Electron transport and magnetization dynamics in metallic ferromagnets

Gen TATARA

RIKEN Center for Emergent Matter Science (CEMS)

YKIS Kyoto 2014/12/04

Ferromagnetic metal

- Magnetization $M(=\frac{g\mu_B}{a^3}S)$ (Localized spin S) d electron
- Finite electric conductivity Itinerant s electron
- sd interaction
 Between conduction electron spin s and localized spin

$$H_{
m sd} = -J_{
m sd} oldsymbol{S} \cdot oldsymbol{s}$$

Strong \Rightarrow Electron spin follows **S** perfectly Adiabatic limit

Ferromagnetic metal under electric current

- Uniform magnetization \Rightarrow No new feature
- Non uniform magnetization \Rightarrow Non-trivial transport

- Today's subjects
 - Rotation of conduction electron spin

Spin Berry's phase

 \Rightarrow Spin electromagnetic field

stttt

<1111

Rotation of magnetization

Spin-transfer torque

 \Rightarrow Magnetization dynamics

Spin electromagnetic field

Volovik'87, Stern'92, Barnes&Maekawa'07

 $\varphi = \int d\boldsymbol{S} \cdot \boldsymbol{B}_{\mathrm{s}}$

Adiabatic limit

- Electron spin rotation
- \Rightarrow Phase $e^{i\varphi}$

$$\varphi = \int_{C} d\mathbf{r} \cdot \mathbf{A}_{\mathrm{s}}$$

• Spin electric field (dynamics)

$$\dot{\phi} = -\int_{C} d\mathbf{r} \cdot \mathbf{E}_{\mathrm{s}}$$

• Faraday's law is satisfied

$$abla imes oldsymbol{\mathcal{B}}_{ ext{s}} = -rac{\partial oldsymbol{\mathcal{B}}_{ ext{s}}}{\partial t}$$

Electromagnetic field coupled to spin

Phase induced by localized spin

• Strong *sd* exchange interaction

- Electron spin \parallel localized spin
- Electron wave function

$$| heta \phi
angle = \cos rac{ heta}{2} | \uparrow
angle + e^{i \phi} \sin rac{ heta}{2} | \downarrow
angle$$

• Overlap

$$\langle heta' \phi' | heta \phi
angle = 1 + rac{i}{2} (1 - \cos heta) \delta \phi \equiv e^{i arphi}$$

• Effective vector potential $\ \ \, \phi = d {m r} \cdot {m A}_{
m s}$

$$oldsymbol{A}_{
m s}=rac{1}{2}(1-\cos heta)\partial\phi$$

Phase induced by localized spin

• Effective vector potential induced by *sd* interaction

$$oldsymbol{A}_{
m s}=rac{1}{2}(1-\cos heta)\partial\phi$$

• Gauge interaction

$$H_A = \int d^3 r {m A}_{
m s} \cdot {m j}_{
m s}$$
 ${m j}_{
m s} (= P {m j})$: Spin current (*P*: Spin polarization)

- Two effects
 - Current-induced torque on magnetization Spin-transfer torque

$$\mathbf{B}_{\rm eff} = \frac{\delta H_A}{\delta \mathbf{S}} = \mathbf{S} \times (\mathbf{j}_{\rm s} \cdot \nabla) \mathbf{S} \Rightarrow \left[\frac{\mathbf{S}}{\mathbf{S}} = (\mathbf{j}_{\rm s} \cdot \nabla) \mathbf{S} \right]$$

• Spin motive force on electron Effective electromagnetic fields

$$\begin{aligned} \boldsymbol{E}_{\mathrm{s}} &= -\nabla \boldsymbol{A}_{\mathrm{s},0} + \boldsymbol{\partial}_{t} \boldsymbol{A}_{\mathrm{s}} = -\frac{1}{2} \boldsymbol{n} \cdot (\boldsymbol{n} \times \nabla_{i} \boldsymbol{n}) \\ \boldsymbol{B}_{\mathrm{s}} &= \nabla \times \boldsymbol{A}_{\mathrm{s}} = \frac{1}{4} \sum_{jk} \epsilon_{ijk} \boldsymbol{n} \cdot (\nabla_{j} \boldsymbol{n} \times \nabla_{k} \boldsymbol{n}) \end{aligned}$$

 $\dot{\boldsymbol{S}} = (\boldsymbol{j}_{\mathrm{s}} \cdot \nabla) \boldsymbol{S}$

