Nuclear physics and neutrino transfer in supernovae and compact objects

Nuclei and neutrinos

K. 'Sumi'yoshi

Numazu College of Technology Japan

Crab nebula

hubblesite.org

Neutrino transfer: Solver of 6D Boltzmann equation
Equation of state: Composition of dense matter

NPCSM2016@YITP, Kyoto, 2016/11/15

Numazu near Mt. Fuji Wikipedia (trimmed)

Explosions mechanism in 2D & 3D neutrino-heating with hydro instabilities

- Convection, SASI, rotation, magnetic etc

Remaining issues of explosion mechanism

- Main trigger, 2D vs 3D, low explosion energy?
- Evaluation of neutrino-heating
- **Dependence** on nuclear physics
- To clarify the problem we need full simulations

Nuclear Physics

- Equation of state
- Neutrino reactions at 10^{5} - 10^{15} g/cm³, ~ 10^{11} K

Astrophysics

- Hydrodynamics
- Neutrino transfer
- **General Relativity**

4

Supercomputing technology

• Numerical simulations of core-collapse supernovae K-Computer, Japan

Huge supercomputing power is necessary

Neutrino transfer in 2D/3D supernovae

From approximate to exact neutrino-radiation hydrodynamics

Nagakura et al., ApJS (2014, 2016) Sumiyoshi et al., ApJS (2012, 2015)

Neutrino heating mechanism for revival of shockHeating by neutrino absorption $v_e + n \rightarrow e^- + p$,Fe coreSurface

100ms after bounce

Neutrino energy/flux from trapped neutrinos

No explosion by modern 1D simulations

v-transfer to determine v-heating

2D/3D hydrodynamics + neutrino heating

- Neutrino flux & heating
 - v-trapping, emission, absorption
- From diffusion to free-streaming
 - Intermediate regime is important
 - \rightarrow From approximate to exact

New code solves 6D Boltzmann eq.

$$f_{v}(r,\theta,\phi; \varepsilon_{v},\theta_{v},\phi_{v}; t)$$

Boltzmann eq.

$$\frac{1}{c}\frac{\partial f_{v}}{\partial t} + \vec{n}\cdot\vec{\nabla}f_{v} = \frac{1}{c}\left(\frac{\delta f_{v}}{\delta t}\right)_{collision}$$

Time evolution + Advection = Collision

Sumiyoshi & Yamada, ApJS (2012)

- Collision Term is tough
 - Energy, angle dependent
 - Stiff, non-linear
 - Frame dependent
 - \rightarrow Huge computation

- Approximations used so far
 - 2D/3D: Diffusion, Ray-by-Ray method

(1D spherical: 1st principle calculations)

• Comparison with Ray-by-ray

- Local v-heating ~20% difference Sumiyoshi et al. ApJS (2015) Background fix

Neutrino-transfer in 3D space: fixed profile

Sumiyoshi et al. ApJS (2015)

Fix hydro. variables, solve time evolution by 6D Boltzmann eq.

- Evaluate stationary state of the neutrino distributions in 6D
- Study neutrino transfer in 3D, heating rates, angle moments

Comparison with approximation

- Ray-by-ray
- Only radial transfer
- Anisotropy enhanced
- 6D Boltzmann
- Non-radial transfer
- Integrated values

from various directions

Consistent with Ott-Brandt in 2D

 \overline{v}_{e} density: color View from side: ϕ -slice

Sumiyoshi et al. (2015)

Neutrino-radiation hydrodynamics: 2D dynamics Nagakura et al. ApJS (2014, 2016)

- 6D Boltzmann solver + 2D Hydrodynamics + 2D gravity
 - Relativistic effects: Doppler, angle aberration, moving mesh
 - Neutrino transfer in fluid flow (from diffusion to free-streaming)

Non-radial neutrino flux in the whole region cf. Ray-by-ray approx. Figure by Iwakami

First results of core-collapse simulations

Nagakura, Iwakami et al. (2016)

• Collapse, bounce and shock propagation of 2 models

11.2M_{sun} Color: entropy, Arrow: Velocity 15M_{sun}

(RMF-TM1, "extended Shen EOS")

2D dynamics depends ρ -profiles

No explosion found in 2D Hydro+Boltzmann

Nagakura, Iwakami et al. (2016)

• No revival of shock in 2 models but depends ρ -profiles

Need further study: Nuclear physics, General Relativity?

