Exciton in the Topological Kondo Insulator SmB$_6$

Collin Broholm*

Institute for Quantum Matter, Johns Hopkins University
Quantum Condensed Matter Division, Oak Ridge National Laboratory

*Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering
DE-FG02-08ER46544
Institute for Quantum Matter

• **Synthesis**
 – Bob Cava, (Princeton)
 • Frustrated magnets
 – Tyrel McQueen
 • Topological, superconducting & molecular solids

• **Spectroscopy**
 – Collin Broholm
 • Neutron scattering
 – Peter Armitage
 • THz Spectroscopy

• **Theory**
 – Oleg Tchernyshyov
 • Frustrated magnetism
 – Ari Turner
 • Topological Materials
Frontiers in Hard Condensed Matter

• Quantum Spin liquids
 – Evidence for emergent electrodynamics (artificial light)
 – Hamiltonian + continuum for quantum spin liquid
 – Field driven effective chemical potential

• Correlated Topological materials
 – Neutrons as a probe of renormalized bandstructure
 – Systematics of bound state
 – Surface magnetism

• Linked degrees of freedom
 – Spin waves + phonons
 – Spin waves + orbitons
 – Macroscopic: Link disparate responses

• Quantum Critical itinerant electrons
 – Comprehensive scaling to chart types of criticality
 – Anomalous transport and spin correlations

• Unconventional Superconductivity
 – The magnetism within a d-superconductor?
 – Image the cooper pair
Correlated TIs: Why and How

• **2D correlated metal**
 – Interesting (Quantum Hall state)
 – Useful: Electronic devices are surface based

• **Requirements:**
 – Insulating & correlated bulk
 – Time reversal symmetry

• **Possible bulk states**
 – Spin liquid in topologically non-trivial insulator (tall order)
 – Topological Mott insulators
 – Kondo Insulator
Outline

• Introduction
 – Kondo Insulators and SmB$_6$
 – Neutron Scattering

• The SmB$_6$ enigma
 – Transport and thermal properties
 – A resonance with d-form-factor
 – Slave boson MFT + RPA of exciton

• Conclusions
Acknowledgements

W. T. Fuhrman
JHU

J. C. Leiner
ORNL

P. Nikolic
George Mason University

G. Granroth
ORNL

M. D. Lumsden
ORNL

P. Alekseev
Kurchatov Institute

J. M. Mignot
Saclay

S. M. Koohpayeh
JHU

P. Cottingham
JHU

W. Phelan
JHU

L. Schoop
Princeton

R. J. Cava
Princeton

T. M. McQueen
JHU
Topological Kondo Insulators

Maxim Dzero, Kai Sun, Victor Galitski, and Piers Coleman

\[
\hat{H} = \sum_{k,\alpha} \xi_k c_k^{\dagger} c_k + \sum_{j\alpha} [V c_{j\alpha}^{\dagger} f_{j\alpha} + \text{H.c.}] + \sum_{j\alpha} \left[\varepsilon_f^{(0)} n_{f,j\alpha} + \frac{U_f}{2} n_{f,j\alpha} n_{f,j\bar{\alpha}} \right]
\]

Neuprane et al. (2013)

\[T < T_H \]

INSTITUTE FOR QUANTUM MATTER
SmB$_6$: Kondo Insulator or Exotic Metal?

J. C. Cooley, M. C. Aronson, Z. Fisk, and P. C. Canfield
Surface conduction in SmB$_6$

- The variation of resistance ratio with sample dimensions indicates surface conduction dominates in the low T regime where the bulk insulates.
- The hysteretic effects of a magnetic field on surface conduction is indicative of surface magnetism: We are getting what we asked for!
An insulating SmB$_6$ surface?

Options to explain rising low T resistance:
- Surface magnetism breaks time reversal symmetry
- Unprotected Surface states; topologically trivial Kondo ins.
- Both: Topologically trivial insulator with surface magnetism
Lower T resistance in float zone crystals

Surface magnetism from Sm^{3+}
Aluminum:* filamentary inclusions observed in diffraction and may account for dHvA

Carbon: Produces a plateau. Carbon is “everywhere” but not in IQM floating zone crystals!
SmB$_6$/C–bulk effects

Parametric:
- Field
- carbon

$$\frac{C_p}{T} = \gamma + \beta_3 T^2 + AT^2 \ln \frac{T}{T^*}$$ for all C-doped samples and fields

$$\beta = \beta_3 - A \ln T^*$$ where $T^* = 17$ K and $\theta_D = 230$ K

C-doping & magnetic field shift the chemical potential
• Carbon induced carrier doping populates surface states near the hybridization gap
ARPES view of SmB_6