• Spin-transfer torque \Rightarrow Sliding of magnetization structure

 $(\partial_t - \boldsymbol{j}_{\mathrm{s}} \cdot \nabla) \boldsymbol{S} = 0$

 $\dot{\boldsymbol{S}} = (\boldsymbol{j}_{s}\cdot\nabla)\boldsymbol{S}$

• Spin-transfer torque \Rightarrow Sliding of magnetization structure

 $(\partial_t - \boldsymbol{j}_{\mathrm{s}} \cdot \nabla) \boldsymbol{S} = 0$

 $\dot{\boldsymbol{S}} = (\boldsymbol{j}_{s} \cdot \nabla) \boldsymbol{S} + \boldsymbol{\alpha} (\boldsymbol{S} \times \dot{\boldsymbol{S}})$

 $\bullet~\mbox{Spin-transfer torque} \Rightarrow \mbox{Sliding of magnetization structure}$

 $(\partial_t - \mathbf{j}_{\rm s} \cdot \nabla) \mathbf{S} = 0$

• Damping (friction) Transverse torque \Rightarrow Screw motion

 $\dot{\boldsymbol{S}} = (\boldsymbol{j}_{\mathrm{s}} \cdot \nabla) \boldsymbol{S} + \alpha (\boldsymbol{S} \times \dot{\boldsymbol{S}}) + K_{\perp} (\boldsymbol{S} \times \boldsymbol{e}_{y})$

• Spin-transfer torque \Rightarrow Sliding of magnetization structure

$$(\partial_t - \mathbf{j}_{\mathrm{s}} \cdot \nabla) \mathbf{S} = 0$$

- Damping (friction)
- Anisotropy energy

Transverse torque \Rightarrow Screw motion $K_{\perp}(S_y)^2 \Rightarrow$ Intrinsic pinning

 $\dot{\boldsymbol{S}} = (\boldsymbol{j}_{\mathrm{s}} \cdot \nabla) \boldsymbol{S} + \alpha (\boldsymbol{S} \times \dot{\boldsymbol{S}}) + \mathcal{K}_{\perp} (\boldsymbol{S} \times \boldsymbol{e}_{y}) + \beta [\boldsymbol{S} \times (\boldsymbol{j}_{\mathrm{s}} \cdot \nabla) \boldsymbol{S}]$

• Spin-transfer torque \Rightarrow Sliding of magnetization structure

$$(\partial_t - \boldsymbol{j}_{\mathrm{s}} \cdot \nabla) \boldsymbol{S} = 0$$

- Damping (friction) Transverse torque \Rightarrow Screw motion
- Anisotropy energy $K_{\perp}(S_y)^2 \Rightarrow$ Intrinsic pinning
- Spin-orbit, spin relaxation of electron \Rightarrow Transverse torque β

 $\dot{\boldsymbol{S}} = (\boldsymbol{j}_{\mathrm{s}} \cdot \nabla) \boldsymbol{S} + \alpha (\boldsymbol{S} \times \dot{\boldsymbol{S}}) + \mathcal{K}_{\perp} (\boldsymbol{S} \times \boldsymbol{e}_{y}) + \beta [\boldsymbol{S} \times (\boldsymbol{j}_{\mathrm{s}} \cdot \nabla) \boldsymbol{S}] + \boldsymbol{\tau}_{\mathrm{pin}}$

• Spin-transfer torque \Rightarrow Sliding of magnetization structure

$$(\partial_t - \mathbf{j}_{\mathrm{s}} \cdot \nabla) \mathbf{S} = 0$$

- Damping (friction) Transverse torque \Rightarrow Screw motion
- Anisotropy energy $K_{\perp}(S_y)^2 \Rightarrow$ Intrinsic pinning
- Spin-orbit, spin relaxation of electron \Rightarrow Transverse torque β
- (Extrinsic) Pinning

 $\dot{\boldsymbol{S}} = (\boldsymbol{j}_{\mathrm{s}} \cdot \nabla) \boldsymbol{S} + \alpha (\boldsymbol{S} \times \dot{\boldsymbol{S}}) + \mathcal{K}_{\perp} (\boldsymbol{S} \times \boldsymbol{e}_{y}) + \beta [\boldsymbol{S} \times (\boldsymbol{j}_{\mathrm{s}} \cdot \nabla) \boldsymbol{S}] + \boldsymbol{\tau}_{\mathrm{pin}}$