Neutrino transfer in neutron star merger

Provide information for neutrino-radiation hydrodynamics

In collaboration with Fujibayashi, Sekiguchi

Neutrino emission from hyper massive neutron star

• Study of 2D Neutrino transfer in deformed objects

- Merger of binary NSs
 1.35M + 1.35M
- Rotating hot NS
 - M~2.6M_{sun}
 - Hempel DD2 EOS
 - $M_{max} \sim 2.4 M_{sun}$

Fujibayashi (2016)

Evaluation by 6D Boltzmann eq. solver

• Describes full angle energy distributions

Neutrino density, flux

Neutrino sphere

for emission mechanism of neutrinos from NS mergers cf. Monte Carlo by Richers, M1 by Just, Adv. Leakage by Perego

Evaluation by 6D Boltzmann eq. solver

• Can be used to validate approximate methods

for dynamical calculations in moment formalism with M1 by Fujibayashi

Equation of state in supernovae

effects on explosion?

EOS table for supernova simulations

- Data covers wide range
 - ρ : 10^{5.1} ~ 10¹⁶ g/cm³
 - $Y_p: 0 \sim 0.65$
 - T: $0 \sim 400 \text{ MeV}$

- Consistent framework
- Experiments of nuclei
- Observations of neutron stars

Models	Framework	Reference	
Nucleon benchmark 1990's~	Skyrme Hatree-Fock Extended Liquid-Drop Relativistic Mean Field	Wolff-Hillebrandt Lattimer-Swesty Shen	LS-EOS Shen-EOS
Nucleon	Relativistic Mean Field	G. Shen, Oertel, Peres	
updates _{2000's~}	Nuclear many body	Togashi, Constantinou	
Nucleon	Relativistic Mean Field	Hempel, Steiner, Fischer	Furusawa
updates+NSE	Mixture of nuclei	Furusawa	
Nucleon	Relativistic Mean Field	Ishizuka	
+Hyperon	Hyperon interactions	Gulminelli, Oertel, Banik	
Nucleon	Relativistic Mean Field	Nakazato	
+Quark	Bag model	Sagert, Fischer	

Based on Oertel, Hempel, Klaehn & Typel (2016)

Comparison of EOS sets: benchmark

• Difference in stiffness & symmetry energy

Comparison of EOS sets: more recent

- Choice of nuclear interaction (stiffness, radius, ...)
- No explosion with various EOS tables

Hempel (2012)

 $11.2M_{solar}$ Steiner et al. (2013)

Supernova profiles at core bounce: $t_{pb}=0$ ms ρ : just above ρ_0 , T~10 MeV, Y_p : not so neuron-rich yet

Sumiyoshi et al. ApJ 629 (2005) 922.

Equation of state in supernovae

Effect of composition

Furusawa, Yamada, Sumiyoshi & Suzuki ApJ (2011, 2013, 2016)

e-capture on mixed nuclei during collapse

- Composition of nuclei
 1-species & ⁴He → Mixture
- Electron capture on nuclei
 - Bruenn -> GSI rates
 - Single -> NSE average

Shell effect on mixture of nuclei in supernova core

Ν

- Shell smearing
 at finite temperature
- at finite temperature
 Shift of abundance peak
 affects electron capture rates
 ~30% with/without shell effect

Light clusters + ⁴He can appear after bounce

Multi-compositions with p, n, d, ³H, ³He, ⁴He, nuclei Sumiyoshi & Röpke

Absorption of neutrinos: neutrino heating

• Nuclei: $0 \sim 30 \text{MeV/s}$ $v_i + A \longrightarrow e^- + A'$ $\overline{v_i} + A \longrightarrow e^+ + A'$ $v_i + A \longrightarrow v_i' + A'$

depends on species!!

