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BEC: bulk-edge correspondence

bulk properties edge/surface 
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gapped, insulating

mid-gap edge states

gapless, metallic

nontrivial vs. trivial
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TI: topological insulator OI: ordinary insulator

edge/surface 
states

2D vs. 3D examples

inverted gap normal band

Topological vs. non-topological band structures



• The winding number

2D example: how to characterize the bulk

mapping:

stereographic 
projection



BEC in different formats

Case 1: topological insulator thin films

Case 2: topological quantum pump

- correspondence in physical properties

penetration of top/bottom “surface” wave 
function into the <<bulk>> of auxiliary 3D system

1D helical modes circulating around a thin-film

bulk

edge

here, two specific examples:

- Laughlin’s argument, a version of BEC
- pump version: more intuitive interpretation
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Case 1: topological insulator thin films
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Model: standard Wilson-Dirac type

- Topological classification

HWD
bulk(k) = m3D(k)�z�12 +

�

µ=x,y,z

tµ sin kµ�x��µ

m3D(k) = m0 �
�

µ=x,y,z

bµ cos kµ

- gap/mass and Wilson terms

4� 4
spin & orbital

16 different types of topological 
phases:

periodic table (ten-fold way)

Present model: 3D, class AII
Diagnosis: Z2 type

8 STI, 7 WTI, 1 OI
⌫0, (⌫1, ⌫2, ⌫3)Z2 indices:

Ryu & Schnyder, PRB 2010



Finally, in Sec. V we will regard r as including a temporal
variable, and apply the considerations in this paper to clas-
sify cyclic pumping processes. The Thouless charge
pump60,61 corresponds to a nontrivial cycle in a system with
no symmetries and !=0 !d=D=1". A similar pumping sce-
nario can be applied to superconductors and defines a fer-
mion parity pump. This, in turn, is related to the non-Abelian
statistics of Ising anyons and provides a framework for un-
derstanding braidless operations on systems of three-
dimensional superconductors hosting Majorana fermion
bound states. Details of several technical calculations can be
found in the Appendices. An interesting recent preprint by
Freedman et al.,62 which appeared when this manuscript was
in its final stages discusses some aspects of the classification
of topological defects in connection with a rigorous theory of
non-Abelian statistics in higher dimensions.

II. PERIODIC TABLE FOR DEFECT CLASSIFICATION

Table I shows the generalized periodic table for the clas-
sification of topological defects in insulators and supercon-
ductors. It describes the equivalence classes of Hamiltonians
H!k ,r", that can be continuously deformed into one another
without closing the energy gap, subject to constraints of
particle-hole and/or time-reversal symmetry. These are map-
pings from a base space defined by !k ,r" to a classifying
space, which characterizes the set of gapped Hamiltonians.
In order to explain the table, we need to describe !i" the
symmetry classes, !ii" the base space, !iii" the classifying
space, and !iv" the notion of stable equivalence. The repeat-
ing patterns in the table will be discussed in Sec. II C. Much
of this section is a review of material in Refs. 35 and 36.
What is new is the extension to D"0.

A. Symmetry classes

The presence or absence of time reversal symmetry,
particle-hole symmetry, and/or chiral symmetry define the
ten Altland-Zirnbauer symmetry classes.44 Time-reversal
symmetry implies that

H!k,r" = #H!− k,r"#−1, !2.1"

where the antiunitary time reversal operator may be written
#=ei$Sy/%K. Sy is the spin and K is complex conjugation. For
spin-1/2 fermions, #2=−1, which leads to Kramers theorem.
In the absence of a spin-orbit interaction, the extra invariance
of the Hamiltonian under rotations in spin space allows an
additional time-reversal operator #!=K to be defined, which
satisfies #!2=+1.

Particle-hole symmetry is expressed by

H!k,r" = − &H!− k,r"&−1, !2.2"

where & is the antiunitary particle-hole operator. Fundamen-
tally, &2=+1. However, as was the case for #, the absence
of spin-orbit interactions introduces an additional particle-
hole symmetry, which can satisfy &2=−1.

Finally, chiral symmetry is expressed by a unitary opera-
tor ', satisfying

H!k,r" = − 'H!k,r"'−1. !2.3"

A theory with both particle-hole and time-reversal symme-
tries automatically has a chiral symmetry '=ei(#&. The
phase ( can be chosen so that '2=1.

Specifying #2=0 , )1, &2=0 , )1, and '2=0 ,1 !here 0
denotes the absence of symmetry" defines the ten Altland-
Zirnbauer symmetry classes. They can be divided into two
groups: eight real classes that have anti unitary symmetries
# and or & plus two complex classes that do not have anti
unitary symmetries. Altland and Zirnbauer’s notation for
these classes, which is based on Cartan’s classification of
symmetric spaces, is shown in the left-hand part of Table I.

To appreciate the mathematical structure of the eight real
symmetry classes it is helpful to picture them on an 8 h
“clock,” as shown in Fig. 2. The x and y axes of the clock
represent the values of &2 and #2. The “time” on the clock
can be represented by an integer s defined modulo 8.
Kitaev36 used a slightly different notation to label the sym-
metry classes. In his formulation, class D is described by a
real Clifford algebra with no constraints, and in the other

TABLE I. Periodic table for the classification of topological defects in insulators and superconductors. The rows correspond to the
different Altland Zirnbauer !AZ" symmetry classes while the columns distinguish different dimensionalities, which depend only on !=d
−D.

Symmetry !=d−D
s AZ #2 &2 '2 0 1 2 3 4 5 6 7
0 A 0 0 0 Z 0 Z 0 Z 0 Z 0
1 AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

0 AI 1 0 0 Z 0 0 0 2Z 0 Z2 Z2

1 BDI 1 1 1 Z2 Z 0 0 0 2Z 0 Z2

2 D 0 1 0 Z2 Z2 Z 0 0 0 2Z 0
3 DIII −1 1 1 0 Z2 Z2 Z 0 0 0 2Z
4 AII −1 0 0 2Z 0 Z2 Z2 Z 0 0 0
5 CII −1 −1 1 0 2Z 0 Z2 Z2 Z 0 0
6 C 0 −1 0 0 0 2Z 0 Z2 Z2 Z 0
7 CI 1 −1 1 0 0 0 2Z 0 Z2 Z2 Z

TOPOLOGICAL DEFECTS AND GAPLESS MODES IN… PHYSICAL REVIEW B 82, 115120 !2010"

115120-3

Ryu & Schnyder, PRB 2010; Teo & Kane, PRB 2010

The “periodic table” of topological insulators (ten-fold way)



STI/WTI: two types of topological insulators

STI WTI

In real space

In reciprocal space
strong vs. weak 
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Two characteristic patterns? brick vs. stripe 

1) stripe pattern:

2) brick pattern:

Nz: even 

Nz: odd 

hybridization of gapless helical edge modes

a single gapless combination 
remains

in an auxiliary 3D 
semi-infinite system 

STI situation

surface/bulk 
point of view

edge point of view

formation of the hybridization gap � = 0

� = 1

WTI situation even-odd feature w.r.t. Nz

 oscillation of the surface wave function
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Finally, we solve the secular equation [the determinant of the
coefficient matrix of Eq. (64) = 0] for δE to find the magnitude
the finite-size gap. Solving the secular equation, we recall the
relations such as

ρ−1
2± = ρ1∓,

m̄1± = γ1± = t̃x

2

(
ρ1± − ρ−1

1±
)

(65)

= t̃x

2

(
ρ−1

2∓ − ρ2∓
)

= −γ2∓ = m̄2∓.