• Spin-transfer torque \Rightarrow Sliding of magnetization structure

$$(\partial_t - \mathbf{j}_{\mathrm{s}} \cdot \nabla) \mathbf{S} = 0$$

- Damping (friction) Transverse torque \Rightarrow Screw motion
- Anisotropy energy $K_{\perp}(S_y)^2 \Rightarrow$ Intrinsic pinning
- Spin-orbit, spin relaxation of electron \Rightarrow Transverse torque β
- (Extrinsic) Pinning

Domain wall dynamics under current

- • $eta \lesssim lpha$ Intrinsic pinning
 - Threshold current

$$j_{\rm c} = rac{eS^2}{\hbar a^3 P} K_{\perp} \lambda$$

Stable operation

- $ulleteta \gtrsim lpha$ Extrinsic pinning
 - Threshold current

$$j_{\rm c} \propto \frac{V_{\rm pin}}{\beta}$$

• Strong spin-orbit interaction for low j_c large β

Domain wall MRAM (NEC)

Current-induced torque

• Non-equilibrium conduction electron spin polarization δs

 $oldsymbol{ au} = J_{sd} \delta oldsymbol{s} imes oldsymbol{S}$

E,
$$\textbf{\textit{j}} \Rightarrow \delta \textbf{\textit{s}} \Rightarrow au$$

• Calculation of non-equilibrium spin density

Thermally-induced torque

$$\nabla T \Rightarrow \delta s \Rightarrow \tau$$

- Luttinger's 'gravitaional potential' Ψ
- Equilibrium torque needs to be carefully subtracted *Kohno.Hatami.Bauer'14*

$$egin{aligned} & \mathcal{H}_{\mathcal{T}} = \int d^{3}r \mathcal{E} \Psi \ & \mathcal{E}: ext{Energy density} \ & \mathcal{\nabla} \Psi \sim rac{
abla T}{T} \end{aligned}$$

• Vector potential formulation of thermal effect (?)

$$H_{T} = \int d^{3}r \mathbf{A}_{T} \cdot \mathbf{j}_{\mathcal{E}}$$
$$\mathbf{j}_{\mathcal{E}} : \text{Energy current}$$
$$\mathbf{\dot{A}}_{T} \sim \frac{\nabla T}{T}$$

$$\dot{\mathcal{S}} = -\int d^3 r \frac{1}{T} \nabla \cdot \boldsymbol{j}_{\mathcal{E}}$$

Entropy change

Recent topics : Interface effects

• Rashba spin-orbit interaction Inversion symmetry broken

$$H_{
m R} = i \boldsymbol{E}_{
m R} \cdot (
abla imes oldsymbol{\sigma})$$

 $\textbf{\textit{E}}_{R}:$ Rashba field

• Large force on domain wall \Rightarrow Efficient motion

Obata>'08, Manchon&Zhang'09

• Experiment Miron'10,'11

- Pt/Co/ALO layer no inversion symmetry
- v = 400 m/s 100 times larger
- $j_{\rm c} = 10^{12} \text{ A/m}^2$ same order
- Rashba turned out not to be dominant

Recent topics : Interface effects

• Rashba spin-orbit interaction Inversion symmetry broken

$$H_{
m R} = i \boldsymbol{E}_{
m R} \cdot (
abla imes oldsymbol{\sigma})$$

 $\textbf{\textit{E}}_{R}:$ Rashba field

• Large force on domain wall \Rightarrow Efficient motion

Obata>'08, Manchon&Zhang'09

• Experiment Miron'10,'11

- Pt/Co/ALO layer no inversion symmetry
- v = 400 m/s 100 times larger
- $j_{\rm c} = 10^{12} \text{ A/m}^2$ same order
- Rashba turned out not to be dominant

• Spin Hall torque Emori'13

Recent topics : Interface effects

• Synthetic antiferromagnetic system Coupled two domain walls

Coupled two domain walls Saarikoski,Kohno,Marrows,GT'14

• Interlayer coupling removes random extrinsic pinning Two walls help each other to depin

Fast wall motion at low current by artificial structures

Electron transport in ferromagnetic metal

Rotation of magnetization
 Spin-transfer torque

 \Rightarrow Current-induced magnetization dynamics

Magnetic memory (MRAM)

