The 26th Nishinomiya-Yukawa Memorial International Workshop "Novel Quantum States in Condensed Matter 2011 (NQS2011)".

Chirality, topology and magnetotransport in a chiral helimagnet

Jun Kishine Kyushu Institute of Technology

[1] JK, Proskurin and Ovchinnikov, Phys. Rev. Lett. 107, 017205 (2011)
[2] JK, Ovchinnikov, and Proskurin, Phys. Rev. B 82, 064407 (2010)
[3] JK and Ovchinnikov, Phys. Rev. B 81, 134405(2010)
[4] JK and Ovchinnikov, Phys. Rev. B 79, 220405(R) (2009)
[5] Borisov, JK, Bostrem, and Ovchinnikov, Phys. Rev. B 79, 134436(2009)
[6] Bostrem, JK and Ovchinnikov, Phys. Rev. B78, 064425(2008)

Collaborators

Experiments

✓ Lorentz TEM

- Yoshihiko Togawa (Osaka Pref. Univ., Japan)
- Shigeo Mori (Osaka Pref. Univ., Japan)
- Tsukasa Koyama (Osaka Pref. Univ., Japan)
- Sadafumi Nishihara(Hiroshima Univ., Japan)
- ✓ Material synthesis and neutron diffraction
 - Jun Akimitsu (Aoyama Gakuin Univ., Japan)
 - Yusuke Kousaka (Aoyama Gakuin Univ., Japan)
 - Katsuya Inoue (Hiroshima Univ., Japan)

Theory

- Alexander Ovchinnikov(Ural Federal Univ., Russia)
- Igor Proskurin (Ural Federal Univ., Russia)

Chirality in nature

Lewis Carroll, "Through the Looking-Glass and What Alice Found There" Macroscopic functions of a single crystal generally comes from ✓ Asymmetry ✓ Non-linearity ✓ Off-equilibrium

Our theory is motivated by Chiral Magnetic Crystal Cr_{1/3}NbS₂

Chiral magnetic crystal Cr_{1/3}NbS₂

Space group P6₃22 S occupies general point Cr and Nb occupy High-symmetry points Chiral symmetry breaking

Spins see crystal chirality via spin-orbit coupling

Coupling of localized and itinerant spins

Cr_{1/3}NbS₂

0.00100

I = 0.5 mAH = 0 Oe

Evidence of Ciral Helimagnetic Order Observed by Lotentz TEM

500 nm

Yoshiko Togawa Tsukasa Koyama Shigeo Mori (Osaka Prefectural Univ.)

Non-linear, asymmetric mag. texture

Chiral sine-Gordon model

• effective 1D model→'soliton'

$$\left(\mathscr{H}_{\rm CSL} = \frac{JS^2}{a_0} \int_0^L dz \left[\frac{1}{2} \left(\partial_z \varphi\right)^2 - Q_0 \left(\partial_z \varphi\right) - m^2 \cos \varphi\right]\right)$$

I.E. Dzyaloshinskii, Sov. Phys. JETP 19, 960 (1964) P.G.de Gennes, Solid State Commun. 6, 163 (1968)

• Helical period at zero field

$$\left(L_0 = \frac{2\pi}{Q_0} = \frac{a_0}{\arctan\left(D/J\right)} \simeq \frac{J}{D}a_0\right)$$

• Stationary solution

$$\left(\cos\left(\frac{\varphi_0(z)}{2}\right) = \sin\left(\frac{m}{\kappa}z\right)\right) \quad \mathsf{L}$$

• Topological charge

$$\left(\mathscr{Q}(z) = \frac{1}{2\pi} \partial_z \varphi_0(z) = \frac{1}{\pi} \frac{m}{\kappa} \operatorname{dn}\left(\frac{m}{\kappa} z\right)\right)$$

Topology protected by geometric chirality

Energy minimization with respect to elliptic modulusk

$$\mathscr{E}_{\mathrm{kink}}(\kappa) = \frac{1}{L_{\mathrm{MKC}}} \int_{-L_{\mathrm{MKC}/2}}^{L_{\mathrm{MKC}/2}} dz \left[4 \left(\frac{m}{\kappa} \right)^2 \mathrm{dn}^2 \left(\frac{m}{\kappa} z \right) - 2 \left(\frac{m}{\kappa} \right)^2 - \partial_z \varphi_0 \right] \right]$$

$$= 2m^2 \left(\frac{2E(\kappa)}{\kappa^2 K(\kappa)} - \frac{1}{\kappa^2} - \frac{\pi Q_0}{2m} \frac{1}{\kappa K(\kappa)} \right),$$

$$\boxed{\sqrt{\frac{H}{H_c}} = \frac{\kappa}{E(\kappa)}}_{L_0} = \frac{4K(\kappa)E(\kappa)}{\pi^2}}_{H_c} = JS \left(\frac{\pi Q_0 a_0}{4} \right)^2 \sim JS \left(\frac{\pi}{4 \times 40} \right)^2}_{\sim 0.1\mathrm{K} \sim 0.1\mathrm{T} \longrightarrow JS \times \left(\frac{D}{J} \right)^2}$$

$$\overset{\mathrm{Construction}}{\operatorname{Magnetic field strength}} = \frac{H_c}{\kappa}$$

<u>Chiral soliton lattice (CSL) in magnetic fields</u>

So far, consistency of theories and experiments were well confirmed.