One finds

δE = ±2
[

1 −
(

ϵ2x

m2x

)2] ρ
Lx+1
1− − ρ

Lx+1
1+

1
m̄1−

− 1
m̄1+

∓ ϵ2x

m2x

( ρ
Lx+1
1+
m̄1−

− ρ
Lx+1
1−
m̄1+

)

= ±2
[

1 −
(

ϵ2x

m2x

)2] ρ
−Lx−1
2+ − ρ

−Lx−1
2−

1
m̄2+

− 1
m̄2−

∓ ϵ2x

m2x

( ρ
−Lx−1
2−
m̄2+

− ρ
−Lx−1
2+
m̄2−

)

≡ δE±. (66)

Note that the second term in the denominator of Eq. (66) is
much smaller than the first term, and in most cases irrelevant.
When this is the case, one may convince oneself by comparing
Eqs. (66) and (53), that the magnitude of the finite-size energy
gap |δE+ − δE−| ≡ 2E0 in the slab of a thickness Lx is
directly proportional to the amplitude of the wave function
at the depth of x = Lx + 1 [18], i.e.,

2E0(Lx) ≃ 4
N

1 −
(

ϵ2x

m2x

)2

∣∣ 1
m̄1+

− 1
m̄1−

∣∣ |ψsemi(x = Lx + 1)|. (67)

Here, ψsemi represents the surface wave function in the semi-
infinite geometry as given in Eq. (52). Equations (66) and (67),
together with the formulas for the phase boundary [Eqs. (45)
and (54)] constitute the central result of this paper.

VI. COMPARISON OF ANALYTIC
VERSUS NUMERICAL RESULTS

To check the validity of the analyses in the preceding
sections, let us compare the finite-size energy gap obtained
numerically in slab-shaped samples with the formulas we
found so far [Eqs. (45), (54), (66), and (67)]. Let us consider
the case of following model parameters deduced from material
parameters of Bi2Se3 [25]:

m0 = −0.28, m2x = 0.216,
(68)

ϵ0 = −0.0083, ϵ2x = 0.024, tx = 0.32,

in units of eV. In the original 3D bulk Hamiltonian, the
remaining set of parameters,

m2y = m2z = 2.6, ϵ2y = ϵ2z = 1.77, ty = tz = 0.8, (69)

is also relevant. The set of parameters specified by Eq. (68)
corresponds in the phase diagram of Fig. 2 to a point
(m0/m2x,t̃x/m2x) = (−1.3,1.51), denoted in the figure by a
filled red circle, which falls on the “TI-oscillatory” phase,
exhibiting a surface state with a damped oscillatory wave
function. Note that the phase boundary between the TI-
oscillatory and TI-overdamped phases is a circle represented
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FIG. 4. (Color online) Thickness (Lx) dependence of the (half)
size energy gap E0 in TI thin films. Comparison of E0(Lx) found
by numerical diagonalization of the tight-binding Hamiltonian with
open boundary conditions at x = 1 and Lx [for a given set of model
parameters, this appears as a series of points with the same symbol
and color] and the same dependence predicted by Eq. (66) [shown
as a continuous line in the same color]. For the series of filled red
points, the model parameters are chosen as given in Eq. (68). In
Fig. 2, this corresponds to a point (m0/m2x,t̃x/m2x) = (−1.3,1.51)
as indicated by the same symbol and color. The other set of points
corresponds to ϵ2x/m2x = 0.3,0.5,0.7,0.9, i.e., the asymmetry in the
spectrum of valence and conduction bands is enhanced from the
original Bi2Se3 value. These sets of points are all on the (dotted) line
(m0/m2x = −1.3 in Fig. 2, while the value of effective hopping t̃x
varies as t̃x/m2x = 1.57,1.73,2.10,3.44). The corresponding points
are indicated by the same symbol and color in Fig. 2. Experimental
values that have appeared in Refs. [8] and [9] are also shown in the
figure in plus and asterisk symbols for comparison.

by Eq. (54) in the (m0/m2x,t̃x/m2x) plane, while the magnitude
of the effective hopping t̃x given in Eq. (45) is a function of ϵ2x .
Note that ϵ2x encodes asymmetry of the spectrum in the valence
and conduction bands. This signifies that one can drive the
system from the original TI-oscillatory to the TI-overdamped
phase by tuning the asymmetry parameter ϵ2x .

In Fig. 4, we show the thickness (Lx) dependence of
the (half) size gap E0 calculated by numerical diagonaliza-
tion of the tight-binding Hamiltonian with open boundary
conditions at x = 0 and Lx + 1, superposed on the same
dependence predicted by Eq. (66). The value of the parameter
ϵ2x/m2x is varied from its original value ϵ2x/m2x = 0.11 to
ϵ2x/m2x = 0.3,0.5,0.7,0.9, which leads, respectively, to the
value of t̃x/m2x = 1.57,1.73,2.10,3.44. The corresponding
point in the (m0/m2x,t̃x/m2x) plane is specified in Fig. 2,
respectively, by a filled square in purple (ϵ2x/m2x = 0.3), a
rhombus in light blue (ϵ2x/m2x = 0.5), an upper green triangle
(ϵ2x/m2x = 0.7), and a lower orange triangle (ϵ2x/m2x = 0.9).
In Fig. 4, the Lx dependence of E0 at these values of the
parameter ϵ2x/m2x is indicated by points represented by the
same symbol and color. The corresponding theoretical curve
specified by Eq. (66) is superposed on the same figure indicated
by a continuous curve of the same color. Since the phase
boundary between TI-oscillatory and TI-overdamped phases
is located at t̃x/m2x = 1.8735 on the line m0/m2x = −1.3,
Lx dependence of E0 also shows a crossover from a damped

125425-8
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FIG. 1. (Color online) Topological protection, or winding in the 1D model. (a) arg q plotted as a function of kx in the trivial (m0/m2x = 0.1,
blue curve) and nontrivial (m0/m2x = −1.3, red curve) phases. (b) Locus of the points: (Re q,Im q) when kx sweeps once the entire Brillouin
zone: kx ∈ [−π,π ] [blue: m0/m2x = 0.1, (red, dotted): m0/m2x = −1.3]. (c) Global behavior of arg q in the (m0/m2x,kx) plane. When
m0/m2x ∈ [−4,0], the winding number N1 as defined in Eq. (13) becomes nonzero.
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FIG. 2. (Color online) Phase diagram of the 1D topological insu-
lator in the space of mass and hooping parameters [(m0/m2x,t̃x/m2x)
plane]. As given in Eq. (45), t̃x is a function of ϵ2x . The latter encodes
asymmetry of the valence and conduction bands [see Eq. (3)].

can express it as

h1D = m̂0τz + t̂xpxτx + ϵ̂012, (16)

in an approximation keeping only the terms up to linear order
in px (k · p approximation), where kx = k(0)

x + px . Then one
can define δkx

such that

δkx
= sgn(m̂0) sgn(t̂x). (17)

In the following, we assume, without loss of generality, tx > 0,
and also m2x > 0 [26], then m0 > 0 (the case of a normal gap)
corresponds to a trivial phase with δkx=0 = +1 and δkx=π = −1
(therefore, N1 = 0) (see Table I).