Odd number of band crossings ➔ Topological Kondo Insulator
Magnetic Neutron Scattering

\[\frac{d^2 \sigma}{d\Omega dE} = \frac{k_f}{k_i} N r_0^2 \left| \frac{g}{2} F(Q) \right|^2 e^{-2W(Q)} \sum_{\alpha\beta} \left(\delta_{\alpha\beta} - \hat{Q}_\alpha \hat{Q}_\beta \right) S^{\alpha\beta}(Q\omega) \]

\[S^{\alpha\beta}(Q,\omega) = \frac{1}{2\pi\hbar} \int dt \ e^{-i\omega t} \frac{1}{N} \sum_{\mathbf{R}\mathbf{R}'} e^{iQ(\mathbf{R}-\mathbf{R}')} < S^\alpha_\mathbf{R}(0) S^\beta_{\mathbf{R}',t} > \]
Spin Fluctuations & Neutrons Scattering

\[S_{\alpha\beta}(q\omega) = \frac{1}{1 - e^{-\beta h \omega}} \frac{\chi''_{\alpha\beta}(q\omega)}{(g\mu_B)^2 \pi} \]

\[\chi_0(q) = \sum_k f\left(\frac{\epsilon_{k+q}}{\varepsilon_k}\right) \]

\[V_{2-y}O_3 \text{ Bao et al. PRL (1993)} \]
Neutron Scattering from SmB$_6$

Double isotope sample 154Sm11B$_6$
From Pavel Alekseev

Reference sample La11B$_6$
From Koopayeh/McQueen
SEQUOIA Time of Flight Spectrometer

\[\hbar \omega = \frac{1}{2} m \left(v_i^2 - v_f^2 \right) \]
\[\hbar Q = m \left(v_i - v_f \right) \]

- \(t_{\text{chopper}} \rightarrow v_i \)
- \(t_{\text{detector}} \rightarrow v_f \)

Fermi Chopper
Sample
Detector
Nesting wave vectors for SmB$_6$

T=5 K
Exciton form-factor

- Bloch’s theorem for simple Bravais lattice:
 \[
 \frac{\tilde{I}(Q+G,\omega)}{\tilde{I}(Q,\omega)} = \left| \frac{F(Q+G)}{F(Q)} \right|^2
 \]
- The Formfactor \(F(Q) \) reflects the spatial extent of spin density:
 \[
 F(Q) = \langle j_0(Qr) \rangle + \left(1 - \frac{2}{g_J} \right) \langle j_2(Qr) \rangle
 \]
- The data is consistent with 5d wave function
- Surprising given small group velocity
Exciton in insulating SmB$_6$

Total moment sum rule:

$$\left(\frac{\mu}{\mu_B}\right)^2 = \frac{\int \text{Tr} \{ \mathcal{S}(Q,\omega) \} d^3Q h\omega}{\int d^3Q} = 0.29(6) / \text{Sm}$$

This is 40% of the total magnetic scattering from Sm$^{3+}$ and is not dissimilar to the estimates 50% of Sm in the 3+ state.
A tight binding band structure dominated by body-diagonal hopping through B_6 can account for the intense parts of the magnetic scattering.

Can use $S(q)$ as a probe of hybridized band structure.

ARPES so far does not provide needed low energy details.
Slave Boson MFT of exciton

\[H = \int_{1BZ} \frac{d^3k}{(2\pi)^3} \left[\sum_\sigma \xi_k d_{\sigma k}^\dagger d_{\sigma k} + \sum_\alpha \epsilon_{\alpha k} f_{\alpha k}^\dagger f_{\alpha k} \right] \\
+ \sum_{\alpha \sigma} \left(V_{\sigma \alpha k} d_{\sigma k}^\dagger f_{\alpha k} + h.c. \right) \right] + U \sum_{\alpha \beta R} f_{\alpha R}^\dagger f_{\alpha R} f_{\beta R}^\dagger f_{\beta R}, \]
RPA theory of Exciton (P. Nikolic)

Slave boson fluctuations yield:
- Renormalized Hybridization gap
- Formation of Exciton bound state
- Exciton dispersion from RPA
Conclusions

• The surface of high quality SmB$_6$
 – Can be Insulating
 – Dominated by Sm$^{3+}$
 – Magnetizable

• Strong sensitivity to C doping
 – Surface states near hybridization gap
 – Correlated impurity band is generated

• 14 meV exciton within Kondo insulator
 – Q-dependence associated with body diagonal hopping
 – Weakly dispersive and long lived
 – d-electron form factor

• Theory of the Kondo insulator
 – Slave boson MFT for renormalized band structure
 – RPA treatment of fluctuations accounts for exciton dispersion
 – More work needed to understand mode intensity
Future plans in TKI

• Magnetic fluctuations in Kondo Insulators
 – When is there an exciton and is there a correlation with topological bandstructure
 – On the agenda non-cubic KI: CeRu$_4$Sn$_6$, CeNiSn

• Field effects on the bulk
 – Determine spin degeneracy of exciton by high field experiment on SmB6

• Correlated surface physics of SmB6
 – Neutron reflectometry
 – Circular magnetic dichroism

• An opportunity to put theories to the test!
 – Slave boson MFT and neutron scattering
 – LDA+DMFT