• Rotation of conduction electron spin

Spin Berry's phase

 \Rightarrow Spin electromagnetic field

Electron transport in ferromagnetic metal

Rotation of magnetization

Spin-transfer torque

 \Rightarrow Current-induced magnetization dynamics

Magnetic memory (MRAM)

Rotation of conduction electron spin
 Spin Berry's phase
 Spin statements

 \Rightarrow Spin electromagnetic field

Spin electromagnetic field

• Effective vector potential

$$oldsymbol{A}_{
m s}=rac{1}{2}(1-\cos heta)\partial\phi$$

• Effective electromagnetic fields

$$\begin{aligned} \boldsymbol{E}_{\mathrm{s}} &= -\nabla \boldsymbol{A}_{\mathrm{s},0}^{z} + \partial_{t} \boldsymbol{A}_{\mathrm{s}}^{z} = -\frac{1}{2} \boldsymbol{n} \cdot (\boldsymbol{n} \times \nabla_{i} \boldsymbol{n}) \\ \boldsymbol{B}_{\mathrm{s}} &= \nabla \times \boldsymbol{A}_{\mathrm{s}}^{z} = \frac{1}{4} \sum_{jk} \epsilon_{ijk} \boldsymbol{n} \cdot (\nabla_{j} \boldsymbol{n} \times \nabla_{k} \boldsymbol{n}) \end{aligned}$$

Spin electromagnetic field

• Spin magnetic field

$$\boldsymbol{B}_{\mathrm{s},i} = \frac{\hbar}{4e} \sum_{jk} \epsilon_{ijk} \boldsymbol{n} \cdot (\nabla_j \boldsymbol{n} \times \nabla_k \boldsymbol{n})$$

• Spin electric field

- Chirality (non-coplanarity)
- Frustrated magnets, Magnetic skyrmion $\sim 0.8 \text{ T}$ for 30 nm size

$$m{E}_{\mathrm{s},i} = -rac{\hbar}{2e}m{n}\cdot(m{n} imes
abla_im{n})$$

- Non-coplanarity in space-time
- Moving structures $E_{\rm s} \propto v$ Domain wall, vortex, skyrmion ~ 0.1 V/m for 10 nm DW @ v = 4 m/s

Current generation from magnetization dynamics

Monopole in adiabatic spin Berry's phase

$$\begin{aligned} \boldsymbol{E}_{\mathrm{s}} &= -\frac{\hbar}{2e} \left[\boldsymbol{n} \cdot (\boldsymbol{\dot{n}} \times \nabla_{i} \boldsymbol{n}) \right] \\ \boldsymbol{B}_{\mathrm{s}} &= \frac{\hbar}{4e} \epsilon_{ijk} \boldsymbol{n} \cdot (\nabla_{j} \boldsymbol{n} \times \nabla_{k} \boldsymbol{n}) \end{aligned}$$

• Satisfy Maxwell's equations with monopole

$$\nabla \times \boldsymbol{E}_{s} + \partial_{t}\boldsymbol{B}_{s} = \boldsymbol{j}_{m}$$
$$\nabla \cdot \boldsymbol{B}_{s} = \rho_{m}$$
$$\boldsymbol{j}_{m} = \frac{\hbar}{4e} \sum_{jk} \boldsymbol{n} \cdot (\nabla_{j}\boldsymbol{n} \times \nabla_{k}\boldsymbol{n})$$
$$\rho_{m} = \frac{\hbar}{4e} \sum_{ijk} \nabla_{i}\boldsymbol{n} \cdot (\nabla_{j}\boldsymbol{n} \times \nabla_{k}\boldsymbol{n})$$

Topological monopole (Hedgehog)

Coupling to electromagnetic fields

Effective interaction Hamiltonian

Kawaguchi, GT'14

$$H_{\rm int} = \frac{e^2}{m} \int d^3r \left(2s_{\rm e} \tau \boldsymbol{E} \cdot \boldsymbol{A}_{\rm s} + 2s_{\rm e} \tau^2 \boldsymbol{E} \cdot \boldsymbol{E}_{\rm s} + b \boldsymbol{B} \cdot \boldsymbol{B}_{\rm s} \right)$$

- $\tau :$ Electron elastic lifetime
- \mathbf{A}_{s} is physical field Large *sd* splitting
- First term : Spin-transfer effect
- $B \Rightarrow B_{\rm s}$: Frustration

Electromagnetic excitation of spin electromagnetic fields (?)