TABLE I. Band inversion in the 1D model; m2x > 0 is assumed.
Comparison of bulk-band indices δkx and the winding number N1.

δkx=0 δkx=π N1

0 < m0/m2x + − 0

−4 < m0/m2x < 0 − − 1

m0/m2x < −4 − + 0

125425-3
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Finally, we solve the secular equation [the determinant of the
coefficient matrix of Eq. (64) = 0] for δE to find the magnitude
the finite-size gap. Solving the secular equation, we recall the
relations such as

ρ−1
2± = ρ1∓,

m̄1± = γ1± = t̃x

2

(
ρ1± − ρ−1

1±
)

(65)

= t̃x

2

(
ρ−1

2∓ − ρ2∓
)

= −γ2∓ = m̄2∓.

One finds

δE = ±2
[

1 −
(

ϵ2x

m2x

)2] ρ
Lx+1
1− − ρ

Lx+1
1+

1
m̄1−

− 1
m̄1+

∓ ϵ2x

m2x

( ρ
Lx+1
1+
m̄1−

− ρ
Lx+1
1−
m̄1+

)

= ±2
[

1 −
(

ϵ2x

m2x

)2] ρ
−Lx−1
2+ − ρ

−Lx−1
2−

1
m̄2+

− 1
m̄2−

∓ ϵ2x

m2x

( ρ
−Lx−1
2−
m̄2+

− ρ
−Lx−1
2+
m̄2−

)

≡ δE±. (66)

Note that the second term in the denominator of Eq. (66) is
much smaller than the first term, and in most cases irrelevant.
When this is the case, one may convince oneself by comparing
Eqs. (66) and (53), that the magnitude of the finite-size energy
gap |δE+ − δE−| ≡ 2E0 in the slab of a thickness Lx is
directly proportional to the amplitude of the wave function
at the depth of x = Lx + 1 [18], i.e.,

2E0(Lx) ≃ 4
N

1 −
(

ϵ2x

m2x

)2

∣∣ 1
m̄1+

− 1
m̄1−

∣∣ |ψsemi(x = Lx + 1)|. (67)

Here, ψsemi represents the surface wave function in the semi-
infinite geometry as given in Eq. (52). Equations (66) and (67),
together with the formulas for the phase boundary [Eqs. (45)
and (54)] constitute the central result of this paper.

VI. COMPARISON OF ANALYTIC
VERSUS NUMERICAL RESULTS

To check the validity of the analyses in the preceding
sections, let us compare the finite-size energy gap obtained
numerically in slab-shaped samples with the formulas we
found so far [Eqs. (45), (54), (66), and (67)]. Let us consider
the case of following model parameters deduced from material
parameters of Bi2Se3 [25]:

m0 = −0.28, m2x = 0.216,
(68)

ϵ0 = −0.0083, ϵ2x = 0.024, tx = 0.32,

in units of eV. In the original 3D bulk Hamiltonian, the
remaining set of parameters,

m2y = m2z = 2.6, ϵ2y = ϵ2z = 1.77, ty = tz = 0.8, (69)

is also relevant. The set of parameters specified by Eq. (68)
corresponds in the phase diagram of Fig. 2 to a point
(m0/m2x,t̃x/m2x) = (−1.3,1.51), denoted in the figure by a
filled red circle, which falls on the “TI-oscillatory” phase,
exhibiting a surface state with a damped oscillatory wave
function. Note that the phase boundary between the TI-
oscillatory and TI-overdamped phases is a circle represented
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FIG. 4. (Color online) Thickness (Lx) dependence of the (half)
size energy gap E0 in TI thin films. Comparison of E0(Lx) found
by numerical diagonalization of the tight-binding Hamiltonian with
open boundary conditions at x = 1 and Lx [for a given set of model
parameters, this appears as a series of points with the same symbol
and color] and the same dependence predicted by Eq. (66) [shown
as a continuous line in the same color]. For the series of filled red
points, the model parameters are chosen as given in Eq. (68). In
Fig. 2, this corresponds to a point (m0/m2x,t̃x/m2x) = (−1.3,1.51)
as indicated by the same symbol and color. The other set of points
corresponds to ϵ2x/m2x = 0.3,0.5,0.7,0.9, i.e., the asymmetry in the
spectrum of valence and conduction bands is enhanced from the
original Bi2Se3 value. These sets of points are all on the (dotted) line
(m0/m2x = −1.3 in Fig. 2, while the value of effective hopping t̃x
varies as t̃x/m2x = 1.57,1.73,2.10,3.44). The corresponding points
are indicated by the same symbol and color in Fig. 2. Experimental
values that have appeared in Refs. [8] and [9] are also shown in the
figure in plus and asterisk symbols for comparison.

by Eq. (54) in the (m0/m2x,t̃x/m2x) plane, while the magnitude
of the effective hopping t̃x given in Eq. (45) is a function of ϵ2x .
Note that ϵ2x encodes asymmetry of the spectrum in the valence
and conduction bands. This signifies that one can drive the
system from the original TI-oscillatory to the TI-overdamped
phase by tuning the asymmetry parameter ϵ2x .

In Fig. 4, we show the thickness (Lx) dependence of
the (half) size gap E0 calculated by numerical diagonaliza-
tion of the tight-binding Hamiltonian with open boundary
conditions at x = 0 and Lx + 1, superposed on the same
dependence predicted by Eq. (66). The value of the parameter
ϵ2x/m2x is varied from its original value ϵ2x/m2x = 0.11 to
ϵ2x/m2x = 0.3,0.5,0.7,0.9, which leads, respectively, to the
value of t̃x/m2x = 1.57,1.73,2.10,3.44. The corresponding
point in the (m0/m2x,t̃x/m2x) plane is specified in Fig. 2,
respectively, by a filled square in purple (ϵ2x/m2x = 0.3), a
rhombus in light blue (ϵ2x/m2x = 0.5), an upper green triangle
(ϵ2x/m2x = 0.7), and a lower orange triangle (ϵ2x/m2x = 0.9).
In Fig. 4, the Lx dependence of E0 at these values of the
parameter ϵ2x/m2x is indicated by points represented by the
same symbol and color. The corresponding theoretical curve
specified by Eq. (66) is superposed on the same figure indicated
by a continuous curve of the same color. Since the phase
boundary between TI-oscillatory and TI-overdamped phases
is located at t̃x/m2x = 1.8735 on the line m0/m2x = −1.3,
Lx dependence of E0 also shows a crossover from a damped
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Finally, we solve the secular equation [the determinant of the
coefficient matrix of Eq. (64) = 0] for δE to find the magnitude
the finite-size gap. Solving the secular equation, we recall the
relations such as

ρ−1
2± = ρ1∓,

m̄1± = γ1± = t̃x

2

(
ρ1± − ρ−1

1±
)

(65)

= t̃x

2

(
ρ−1

2∓ − ρ2∓
)

= −γ2∓ = m̄2∓.

