{Sc}*\rightarrow^{44}\text{Ca}*+e^+$	1157, 78, 68
26 Al	1.04 10 ⁶ y	$^{26}\text{Al} \rightarrow ^{26}\text{Mg}^* + e^+$	1809
⁶⁰ Fe	2.0 10 ⁶ y	$^{60}\text{Fe} \rightarrow ^{60}\text{Co}^*$	1173, 1332

Production of ²⁶ Al

Galactic $^{26}\mathrm{Al}$ emission with INTEGRAL SPI

• Well studied radioisotope

- By γ-ray telescopes
- 2.8 ± 0.8M_☉ in the Galaxy *Diehl et al. 2006*
- in pre-solar grains • ${}^{26}\text{AI}/{}^{27}\text{AI} \approx 10^{-5}$
- Mainly from Supernovae and WR-stars Limongi&Chieffi (2006)
- Up to 10% contribution from AGB stars *siess&Arnould* (2008)

Hynes & Gyngard (2009)

Production channels for ²⁶ AI

Neutrino-induced production of radioactive aluminum-26

G. V. Domogatskii and D. K. Nadëzhin

Institute for Nuclear Research, USSR Academy of Sciences, Moscow, and Institute of Theoretical and Experimental Physics, Moscow

(Submitted October 9, 1979)

Pis'ma Astron. Zh. 6, 232-238 (April 1980)

When neutrinos radiated during the gravitational collapse of a stellar core interact with the material in the ejected envelope, the radioactive ³³Al isotope may be produced in an abundance ³³Al $^{12}Al = 0.1 - 0.01$, fully adequate to account for the abundance around the resolution of the step of the elevent is of Mg isotopes detected in meteorites.

PACS numbers: 95.30.Cq, 95.30.Sf, 97.10.Cv

- Different mechanisms:
 - enhancement of
 - p-captures
 - charged-current channel
 - neutral-current channels

IMF averaged Yield

IMF averaged Yield

A. Sieverding, L. Huther, G. Martínez-Pinedo, A. Heger

IMF averaged Yield

- ${}^{60}\text{Fe}/{}^{26}\text{Al}\approx 1.25$ (Observations give ≈ 0.35)
- Further contributions from less massive stars, Wolf-Rayet stars, rotating stars

	lsotope	without $ u$	low energy $ u$	high energy $ u$
	²⁶ AI	5.19	5.64	6.56
	²² Na	0.20	0.27	0.39
2016	5	Neutrino Nucleosvnthe	sis A. Sieverding. L	. Huther, G. Martínez-Pinedo, A.

eger

Outline

Introduction

- Neutrino nucleosynthesis
- Review
- Constraints on cross-sections
- Supernova model

Results

- The ν process with updated physics
- Radioactive nuclei

3 Conclusions and Outlook

- Conclusions
 - Study of neutrino induced nucleosynthesis for piston driven explosions in 1D
 - Calculations with updated neutrino energies
 - Important neutrino-nucleus cross-sections constrained by data
 - Detailed study of the effect on radioactive nuclei like ²²Na and ²⁶Al, including the sensitivity to nuclear reactions rates

- Conclusions
 - Study of neutrino induced nucleosynthesis for piston driven explosions in 1D
 - Calculations with updated neutrino energies
 - Important neutrino-nucleus cross-sections constrained by data
 - Detailed study of the effect on radioactive nuclei like ²²Na and ²⁶Al, including the sensitivity to nuclear reactions rates
- Outlook
 - Cross sections based on QRPA
 - Tracer particles from multi-D SN simulations
 - Take into account time-dependent, non-Fermi-Dirac neutrino spectra