Bulk-edge correspondence in topological
transport and pumping




BEC: bulk-edge correspondence

. edge/surface
bulk properties oroperties
- energy bands, band gap mid-gap edge states
gapped, insulating > > gapless, metallic

- band structure & wave
function - number of

- presence/absence of




Topological vs. non-topological band structures

Tl topological insulator Ol: ordinary insulator




2D example: how to characterize the bulk

H = p,0. + pyo, + m(p)o. )
m(p) = mg + map

= P.(p)oy

® The winding number

1
N, =

87

d°p € M- [0y, M X O, 1], nu(p) =

mapping: p — nu(p)  R* — §




BEC in different formats

Case 1: topological insulator thin films

here, two specific examples:

Phys. Rev. B 92,
235407 (2015)

- correspondence in physical properties PYS. 176V, B 94,

bulk

235414 (2016)

penetration of top/bottom “surface” wave
function into the <<bulk>> of auxiliary 3D system

edge | 1D helical modes circulating around a thin-film




Case 1: topological insulator thin films

Model: standard Wilson-Dirac type

H&\R(k) = mzp(k)T,®15 + Z t,sink,T,®0, A 4
W=

spin & orbital

- gap/mass and Wilson terms
msp (k) = mg — Z b, cos k,
P=T,Y,2
- Topological classification

— periodic table (ten-fold way)
Ryu & Schnyder, PRB 2010

Present model: 3D, class All
Diagnosis: Z2 type
16 different types of topological
phases: g8 STI, 7 WTI, 1 Ol

/2 indices: o, (Vl, Vy, Vs)




The “periodic table” of topological insulators (ten-fold way)

Symmetry

0 0
1 1
2 0
3 1
4 0
5 1
6 0
7 |

Ryu & Schnyder, PRB 2010; Teo & Kane, PRB 2010



STI/WTI: two types of topological insulators

strong vs. weak

In reciprocal space

-2 0 2




Reduction to a thin film

NIREOINCING HRP (kap) = L. @ ( ma(kan)io + D tsinku,
construction: =z
0 1 0 —i
2D gap/mass and _@(1:°.:-. \®70+t"2/":°‘:" \@m
Wilson terms: 2 \ - 1 (1)) - \ e _OZ)
mQD(kQD) — ™Mo — Z b,u COS k'u :
H=T,Y Tl thin film = stacked 2D QSH layers

- Topological property as a quasi 2D system — still Z2 type

b, /by = 0.5 001 001 Phys. Rev. B 92,
235407 (2015)



Two characteristic patterns? — brick vs. stripe

WTI situation

1) stripe pattern: even-odd feature w.r.t. Nz
Nz: even hybridization of gapless helical edge modes
formation of the hybridization gap v = ()

edge point of view

oscillation of the surface wave function
In an auxiliary 3D
semi-infinite system
oscillation of the

Size gap <«—» sSurface wane
function

2) brick pattern:
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S surface/bulk
PR point of view

125425 (2014)




| . FPhys. Rev. B 89,
Oscillatory vs. over-damped regimes 125425 (2014)

t:zz /m2a:

TI-overdamped

Y

LoglO[EO]

mle hﬁsemi(x — Lx + l)l

oscillation of the

Energy gap surface wave function




Case of Weyl semimetal thin films

- Model Hamiltonian:  Huuik (k) = map (k)7 + Z tysink, 7,

H=x,y

gap/mass and Wilson terms are B

the same as the | case: m3p (k) = mo — Z by, cos ky,
U=Z,Y,2

— similar phase diagram




_— | _ Phys. Rev. B 94,
Thin film case: brick and stripe patterns 235414 (2016)

1
2
3
4
5
6
7
8
9
0

b, /b“ = 0.9
straight regular pattern cf. stripe pattern

— (Il (Chern insulator) :
Hop = mop(kop )7, + t,sink,T
_ stacked QAH layers 20 (k2p) M;y AR

contributions from each layer: map (k2p) = Mo — Z by, cos ky,
p=x,y
2

== % they all add up in the Cl phase:

o2
Uwy:NE ‘N|:NZ



brick regions | «— WSM (Weyl semimetal)

cross sections at kz = fixed in the reciprocal space
QAH, i.e., C(kz) =41 if —ko <k, <k
Ol,i.e., C(k,) =0 otherwise

WSM = partially broken CI|  |N| < N,

2D topological character of the constituent QAH layers are
only partially maintained

Similarly, i e topological nature of

constituent laye




Hosur & Qi, CRP ’13

kz



What is the precise relation between the two systems?
Tl vs. WSM cases

- both 3D bulk & 2D thin-film phase diagrams look very similar

Remark: | In the limit of All the phase boundaries forming the
t, — 0 brick and stripe patterns coincide

in TI and WSM thin-film cases




The reason is simple...

1) Tl thin films:
HX P (kap) = 1y, ® | map (kap )0 + Z t, sin kﬂq/ﬂ)

/(01 \“ i
10

Hﬁlm(kﬁgD) =1y, ® mQD(kQD)Tg_ - Z ty SinkM.T,u




Then, how is the nature of brick patterns in the WSM case?