From now on, theoretical proposals only (as yet)...

Elementary excitations over the CSL state

CSL Phonon Wave Functions

Lama aquation

$$\frac{d^{2}u_{a}(\bar{z})}{d\bar{x}^{2}} = [2\kappa^{2}\operatorname{sn}^{2}(\bar{x},\kappa) - (\kappa^{2} - 4\bar{q}_{0} + 4 + \omega_{\theta;a}^{2})]u_{a}(\bar{z})$$

$$\int_{a}^{(+)} (\bar{z}) = N_{a} \frac{\vartheta_{4}\left(\frac{\pi}{2K}(\bar{z} - i\bar{a})\right)}{\vartheta_{4}\left(\frac{\pi}{2K}\bar{z}\right)}e^{-i\bar{Q}_{a}\bar{z}},$$

$$\bar{Q} = Z(a,\kappa') + \frac{\pi a}{2KK'} + \frac{\operatorname{dn}(a,\kappa')\operatorname{cn}(a,\kappa')}{\operatorname{sn}(a,\kappa')},$$

$$\omega_{\theta;a}^{(+)} = \sqrt{4\left(\bar{Q}_{0} - 1\right) + \frac{1}{\operatorname{sn}^{2}(a,\kappa')}},$$

$$-K' < a \leq K'$$
Hidden parameter
$$\int_{a}^{(-)} (\bar{z}) = N_{a} \frac{\vartheta_{4}\left(\frac{\pi}{2K}(\bar{z} - i\bar{a} - K)\right)}{\vartheta_{4}\left(\frac{\pi}{2K}\bar{z}\right)}e^{-i\bar{Q}_{a}\bar{z}},$$

$$\bar{Q} = Z(a,\kappa') + \frac{\pi a}{2KK'},$$

$$\omega_{\theta;a}^{(-)} = \sqrt{4\left(\bar{Q}_{0} - 1\right) + \kappa'^{2}\operatorname{sn}^{2}(a,\kappa')}$$

ESR(CSL phonon resonance)

JK and Ovchinnikov, Phys. Rev. B 79, 220405(R) (2009)

CSL Phonon w.f.

$$u(z,t) = \sum_{q} \sum_{n=-\infty}^{\infty} \left[\frac{U_n}{\sqrt{2\omega_q}} e^{-i(q-nG_{\text{CSL}})z+i\omega_q t} b_q^{\dagger} + \text{h.c.} \right]$$

New Soliton Solution

A.B.Borisov, JK, I.G.Bostrem, and A.S.Ovchinnikov, Phys. Rev. B79,134436 (2009)

So far, I presented all about CSL

Next, let us move on to coupling of CSL with itinerant quantum spins

Magnetic superlattice potential acting on itinerant electrons

JK, Proskurin and Ovchinnikov, Phys. Rev. Lett. 107, 017205 (2011)

34

Heli-cycloidal spin structure in the insulating state

$$|\varphi;\pm\rangle = \frac{1}{\sqrt{2}} (e^{-inG} \operatorname{csl} z/2 |k,\uparrow\rangle \pm e^{inG} \operatorname{csl} z/2 |k,\downarrow\rangle)$$

Zubarev's nonequilibrium density operator approach

$$\rho(H)/\rho_{\max} = \mathcal{N}(H)/\mathcal{N}_{\max}$$
$$\mathcal{N}(H) = \lim_{\omega \to 0} \langle \dot{\mathcal{J}}; \dot{\mathcal{J}} \rangle_{\omega+i\varepsilon}$$
$$\mathcal{J} = -e \sum_{k,\sigma} v_k b^{\dagger}_{k\sigma} b_{k\sigma}$$
$$\langle \dot{\mathcal{J}}; \dot{\mathcal{J}} \rangle_{\omega+i\varepsilon} = \int_0^\infty dt e^{i\omega t - \varepsilon t} \int_0^1 dx \langle \dot{\mathcal{J}}(t); \dot{\mathcal{J}}(i\beta\hbar x) \rangle_{eq}$$

Spin Torque Transfer Mechanisms

JK, Ovchinnikov, and Proskurin, Phys. Rev. B 82, 064407 (2010)

Fine interplay of quantum phase of Bloch electron and Semiclassical phase of magnetic kink crystal

JK, Ovchinnikov, and Proskurin, Phys. Rev. B 82, 064407 (2010)

Spin Current Diode Effect Chiral Band + Chiral Non-linear Texture = Interplay of electron phase & spin phase

(1,-1)

(2,-2)

10

8

n

12

Summary

- Chiral helimagnet Cr_{1/3}NbS₂
 - Hexagonal is good (no geometric frustration of crystallographic axes)
 - Well localized classical spin S=3/2 and itinerant quantum S=1/2
- Chiral sine-Gordon model
 - Chiral Soliton Lattice = asymmetric incommensurate spin phase object protected by geometric chirality
 - Ground state and elementary excitations fully available
 ⇒ Fairyland of elliptic functions
 - New soliton surfing over the magnetic superlattice
- Coupling of localized and itinerant spins
 - Ground state as magnetic superlattice
 - ⇒ multiple magneto-resistance peaks
 - Excitations as spin torque supplier
 - \Rightarrow sliding motion of CSL magnetic superlattice
 - ⇒Magnetic Current Diode effect

Geometric chirality of natural crystal gives us rich physics connecting classical and quantum degrees of freedom