One finds

δE = ±2
[

1 −
(

ϵ2x

m2x

)2] ρ
Lx+1
1− − ρ

Lx+1
1+

1
m̄1−

− 1
m̄1+

∓ ϵ2x

m2x

( ρ
Lx+1
1+
m̄1−

− ρ
Lx+1
1−
m̄1+

)

= ±2
[

1 −
(

ϵ2x

m2x

)2] ρ
−Lx−1
2+ − ρ

−Lx−1
2−

1
m̄2+

− 1
m̄2−

∓ ϵ2x

m2x

( ρ
−Lx−1
2−
m̄2+

− ρ
−Lx−1
2+
m̄2−

)

≡ δE±. (66)

Note that the second term in the denominator of Eq. (66) is
much smaller than the first term, and in most cases irrelevant.
When this is the case, one may convince oneself by comparing
Eqs. (66) and (53), that the magnitude of the finite-size energy
gap |δE+ − δE−| ≡ 2E0 in the slab of a thickness Lx is
directly proportional to the amplitude of the wave function
at the depth of x = Lx + 1 [18], i.e.,

2E0(Lx) ≃ 4
N

1 −
(

ϵ2x

m2x

)2

∣∣ 1
m̄1+

− 1
m̄1−

∣∣ |ψsemi(x = Lx + 1)|. (67)

Here, ψsemi represents the surface wave function in the semi-
infinite geometry as given in Eq. (52). Equations (66) and (67),
together with the formulas for the phase boundary [Eqs. (45)
and (54)] constitute the central result of this paper.

VI. COMPARISON OF ANALYTIC
VERSUS NUMERICAL RESULTS

To check the validity of the analyses in the preceding
sections, let us compare the finite-size energy gap obtained
numerically in slab-shaped samples with the formulas we
found so far [Eqs. (45), (54), (66), and (67)]. Let us consider
the case of following model parameters deduced from material
parameters of Bi2Se3 [25]:

m0 = −0.28, m2x = 0.216,
(68)

ϵ0 = −0.0083, ϵ2x = 0.024, tx = 0.32,

in units of eV. In the original 3D bulk Hamiltonian, the
remaining set of parameters,

m2y = m2z = 2.6, ϵ2y = ϵ2z = 1.77, ty = tz = 0.8, (69)

is also relevant. The set of parameters specified by Eq. (68)
corresponds in the phase diagram of Fig. 2 to a point
(m0/m2x,t̃x/m2x) = (−1.3,1.51), denoted in the figure by a
filled red circle, which falls on the “TI-oscillatory” phase,
exhibiting a surface state with a damped oscillatory wave
function. Note that the phase boundary between the TI-
oscillatory and TI-overdamped phases is a circle represented

0 5 10 15 20
10

8

6

4

2

0

Lx

Lo
g1
0
E0

FIG. 4. (Color online) Thickness (Lx) dependence of the (half)
size energy gap E0 in TI thin films. Comparison of E0(Lx) found
by numerical diagonalization of the tight-binding Hamiltonian with
open boundary conditions at x = 1 and Lx [for a given set of model
parameters, this appears as a series of points with the same symbol
and color] and the same dependence predicted by Eq. (66) [shown
as a continuous line in the same color]. For the series of filled red
points, the model parameters are chosen as given in Eq. (68). In
Fig. 2, this corresponds to a point (m0/m2x,t̃x/m2x) = (−1.3,1.51)
as indicated by the same symbol and color. The other set of points
corresponds to ϵ2x/m2x = 0.3,0.5,0.7,0.9, i.e., the asymmetry in the
spectrum of valence and conduction bands is enhanced from the
original Bi2Se3 value. These sets of points are all on the (dotted) line
(m0/m2x = −1.3 in Fig. 2, while the value of effective hopping t̃x
varies as t̃x/m2x = 1.57,1.73,2.10,3.44). The corresponding points
are indicated by the same symbol and color in Fig. 2. Experimental
values that have appeared in Refs. [8] and [9] are also shown in the
figure in plus and asterisk symbols for comparison.

by Eq. (54) in the (m0/m2x,t̃x/m2x) plane, while the magnitude
of the effective hopping t̃x given in Eq. (45) is a function of ϵ2x .
Note that ϵ2x encodes asymmetry of the spectrum in the valence
and conduction bands. This signifies that one can drive the
system from the original TI-oscillatory to the TI-overdamped
phase by tuning the asymmetry parameter ϵ2x .

In Fig. 4, we show the thickness (Lx) dependence of
the (half) size gap E0 calculated by numerical diagonaliza-
tion of the tight-binding Hamiltonian with open boundary
conditions at x = 0 and Lx + 1, superposed on the same
dependence predicted by Eq. (66). The value of the parameter
ϵ2x/m2x is varied from its original value ϵ2x/m2x = 0.11 to
ϵ2x/m2x = 0.3,0.5,0.7,0.9, which leads, respectively, to the
value of t̃x/m2x = 1.57,1.73,2.10,3.44. The corresponding
point in the (m0/m2x,t̃x/m2x) plane is specified in Fig. 2,
respectively, by a filled square in purple (ϵ2x/m2x = 0.3), a
rhombus in light blue (ϵ2x/m2x = 0.5), an upper green triangle
(ϵ2x/m2x = 0.7), and a lower orange triangle (ϵ2x/m2x = 0.9).
In Fig. 4, the Lx dependence of E0 at these values of the
parameter ϵ2x/m2x is indicated by points represented by the
same symbol and color. The corresponding theoretical curve
specified by Eq. (66) is superposed on the same figure indicated
by a continuous curve of the same color. Since the phase
boundary between TI-oscillatory and TI-overdamped phases
is located at t̃x/m2x = 1.8735 on the line m0/m2x = −1.3,
Lx dependence of E0 also shows a crossover from a damped
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Case of Weyl semimetal thin films

- Model Hamiltonian: HCI
bulk(k) = m3D(k)�z +
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Thin film case:
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 they all add up in the CI phase:
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brick regions
cross sections at kz = fixed in the reciprocal space

QAH, i.e.,
OI, i.e.,

WSM = partially broken CI
2D topological character of the constituent QAH layers are 
only partially maintained

|N | < Nz

if �k0 < kz < k0

otherwise

STI as partially broken WTI

stripe 
pattern

brick 
pattern

WTI
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topological nature of 
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system

partially broken

Similarly,

WSM (Weyl semimetal)

in TI thin films

case of WSM thin films

C(kz) = ±1
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P. Hosur, X. Qi / C. R. Physique 14 (2013) 857–870 859

Fig. 1. (Color online.) Weyl semimetal with a pair of Weyl nodes of opposite chirality (denoted by different colors green and blue) in a slab geometry. The
surface has unusual Fermi arc states (shown by red curves) that connect the projections of the Weyl points on the surface. C is the Chern number of the
2D insulator at fixed momentum along the line joining the Weyl nodes. The Fermi arcs are nothing but the gapless edge states of the Chern insulators
strung together.

Nielsen and Ninomiya [10,11] showed that the total magnetic charge in a band structure must be zero, which implies
that the total number of Weyl nodes must be even, with half of each chirality. The argument is simple and runs as follows.
Each 2D slice in momentum space that does not contain any Weyl nodes can be thought of as a Chern insulator. Since
Weyl nodes emit Chern flux, the Chern number changes by χ as one sweeps the slices past a Weyl node of chirality χ .
Clearly, the Chern numbers of slices will be periodic across the Brillouin zone if and only if there are as many Weyl nodes
of chirality χ as there are of chirality −χ . Such a notion of chirality does not exist for graphene or the surface states of
topological insulators, which also consist of 2D Dirac nodes, because the Berry phase around a Fermi surface is π which is
indistinguishable from −π .