Current generation from magnetization dynamics

• Spin Berry's phase

Gradient of spin $\nabla \textbf{\textit{S}} \Rightarrow$ Effective gauge field, $\textbf{\textit{E}}_{s}\text{, }\textbf{\textit{B}}_{s}$

• Spin-orbit interaction

$$H_{
m so} = oldsymbol{\lambda} \cdot (oldsymbol{p} imes oldsymbol{\sigma})$$

- Directly couples spin and electron motion
- Current generation ?
- Modification of spin Berry's phase ?

Kim'12, Takeuchi'12, Nakabayashi'14, Takashima, Fujimoto'14

Charge current pumped by magnetization

• $\dot{M} \Rightarrow \dot{j}_{s} \Rightarrow s \Rightarrow \dot{j}$

- Spin-orbit in heavy metal
- $\dot{M} \Rightarrow \dot{J}_{\rm s} \Rightarrow \dot{J}$
- 4µV @ mW microwave

Spin pumping and inverse spin Hall effects

• Spin pumping

$$j_{
m s}=g_{\updownarrow}\,{
m tanh}\,rac{d}{2\lambda_s}\left\langle m{S} imes \dot{m{S}}
ight
angle$$

 $g_{\uparrow\downarrow}$: Mixing conductance Spin flip at interface

• Inverse spin Hall

$$V =
ho_{
m n} \theta_{
m SHE} j_{
m s}$$

 $\theta_{\rm SHE}$: Spin Hall angle Spin-orbit interaction

•
$$V = \theta_{\text{SHE}} \rho_{\text{n}} g_{\uparrow} \tanh \frac{d}{2\lambda_s} \langle \boldsymbol{S} \times \dot{\boldsymbol{S}} \rangle$$

• Useful but incomplete description

- Two phenomenological parameters $heta_{
 m SHE}$, g_{\uparrow}
- Spin current is not defined uniquely Not conserved current
- $j \neq \theta_{SHE} j_s$ in a simple theoretical model Takeuchi,GT'10

Spin pumping and inverse spin Hall effects

• Feynman diagram

• Calculate current and motive force

$$egin{aligned} & H_A = \int dm{r} m{j}_{
m s} \cdot m{A}_{
m s} \ & m{j}_{
m s} : \ {
m Spin \ current} \ & m{A}_{
m s} & \sim m{\dot{M}}, m{
abla} m{M} : \ {
m Spin \ gauge \ field} \end{aligned}$$

• Conventional picture

Simple view of charge pumping

Takeuchi'12, GT PRB'13, Nakabayashi New J Phys'14

Model

- *sd* interaction *n*: Magnetization
- Rashba & Random Spin-orbit interaction

$$H = \left(-rac{\hbar^2}{2m}
abla^2 - \epsilon_F
ight) + \Delta_{
m sd} \left(oldsymbol{n} \cdot oldsymbol{\sigma}
ight) + oldsymbol{lpha}_{
m R} \cdot \left(oldsymbol{p} imes oldsymbol{\sigma}
ight) +
m spin$$
 relaxation

• Diagram calculation

- Force $\boldsymbol{F} \equiv \frac{m}{en} \left\langle \frac{d\boldsymbol{j}}{dt} \right\rangle$
- Pumped current **j** with Hall contribution

Rashba-induced spin electromagnetic field

GT'13, Nakabayashi>, New J Phys.'14

Result

$$\boldsymbol{j} = \frac{1}{\mu_{\rm s}} \nabla \times \boldsymbol{B}_{\rm R} + \sigma_{\rm s} \boldsymbol{E}_{\rm R}$$
$$\boldsymbol{F} = \boldsymbol{q}_{\boldsymbol{s}} \boldsymbol{E}_{\rm R} + \boldsymbol{q}_{\boldsymbol{s}} (\boldsymbol{v} \times \boldsymbol{B}_{\rm R})$$

• Rashba-induced spin electromagnetic field

$$\begin{aligned} \boldsymbol{E}_{\mathrm{R}} &= -\frac{m}{e\hbar} [\boldsymbol{\alpha}_{\mathrm{R}} \times (\boldsymbol{\dot{n}} + \boldsymbol{\beta}_{\mathrm{R}} (\boldsymbol{n} \times \boldsymbol{\dot{n}}))] \\ \boldsymbol{B}_{\mathrm{R}} &= \frac{m}{e\hbar} [\boldsymbol{\nabla} \times (\boldsymbol{\alpha}_{\mathrm{R}} \times \boldsymbol{n})] \end{aligned}$$