- Fe, 4 He Haxton PRL (1988)
- Light nuclei (d, t, ³He)

ex. $v_e + d \rightarrow e^- + p + p$ $\bar{v}_e + d \rightarrow e^+ + n + n$ $v + d \rightarrow v + p + n$ $\bar{v} + d \rightarrow \bar{v} + p + n$ Notescars et al. DBC (2000)

Nakamura et al. PRC (2009) O'Connor et al. PRC (2007)

2D supernova simulations with light clusters

Furusawa et al. ApJ (2013)

• $(d, {}^{3}\text{He}, t, {}^{4}\text{He})$ appear **Abundance** d, ³He, t, ⁴He n, p t=300ms 400 200 z [km] 0 -200 -400400 -400 -200 200 0 r [km]

After core bounce

• v-absorption (d, ${}^{3}\text{He}$, t)

• Possible effects on shock revival when it is marginal

Emission of neutrinos via light clusters

• Deuterons

ex.
$$d + e^- \rightarrow n + n + \nu_e$$
,
 $d + e^+ \rightarrow p + p + \bar{\nu}_e$,
Nasu et al. PRC (2015)

• Proton, neutrons

cf.
$$p + e^- \rightarrow n + v_e$$

 $n + e^+ \rightarrow p + \bar{v}_e$

- Triton, ³He O'Connor, Arcones PRC (2007, 2008)
- Modifications of
 - v-sphere, emissivity

2D supernova simulations with light clusters Takiwaki et al. (2016) in preparation

- With/without reactions via deuterons
 - Using abundance of nuclei from Furusawa EOS

Stiffness & Composition of EOS in multi-D

Favorable for explosion

- More v-absorption at heating region $\sim 10^{-5} \rho_0$
- More v-emission

 at proto-NS surface ~10⁻² ρ₀
 composition & v-reactions
- EOS soft $> \rho_0$ Compact, Inner ρ , T \uparrow v-luminosity, energy \uparrow

v-cooling & heating in multi-D hydrodynamics

IF opposite, maybe weaken explosions Examine nuclear physics in multi-D simulations

Summary: Nuclear physics and neutrino transfer

for core-collapse supernovae and compact objects

- Applications of 6D Boltzmann eq. solver
 - Explosion mechanism of core-collapse supernovae
 - Neutrino-radiation hydrodynamics in 2D
 - Neutrino transfer in compact objects
 - Validation of approximate methods
- Tables of equation of state with mixture of nuclei
 - Modification of electron capture rates
 - Neutrino absorption & emission for explosions
- Toward 1st principle calculations of 3D supernovae
 - General relativistic neutrino-radiation hydrodynamics
 - Exa-flops supercomputer by post-K project in Japan
 - Need reliable equation of state, neutrino reactions

Project in collaboration with

- Numerical simulations
 - H. Nagakura
 - W. Iwakami
 - H. Okawa
 - A. Harada
 - S. Yamada
- Supernova research
 - T. Takiwaki
 - K. Nakazato
 - K. Kotake

K computer

- Y. Sekiguchi
- S. Fujibayashi

K-Computer, Japan

- Supercomputing
 - H. Matsufuru
 - A. Imakura, T. Sakurai
- EOS tables & neutrino rates
 - H. Shen, K. Oyamatsu, H. Toki
 - C. Ishizuka, A. Ohnishi
 - S. Furusawa
 - S. X. Nakamura, T. Sato

Supported by

- HPCI Strategic Program Field 5
- MEXT and JICFuS
- for K-computer and Post-K machine
- HPC resources at KEK, YITP, UT, RCNP
- K-computer: hp160071, hp160211

Grant-in-Aid for Scientific Research (15K05093) 37