The fact that each Weyl node is chiral and radiates Chern flux leads to another marvelous phenomenon absent in two
dimensions – the chiral anomaly. The statement is as follows: suppose the universe (or, for condensed matter purposes, the
band structure) consisted only of Weyl electrons of chirality χ and none of chirality −χ . Then, the electromagnetic current
jµχ of these electrons in the presence of electromagnetic fields E and B would satisfy (e > 0 is the unit electric charge and
h̄ is the reduced Planck’s constant):

∂µ jµχ = −χ
e3

4π2h̄2 E · B (3)

i.e., charge would not be conserved! Eq. (3) can equivalently be written in terms of the electromagnetic fields strength
Fµν = ∂µ Aν − ∂ν Aµ , where Aµ is the vector potential, as:

∂µ jµχ = −χ
e3

32π2h̄2 ϵµνρλ Fµν Fρλ (4)

where ϵµνρλ is the antisymmetric tensor. Eqs. (3) and (4) seem absurd; however, they makes sense instantly when one
recalls that in reality, Weyl nodes always come in pairs of opposite chiralities and the total current jµ+ + jµ− is therefore
conserved. In fact, the requirement of current conservation is an equally good argument for why the total chirality of the
Weyl nodes must vanish. Classically, currents are always conserved no matter what the dispersion. Thus, (3) is a purely
quantum phenomenon and is an upshot of the path integral for Weyl fermions coupled to an electromagnetic field not
being invariant under separate gauge transformations on left-handed and right-handed Weyl fermions, even though the
action is. This will be explained in more detail in Section 4.

The purpose of this brief review is to recap some of the strange transport phenomena associated with the chiral anomaly
in WSMs that have been discussed in the literature so far. The field is mushrooming, so we make no attempt to be exhaus-
tive. Instead, we describe results that are relatively simple, experiment-friendly and firsts, to the best of our knowledge. This
is an introductory review targeted mainly towards readers new to the subject. Thus, the results are sketched rather than ex-
pounded, and readers interested in further details of any result are encouraged to follow up by consulting the original work.

Before embarking on the review, we skim over another striking feature of WSMs – surface states known as Fermi arcs.
Although this review does not focus on the Fermi arcs, they are such a unique and remarkable characteristic of WSMs that
it would be grossly unfair to review WSMs without mentioning Fermi arcs.

Topological band structures are invariably endowed with topologically protected surface states, and WSMs are no excep-
tion. The Fermi surface of a WSM on a slab consists of unusual states known as Fermi arcs. These are essentially a 2D Fermi
surface; however, part of this Fermi surface is glued to the top surface and the other, to the bottom. On each surface, Fermi
arcs connect the projections of the bulk Weyl nodes of opposite chiralities onto the surface, as shown in Fig. 1 for the case

kz

Hosur & Qi, CRP ’13



In the limit of
tz � 0

All the phase boundaries forming the 
brick and stripe patterns coincide

in TI and WSM thin-film cases
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What is the precise relation between  the two systems?
TI vs. WSM cases

- both 3D bulk & 2D thin-film phase diagrams look very similar

Remark: 
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common in the two cases
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However, in the WSM model, there is no surface state 
on top and at bottom

The surface Dirac cones in the WTI/STI model sink into the 
bulk, transforming into a pair of Dirac/Weyl cones

Then, how is the nature of brick patterns in the WSM case?

Reminder: nature 
of brick patterns 

 oscillation of the surface wave function 
in an auxiliary 3D semi-infinite system 

Answer: As approaching the limit tz � 0

kz = ± arccos
�

m0

bz
� 2

b�
bz

�
� ±k0@

# of surface Dirac cones in the WTI/STI model
# of Weyl pairs in the CI/WSM model

ND =
NW =

ND = NW



A short summary 

- Relation between the STI/WTI vs. 
WSM type models “A thin-film point of view”

CI
WSM

stripe region
brick region

- How about the role of <<bulk-edge>> correspondence?

bulk edge
penetration of the surface 
wave function into the bulk

(auxiliary 3D system)

number of chiral edge 
modes in thin-film systems

One-to-one correspondence in 
<<physical properties>> at the edge 
and in the bulk

WTI
STI



A short detour on the role of disorder



Phase diagram of 2D 
disordered TI

systems of different circumference L. Overall behavior of
!L=L looks similar to that of the upper panel. Namely, as !
increases, the system evolves as: localized ! metallic !
localized. Note that the first insulating phase: ! < !1 !
"0:8 is of trivial nature (" ¼ 0), whereas the second one
with ! > !2 ! "0:5) is Z2 nontrivial (" ¼ 1). These
different kinds are separated by a finite metallic region:
!1 < ! < !2. The second insulating phase with Z2-number
" ¼ 1 starts already at a negative value: !c2 ! "0:5. This
result demonstrates that a Z2 topological insulator can be
induced by introducing non-magnetic disorder to a clean
trivial insulator. In recent literature, similar disorder-induced
Z2-nontrivial phase has been discussed,4–6) but without the
intervening metallic region.

By repeating such analysis for different values of ! and
W, and identifying critical points, we obtain the phase
diagram of the system at the ground state. In the clean limit,
the nontrivial phase appears in the region 0 < ! < 4 and
4 < ! < 8. Only the region with ! < 4 is shown in Fig. 2
since the phase diagram is reflection symmetric about
! ¼ 4. The particle–hole symmetry is responsible for this
property. For comparison, we also show the sz conserving
case with # ¼ 0. In this case the system is always insulating
except along the transition line indicated by (red) circles.

Let us focus on the sz non-conserving (# 6¼ 0) SOC
effects. The triangle symbols (blue) show the transition
points between metallic and insulating phases. It is clear that
the metallic region emerges in the vicinity of the transition
line at # ¼ 0. Consequently, the two topologically distinct
insulating phases are always separated by a metallic region
of finite width. Furthermore, " ¼ 1 phase is extended toward
! < 0 by finite disorder. Unfortunately, in the weak-
disordered region below W ! 4 with # ¼ 0:5, we have been
unable to determine the transition point from the data up to
64 sites due to strong finite-size effect. The transition can
occur, on the other hand, only at ! ¼ 0 in the clean limit,
and the transition line should be continuously connected.
Therefore, with decreasing W, it is reasonable to assume
that the metallic corridor persists and converges to the point
! ¼ 0. As a result, increasing the strength of disorder W,
multiple transition occurs in such a way as:

(i) Z2-nontrivial ! metallic ! Z2-trivial for positive !;
(ii) Z2-trivial ! metallic ! Z2-nontrivial ! metallic !

Z2-trivial for "0:5 . ! < 0.
These multiple transition are to be contrasted with the case
# ¼ 0 where intervening metallic phases are absent.

It is natural to ask the origin of the reentrant behavior with
negative !. In order to answer the question, we now turn to
the density of states $ðEÞ of the system. Let us first study
how the region of nonzero $ð0Þ is correlated to the region
of metallic conductance. We follow the previous study6) for
the sz conserving case (# ¼ 0), to employ the self-consistent
Born approximation (SCBA). Note that interference of
electronic wave functions, which is crucial for the Anderson
localization, is beyond the scope of the SCBA. However, the
SCBA does describe disorder-induced renormalization of !,
whose sign distinguishes whether the system is topologically
trivial or not.