Reminder: nature
of brick patterns

oscillation of the surface wave function
In an auxiliary 3D semi-infinite system

However, in the WSM model, there is no surface state
on top and at bottom

Answer: As approaching the limit ¢, — 0

The surface Dirac cones in the WTI/STI model sink into the

~ bulk, transforming into a pair of Dirac/\Weyl cones




A short summary

- Relation between the STI/WTI vs.
WSM type models

“A thin-film point of view”

WT| «—=>Cl| ------------- stripe region
STI <> WSM --------- brick region

- How about the role of <<bulk-edge>> correspondence?




A short detour on the role of disorder

R : N .
P &4 b @ Y N 4 = 5 Ty w LW i 2 ol s N g v




Phase diagram of 2D | g7 | Rashba vs. Tl thin film
disordered TI

- No direct transition between
different topological phases in 2D

potential disorder marginal in 2D

- metal in between (symplectic
symmetry class)

BHZ + Rashba (localization length)
JPSJ 80, 053703 (2011)
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N, =3 thin-film calculation (conductance) Phys. Rev. B 92, 235407 (2015)



cf.

Phase diagram of 3D disordered Tl

Direct transitions!

between different topological phases in 3D

potential disorder irrelevant in 3D

Phys. Rev. Lett. 110, 236803 (2013)



Case of disordered WSM thin films

- two-terminal
conductance

Phys. Rev. B 94,
235414 (2016)

co-propagating
regime

Co- vs. Counter-
propagating
regimes

% b = counter-propagating

regime



Two-terminal vs. Hall conductances

Chern number = Hall conductance [ Ny \
o2 o2 # of left- and right-
Gu = (Nt — N_)E = /\/‘% \ going chiral modes |

2

G = (N +N_)—

while the two-terminal
conductance

measures the number of transmitting channels

They differ

|- 1IN tThe presence Oof counter-propagating moades & |




Case 2: topological quantum pump

R : N .
P &4 b @ Y N 4 = 5 Ty w LW i 2 ol s N g v




Why pumping?

1) Experiments in cold atoms

Nakajima et al., Nature Phys., 2015;
Lohse et al., ibid.

2) Nobel prize in physics 2016

TKNN vs. Thouless pump

QHE| «— |topological pumping

2D 1+1D Thouless, PRB 1983 correspondence:

t
Ky, Ky Leaast ky < 27

- mathematically equivalent (classification, etc.)

- physics different: different physical quantities, different physical
pictures

cf. Laughlin’s argument: pump version?
original: for QHE —— Hatsugai & Fukui, PRB 2016



Topological pumping| in the snapshot picture (adiabatic limit)

_ Hatsugai & Fukui, PRB 2016
Harper/AA model (pump version)
AA = Aubry-Andre

L2

Ht)y= Y [tm|w+l)(w|+(h.c.)+V(:c,t)|:1:)(w|]

x=—L/2

| Vix.t): periodic in 1
“Laughlin’s geometry” Lctipetiodiciingtine

- periodic in t V(z,t) = 2t, cos [27:‘ (i i qﬂm)]
- finite (w/ edges) in the x-direction T

olated to the Chern n "._.- ANS.:




Polarization/center of mass

. 1 4
() = LZ l|¢a(lwt)|2

@ T/ filled states
half-integral jumps!

=]

1 \
AT — 5sgn(g;cma,;c)[sgn(slope)]
n—
2

jumps: edge effects
continuous part: bulk contribution

“bulk contribution” Is relevant

I skip jJumps & reconstruct
the continuous part:

Aa_jner, —= - Z Ai,]llmp(t.?n)
{in}

Recall: z(to + T) — z(to) = 0

Hatsugai & Fukui, PRB 2016



Consideration on . .
in the polarization

curve

Jumps vs. continuous part

or edge vs. bulk contributions

or consideration on the adiabatic conditions:

. . N bulk: Aebulk = €
The adiabatic condition: T > h/Ae

edge: Aeegge — 0
tedge — h/Aeedge — O
Realistic situation: el . Nemp o Wagee

OUIK: adiabatic  Jumps due to the edge modes are




A short summary: Origin of quantization = half-integral jumps

AZpet = — Z AZiump(t;, ) |edge quantity
{7}

_ Z'Cn

™ filled bands

bulk topological
iInvariant

- pump version of
BEC Laughlin’s argument

- pump version of BEC
BEC: bulk-edge correspondence




arXiv:1706.04493

Snapshot spectrum:

In the presence of disorder
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Quantized vs. non-quantized jumps

- Non-quantized jumps: jumps due to impurities

AZ = (x)imp|—sgn(slope)) occupy/empty

- appear in pairs: appear/disappear
- Irrelevant to the pumped charge

- Quantized jumps:
— 1
jumps due to AT = §Sgn($edge)[_sgﬂ(slope)] —

2
edge states R or L . .
e Fe—a - also appear in pairs, out ...

— — ' —— - . [ ¢ b




Conclusions

- two examples, in which

BEC manifests as a one-to-one relation between
<<visible>> physical quantities in the bulk and at the edge

- highlighted a rather specific role of

bulk in case 1: topological insulator thin films

penetration of the"surface” wave function into the