Linear order in $lpha_{
m R}$

 β_{R} : spin relaxation rate

*E*_R & *B*_R : Effective spin electromagnetic fields

 *E*_R ~ 2kV/m, *B*_R ~ 0.2kT
 Not charge electromagnetic fields

 Arise from Rashba interaction and spin dynamics

 Generalized spin Berry's phase

Effective spin electromagnetic field

• 'Maxwell's equations'

$$\begin{split} \boldsymbol{\nabla} \times \boldsymbol{\textit{E}}_{\mathrm{R}} + \dot{\boldsymbol{\textit{B}}}_{\mathrm{R}} &= \boldsymbol{\textit{j}}_{\mathrm{m}} \\ \boldsymbol{\nabla} \cdot \boldsymbol{\textit{B}}_{\mathrm{R}} &= \boldsymbol{0} \\ \boldsymbol{\nabla} \cdot \boldsymbol{\textit{E}}_{\mathrm{R}} &= -\frac{\rho_{\mathrm{s}}}{\epsilon_{\mathrm{s}}} \\ \boldsymbol{\nabla} \times \boldsymbol{\textit{B}}_{\mathrm{R}} - \epsilon_{\mathrm{s}} \mu_{\mathrm{s}} \dot{\boldsymbol{\textit{E}}}_{\mathrm{R}} &= \mu_{\mathrm{s}} \boldsymbol{\textit{j}} \end{split}$$

• $\mathbf{j}_{\mathrm{m}} = \beta_{\mathrm{R}} \nabla \times (\mathbf{\alpha}_{\mathrm{R}} \times (\mathbf{n} \times \dot{\mathbf{n}}))$ Monopole current

Monopole induced by magnetization dynamics and spin relaxation

 $j_{\rm m}$ is not spin current

Effective spin electromagnetic field

• Current pumping by magnetization dynamics in Rashba system

$$oldsymbol{
abla} imes oldsymbol{E}_{
m R} = oldsymbol{j}_{
m m}$$

 $oldsymbol{j}_{
m m} = eta_{
m R}
abla imes (oldsymbol{lpha}_{
m R} imes (oldsymbol{n} imes \dot{oldsymbol{n}}))$

- $\dot{\pmb{M}}
 ightarrow$ Monopole current $\pmb{j}_{
 m m} \Rightarrow \pmb{j}$
- Effective electromagnetic fields satisfying Maxwell's eq. + monopole
- Spin current is not necessary

Electromagnetic description of spintronics

Spintronics without spin current (?!)

Acknowledgements

Tokyo Metropolitan Univ. Akihito Takeuchi (\rightarrow Aoyama-gakuin), Norivuki Nakabayashi, Hideo Kawaguchi **RIKEN Henri Saarikoski** Nagoya Univ. Hiroshi Kohno Leeds Univ. Christopher H. Marrows Grants Kakenhi ^科研費 Japan Society for the Promotion of Science and The Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan

Summary

- sd exchange interaction in ferromagnetic metals
- Effective vector potential for spin
 - Current-induced torque, Spin dynamics
 - Spin Berry's phase
 - Spin-orbit effects
 - Novel driving mechanism of magnetization structures
 - Spin relaxation torque (β)
 - Rashba spin-orbit interaction Interface, Multilayers
 - Modification of spin Berry's phase Spin electromagnetic field
 - Spin-charge conversion
 - current generation by spin relaxation monopole $-\boldsymbol{\nabla}\times\boldsymbol{\textbf{\textit{E}}}_{R}=\boldsymbol{\textbf{\textit{j}}}_{m}$

References

- Nakabayashi, GT, New J Phys, **16**,015016(2014).
- Tatara, Nakabayashi, K.-J. Lee, Phys. Rev. B87,054403(2013).
- Takeuchi, Tatara, J. Phys. Soc. Jpn. 81,033705(2012).
- Kawaguchi, GT, J. Phys. Soc. Jpn. 83, 074710 (2014).
- Tatara, Takeuchi, Nakabayashi, Taguchi, J. Korean Phys. Soc. 61, 1331 (2012).
- GT, Kohno, Shibata, Phys. Rep. 468, 213 (2008)
- 数理科学7月号(2014)