Effects of disorder are taken into account in the SCBA as
the self-energy "ðEÞ of the Green function Gðk; EÞ, which is
the 4& 4 matrix in our case. We decompose the self-energy
matrix as " ¼ "0 þ"z%z. Note that the self energy is a
scalar in the (real) spin space due to time-reversal symmetry.
The renormalization of parameters occurs as

! ! ~!ðEÞ ¼ !þ Re"zðEÞ; ð9Þ
E ! ~EðEÞ ¼ E" Re"0ðEÞ; ð10Þ

where j ~!j represents the renormalized energy gap, and ~E is
the shift of the energy. The SCBA gives the following self-
consistency equation:

"ðEÞ ¼ W2

12

Z
d2k

ð2&Þ2
hGðk; EÞi; ð11Þ

where hGðk; EÞi ¼ hðE"HðkÞ ""ðEÞÞ"1i is the disorder-
averaged Green function. Because of particle–hole symme-
try, Re"0ð0Þ and Im"zð0Þ vanish. Hence the Fermi level at
E ¼ 0 is not shifted. The density of states is given by

$ðEÞ ¼ " 1

&
Im trGðEÞ ¼ " 24

&
Im"0ðEÞ: ð12Þ

We solve eq. (11) and derive Im"0ð0Þ and Re"zð0Þ.
Near the metal-insulator transition, Im"zð0Þ is small and
converges only slowly in the iterative method. Therefore
we apply a root finding procedure called Steffensen’s
method only for Im"0ð0Þ in order to accelerate the
convergence.

Figure 3 shows the density of states $ð0Þ (upper part)
together with the renormalized gap ~!ð0Þ ¼ !þ"zð0Þ
(lower part) at the particle–hole symmetric point E ¼ 0.
Results at fixed ! ¼ "0:2 but with different values of # is
given for comparison. In the upper part $ð0Þ is plotted as a
function of W, which shows in all cases a finite range of
finite $ð0Þ. According to the SCBA, the density of states $ð0Þ
vanishes outside this range. The change of $ð0Þ as a function
of W with decreasing # seems continuous down to the limit
# ¼ 0. Both the width and the magnitude of the region with
finite $ð0Þ decreases with decreasing #, but remains finite at
# ¼ 0.

The lower part in Fig. 3 shows that ~!ð0Þ changes sign
around W ! 2:89, which corresponds roughly to the peak
of $ð0Þ. Note that the bare value in the present case is
! ¼ "0:2, which corresponds to the trivial insulator with

Fig. 2. (Color online) Phase diagram of disordered BHZ model in the
presence (# ¼ 0:5, blue triangles) and absence (# ¼ 0, red circles) of sz non-
conserving SOC. Lines connecting the data points are guide to eyes.
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FIG. 7. (Color online) Conductance maps with (a) truncated and (b) periodic boundaries on the y sides. Parameters are the same as in
Figs. 2(a) and 2(b) but, here, in the presence of potential disorder (W = 3). The average of the conductance over 1000 samples is plotted.

phase. The phase boundary with a quantized conductance of
G = 2 is the 2D version of the Dirac semimetal line studied
in Ref. [7]. At an m0/m2 slightly larger than the location
of this Dirac semimetal line, a system in the OI phase is
converted to a QSH insulator upon the addition of disorder
(topological Anderson insulator behavior). At W ! 7 the two
insulating phases are both overwhelmed by a diffusive metal
phase, a region of large and nonquantized conductance. For
the strongly disordered regime W ! 15, the system re-enters
the OI (Anderson insulator) phase. These features are most
reminiscent of a similar phase diagram obtained earlier for a
purely 2D system of the same class AII symmetry [45], based

on calculation of the localization length. In the structure of
the phase diagram shown in Fig. 8, the existence of a diffusive
metal phase is characteristic of systems of class AII symmetry.
Here, the initial 2D model, the Nz = 1 case of Eq. (5) with
on-site disorder, belongs to class A, while stacking more than
two layers converts the system to class AII. In contrast to
this, only in the addition of Rashba-type spin-orbit coupling
in the 2D setup, the system is converted to a model of class
AII symmetry in Ref. [45]. The setup of the present nanofilm
construction is much simpler, and it is an alternative way
to realize a class AII QSH system without assuming an sz

nonconserving term.

FIG. 8. (Color online) Conductance map for a disordered slab (Nz = 3) with varying disorder strength W . Other settings are the same as
for Fig. 7(b).
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A global phase diagram of disordered weak and strong topological insulators is established numerically.

As expected, the location of the phase boundaries is renormalized by disorder, a feature recognized in the

study of the so-called topological Anderson insulator. Here, we report unexpected quantization, i.e.,

robustness against disorder of the conductance peaks on these phase boundaries. Another highlight of the

work is on the emergence of two subregions in the weak topological insulator phase under disorder.

According to the size dependence of the conductance, the surface states are either robust or ‘‘defeated’’ in

the two subregions. The nature of the two distinct types of behavior is further revealed by studying the

Lyapunov exponents.
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Robustness against disorder is a defining property of the
topological quantum phenomena. Depending on the degree
of this robustness, three-dimensional (3D) Z2 topological
insulators (TIs) [1–3] are classified into strong and weak
(STI and WTI). Bulk-surface correspondence implies that
an STI exhibits a single helical Dirac cone that is protected,
while a WTI manifests generally an even number (possibly
null) of Dirac cones depending on the orientation of the
surface [4].

Unusual robustness of Dirac electrons (especially in the
case of a single Dirac cone) against disorder has been
widely recognized in the study of graphene [5,6]. As a
consequence of the absence of backward scattering [7], the
Dirac electrons do not localize. However, in the presence
of valleys (even number of Dirac cones) they do localize
mediated by intervalley scatterings [8]. Does this mean that
an STI continues to be an STI in the presence of arbitrarily
strong disorder, while a WTI simply collapses on the
switching on of the short-ranged potential disorder that
induces intervalley scattering?

Recent studies on the disordered WTI [9,10] seem
to suggest that the reality is much different. Our global
phase diagram depicted in Fig. 1 finds its way also in this
direction. This phase diagram is established by a combina-
tion of the study of the averaged two-terminal conductance
and of the quasi-1D decay length in the transfer matrix
approach. In the actual computation, the 3D disordered Z2

topological insulator is modeled as an Wilson-Dirac-type
tight-binding Hamiltonian with an effective (k-dependent)
mass term mðkÞ ¼ m0 þm2

P
!¼x;y;zð1! cosk!Þ [11],

implemented on a cubic lattice. The topological nature of
the model is controlled by the ratio of two mass parameters
m0 and m2 such that an STI phase with Z2 (one strong and
three weak) indices [4] ð"0;"1"2"3Þ ¼ ð1; 000Þ appears
when !2<m0=m2 < 0, while the regime of parameters
!4<m0=m2 <!2 falls on a WTI phase with
ð"0;"1"2"3Þ ¼ ð0; 111Þ [12].

The obtained ‘‘global’’ phase diagram depicted in Fig. 1
highlights the main results of the Letter. This phase dia-
gram shows how disorder modifies the above topological
classification in the clean limit (naturally as a function of
the strength of disorder W). To identify the nature of
different phases and the location of the phase boundaries
in the (m0=m2, W=m2) plane, use of different geometries
(i.e., bulk vs slab) is shown to be crucial. While a plateau of
the conductance in the slab geometry characterizes the
nature of the corresponding phase [e.g., Fig. 2(a)], the
phase boundaries are marked by a peak of the conductance
in the bulk geometry [e.g., Fig. 2(b)]. Under the breaking
of translational invariance by disorder, standard techniques
[4] for calculating the topological invariants fail. Yet, the
above behaviors of the conductance clearly distinguish
different topological phases, providing us with sufficient

FIG. 1 (color online). The ‘‘global phase diagram’’ of the
disordered Z2 topological insulator in the (m0=m2, W=m2) plane
determined by the behavior of two-terminal conductance. Solid
lines on the phase boundaries are guides to the eyes. Dotted lines
indicate the value of parameters relevant in Figs. 2 and 3. The
metallic (M) phase lies in the intermediate range of disorder
strength, typically 10 & W=m2 & 25 in the parameter range of
m0=m2 shown in this figure.
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Direct transitions!

potential disorder irrelevant in 3D

Phys. Rev. Lett. 110, 236803 (2013)
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Case of disordered WSM thin films

- two-terminal 
conductance

Phys. Rev. B 94, 
235414 (2016)



Two-terminal vs. Hall conductances

GH = (N+ �N�)
e2

h
= N e2

h

G = (N+ +N�)
e2

h

They differ

- in the presence of counter-propagating modes &

- in the clean limit

while the two-terminal 
conductance

Chern number = Hall conductance

measures the number of transmitting channels

Relaxation of counter-propagating 
modes at the edge recovers

# of left- and right-
going chiral modes

N±( )

G = (N+ �N�)
e2

h



Case 2: topological quantum pump



TKNN vs. Thouless pump

topological pumping

Nakajima et al., Nature Phys., 2015; 
Lohse et al., ibid.

NATURE PHYSICS DOI: 10.1038/NPHYS3584 ARTICLES

−4 −2 0 2 4

−4

−2

0

2

4

n o−
n e

1

0

−1

0.0 1.0

0.0

1.0

ba

1.0

0.5

0.0

2−1 10
0.5

1.5

0.5 1.5−0.5

x (
d l)

x (
d l)

x (dl)

ϕ
(2

π)

ϕ (2π) ϕ (2π)

J1−J2

J1−J2

∆

∆

Figure 2 | Centre-of-mass (COM) position of the atom cloud as a function of the pumping parameter ' for the lowest band with Vs=10.0(3)Er,s and
Vl=20(1)Er,l. a, Detailed evolution of the measured COM position during a pump cycle. The step-like motion is caused by tunnelling of the atoms to the
lower-lying sites. The solid black line depicts the calculated COM motion of a localized Wannier function. Each point is the average of ten data sets and the
error bar shows the error of the mean. COM positions are determined di�erentially comparing a sequence with pumping to a reference sequence of the
same length, but with constant phase '=0. One data set is obtained by averaging ten images, taken in alternating order, and subtracting the resulting
COM positions. Inset, The motion of a localized Wannier function in the first band during a full pump cycle. b, COM displacement and site populations for
multiple pump cycles in the positive and negative pumping direction. The COM positions are averaged over ten data sets and the error bars depict the
standard deviation. The dashed black line shows the ideal motion of a localized Wannier function and the grey line is a fit of the Wannier COM to the data
assuming a finite pumping e�ciency of 97.9(2)% per each half of a pump cycle (see Supplementary Information). Inset, The population imbalance
between even and odd sites as a function of ' with ne (no) the fraction of atoms on even (odd) sites. Each data point is the average of five measurements
and the error bars indicate the corresponding standard deviation. The grey line is obtained by fitting the calculated even–odd distribution of the Wannier
function using the same model as for the COM displacement which yields an e�ciency of 98.7(1)% leading to a slight decrease of the imbalance over time.

per cycle as expected for ⌫1 = +1 and the steps appear around
'= l⇡, l2Z, where the atoms tunnel from one side of the double
wells to the other. When performing multiple cycles the cloud keeps
moving to the right, whereas it propagates in the opposite direction
for the reversed pumping direction ' < 0 (Fig. 2b). The small
deviation from the expected displacement for the motion of ideal
Wannier functions can be attributed to a finite pumping e�ciency
due to non-adiabatic band transitions and the additional trapping
potential, whereas thermal e�ects caused by the finite temperature
of the atoms are negligible (see Supplementary Information).

The step-like transport behaviour can also be observed in site-
resolved band mapping measurements (inset of Fig. 2b), which
determine the number of atoms on even and odd sites. As for the
COMposition, a step occurs in the even–odd distribution whenever
a symmetric double-well configuration is crossed at '= l⇡, l2Z.
Using the measured even–odd fractions, one can estimate the
transfer e�ciency, that is, the fraction of atoms transferred from
site i to i+1 at each step. This is equivalent to the fraction staying
in the lowest band during one half of the pump cycle and allows to
quantify the adiabaticity of the pumping protocol. From our data we
obtain an e�ciency of 98.7(1)% (see Supplementary Information).
With the same model, the ideal COM displacement can be fitted
to the measured positions which yields an e�ciency of 97.9(2)%.
The small additional reduction is probably caused by the trap which
can induce non-adiabatic transitions between neighbouring double
wells at the edges of the cloud (see Supplementary Information).

Due to the topological nature of the pumping, the displacement
per cycle for the lowest band does not depend on the path in the
(J1–J2)�� plane as long as it encompasses the degeneracy point.
Moreover, it is independent of Vs as the sliding lattice and the tight-
binding Thouless pump are topologically equivalent for the first
band and connected by a smooth crossover without closing the
gap to the second band. To verify this, we measured the deflection
of the cloud with Vl = 25(1)Er,l for various values of Vs. For all
parameters, the resulting displacements are consistent within the
error bars (Fig. 3).

The excited band in the Rice–Mele model exhibits counter-
propagating charge pumping with ⌫2 = �1, that is, the atoms are
expected to move in the opposite direction to the long lattice. This
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Figure 3 | Transition from a quantum sliding lattice to theWannier
tunnelling limit for the lowest band. Di�erential deflection �x=x+ �x�
between positive (x+) and negative pumping direction (x�) after one pump
cycle for various lattice depths Vs at Vl =25(1) Er,l . Each point consists of
ten data sets comparing the COM position of ten averaged images for both
directions. The error bars depict the error of the mean. For the data points
in the tight-binding regime, the insets show the corresponding pump cycles
in the (J1–J2)�� parameter space. For Vs =8Er,s, the two-band model
breaks down for large tilts such that J1, J2 and � are not well-defined. The
dashed line therefore connects the points where the gap between the
second and third band becomes smaller than 10J1 for '=0.
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1) Experiments in cold atoms

- physics different: different physical quantities, different physical 
pictures

cf. Laughlin’s argument:
Hatsugai & Fukui, PRB 2016original: for QHE 

2D 1+1D

QHE
Thouless, PRB 1983 correspondence:

Why pumping?

2) Nobel prize in physics 2016

- mathematically equivalent (classification, etc.)

pump version?



Topological pumping in the snapshot picture (adiabatic limit)
Hatsugai & Fukui, PRB 2016

“Laughlin’s geometry”

So, no pumping???

Harper/AA model (pump version)

V(x,t): periodic in time

Ans.: pumped charge

= change of polarization over 
the pumping cycle

AA = Aubry-Andre

- periodic in t
- finite (w/ edges) in the x-direction

= center-of-mass position

But, because of p.b.c.

What is related to the Chern number?



RAPID COMMUNICATIONS

BULK-EDGE CORRESPONDENCE IN TOPOLOGICAL PUMPING PHYSICAL REVIEW B 94, 041102(R) (2016)

FIG. 2. (a) One particle spectrum Eℓ(t) and the Fermi en-
ergy (blue line): tx = ty = 1,φ = 2/7 and Lx = 1750 (350).
(b) Enlarged spectrum near the Fermi energy. (c) The
c.m., P (t), with edges by numerical calculation. #P (ti) =
−0.499503(−0.4954), 0.496542(0.487094), 0.498412(0.494115),
0.497435(0.491092), 0.497435(0.491092), 0.498412(0.494115),
0.496542(0.487094), and −0.499503(−0.4954) for i = 1, . . . ,8.∑

i #P (ti) = 1.98577(1.9538).

cuts the Fermi energy and the way it does, this discontinuity
is determined as

#P (ti) =

⎧
⎪⎨

⎪⎩

−1/2 right : become unoccupied
+1/2 right : become occupied
+1/2 left : become unoccupied
−1/2 left : become occupied,

where “right” indicates the edge state is localized near the
boundary j ∼ Lx and “left” is for the edge states near the
boundary j ∼ 0.

Since the pair of the discontinuity coincides to the winding
of the corresponding edge state energy around the hole (that
corresponds to the energy gap) on the Riemann surface [6],
total discontinuity is given by the winding number IM of the
edge states

∑

i

#P (ti) = −IM, #Qe = IM,

where we assume that the Fermi energy is in the Mth energy
gap from below. This algebraic definition of the winding

number is only possible for the Harper equation, that is, only
for special form of the vj (t) and when Lx is a multiple of
q. However, the relation is generically justified by defining
the winding number IM as the number of paired edge states
with suitable sign depending on the direction of the crossing
of the spectral flow with the Fermi energy. This is a modified
Laughlin argument [5] which is widely used for the topological
number of edge states for various topological phases [6,10,14].

Since the total number of particles is conserved, the gapless
times ti’s that correspond to the (dis)appearance of the edge
state are paired (irrespective to the position). It guarantees the
quantization of the total pumped charge #Qe as an integer
since even number of additions of ±1/2 is an integer. It is a
consequence of the local U (1) gauge symmetry as the Laughlin
argument, but has sharp contrast to the QHE in which the
charge transfer is always integer in the process of a unit flux
penetration, since the right and left edge states are always
paired on the Fermi surface. This ±1/2 contribution can be
understood as a fractionalization of electrons into massive
Dirac fermions [27,28].

Also, counting the topological number with discontinuities
here should be compared with the counting of the singularities
of the η invariant for the Atiyah-Patodi-Singer index theorem
[29,30]. Here we have clarified the close inter-relation between
the topological nature of the discontinuities and local U (1)
gauge symmetry. This is not just theoretical but plays a crucial
role in recent experiments [2,3].

As an example, we calculated the c.m., P (t), numerically
for φ = 2/7 and Lx = 1750 and Lx = 350. By the clear
finite-size effects, the discontinuities deviates from ±1/2 but
approach to the quantized values ±1/2 by the limit Lx → ∞.
In this case, we have #Qe = −2.

Note that although the total pumped charge is governed by
the discontinuity

∑
i #P (ti) due to the edge states, pumped

charge is not carried by singularities caused by the edge
states. The charge is still carried by the bulk, as we explain
below. This is the bulk-edge correspondence in the topological
pumping. As one can see in Fig. 2, the charge is pumped
in the intervals between the singularities (red lines), which
is the bulk contribution. Even though the system has bound-
aries, the effects of the edges are negligible for the bulk state
since the one-particle state of the bulk is extended and the am-
plitude near the boundaries is vanishing in the limit Lx → ∞.

Although the c.m. is ill defined for bulk (both for a periodic
and infinite system), the pumped charge is well defined, as
discussed by Thouless [1]. As for an infinite system, the one-
particle state is given by the Bloch state ψj,ℓL

∝ eikxj uj (kx).
Now let |g(t)⟩ be a many-body ground state of the Hamilto-

nian in the temporal gauge. Assuming the Fermi energy is in
the Mth gap, one has

A
(t),b
θ = ⟨g(t)|∂θg

(t)⟩ =
∫ #k

0

dkx

2π
a

(t)
kx

,

a
(t)
kx

= TrMA(t)
kx

, A(t)
kx

= u†∂kx
u, u = (u1, . . . ,uM ),

where the limit Lx → ∞ is taken and additional gauge
condition a

(t)
t = TrMu†∂t u = 0 is imposed. Also we use “b” to

specify that it is purely from bulk. By using the gauge-invariant
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Polarization/center of mass

half-integral jumps!

jumps: edge effects
continuous part: bulk contribution

“bulk contribution” is relevant
skip jumps & reconstruct 
the continuous part:

Hatsugai & Fukui, PRB 2016

Recall:

filled states



Jumps vs. continuous part

T � �/��
��bulk = �g

��edge � 0
tedge = �/��edge ��

tbulk � Texp � tedge

The adiabatic condition:
bulk:

edge:

Realistic situation:

bulk: adiabatic
edge: sudden

Jumps due to the edge modes are 
not seen in experiments

Consideration on

or edge vs. bulk contributions

Rather, half-integral jumps emergent in the adiabatic limit 
are <<origin>> of the quantization of pumped (topological) 
charge

in the polarization 
curve

or consideration on the adiabatic conditions:

i.e.,



A short summary: Origin of quantization = half-integral jumps

edge quantity

bulk topological 
invariant

- pump version  of 
Laughlin’s argument

- pump version of BEC

A remaining issue:
- check & quantify the robustness against disorder

QHE vs. pump

filled bands

H(t) =

L/2X

x=�L/2

h
t
x

|x+ 1ihx|+ (h.c.) + [V (x, t) +W (x)]|xihx|
i

W (x) 2 [�W/2,W/2] W: strength of impurity

BEC

BEC: bulk-edge correspondence
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In the presence of disorder

- At weak disorder they 
appear separately in time

1) quantized jumps
- edge state origin

- As far as they are 
separable, the pumped 
charge is still quantized

- two types of jumps appear

2) non-quantized jumps
- impurity origin

Snapshot spectrum:

Polarization:



�x̄ = �x�imp[�sgn(slope)]

�x̄ =
1
2
sgn(xedge)[�sgn(slope)] = ±1

2

�x̄net = �
�

{jn}

�x̄jump(tjn) = 0,±1,±2, · · ·

jumps due to impurities

jumps due to 
edge states

- appear in pairs: appear/disappear
- irrelevant to the pumped charge

occupy/empty

quantized pumped charge

Quantized vs. non-quantized jumps

- also appear in pairs, but …R or L
xedge = ±L/2

Bulk topological 
invariantEdge quantity

- Non-quantized jumps:

- Quantized jumps:



Conclusions

- two examples, in which
BEC manifests as a one-to-one relation between 
<<visible>> physical quantities in the bulk and at the edge

- highlighted a rather specific role of

bulk in case 1: topological insulator thin films

edge in case 2: topological quantum pumping

cf.

cf.

penetration of the“surface” wave function into the 
<<bulk>> in the auxiliary 3D system

half-integral jumps in polarization as the 
<<origin>> of topological quantization 


