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Motivation 
 

 SPT phases protected by time-reversal (TR) symmetry  
 
Ex: Haldane chain, topological insulator, ... 
 

 How to characterize such SPT phases from a ground state wave 
function and TR operator?   
 

 Can be applied in the presence of manybody interaction and disorder.  
 
 

 Ex: 1d superconductor with TR symmetry (T2=1)  
 
 

Order 
parameter?? 

Ground state on a circle 



Motivation 
 

 The TQFT description suggests using unoriented manifolds [Kapustin, 
Freed-Hopkins, …]. The TQFT says that  
 
 The partition function over an unoriented manifold is the SPT 

invariant.  
  

 
 
 
 
 
 
 
 

 How to “simulate” unoriented manifolds by the TR operator?  
 

 (The) answer: using the partial transpose.  



2d abelian sigma model 
 

 A toy model of Haldane chain phase protected by TR/reflection 
symmetry. (For example, see [Takayoshi-Pujol-Tanaka, arXiv:1609.01316]) 
 

 Target space is S1.  
 “the easy plane limit of semiclassical description of the AF chain” 

 
 
 
 
 
 
 
 
 
 

 Include vortex events.  
 (The field can be singular.) 

Spacetime 



2d abelian sigma model 
 

 Theta term 
 
 
 
 

 
 
 

 Ex: The ground state functional on S1 (Disc state):  
 
 
 
 
 
 
 

 Ex: Partition function over a closed oriented manifold:  
 

 
 
 
 

Unimportant for our purpose 



2d abelian sigma model 
 

 TR transformation 
 
 
 
 

 TR symmetry = the theory is invariant under the relabeling of path-
integral variables by  
 
 
 

 In the presence of TR symmetry,  is quantized.  
 
 
 
 

    is known to be a nontrivial SPT phase. 
 

 How to detect    ? 
 
 
 



2d abelian sigma model 
 

 “Gauging” the TR symmetry = to define the theory on unoriented 
manifolds by the use of TR transformation.  
 
 
 
 
 
 
 
 
 
 

 At orientation reversing patches, the filed is shifted by π.  
 
 
 
 



2d abelian sigma model 
 

 A cross-cap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2d abelian sigma model 
 

 A cross-cap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2d abelian sigma model 
 

 A cross-cap. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Around a cross cap, the vortex number should be odd.  
 



2d abelian sigma model 
 

 The partition function over the real projective plane:  
 
 
 
 
 
 

 Cf. The partition function over the Klein bottle:  
 
 
 
 

 The partition function over the real projective plane RP2 is the SPT 
invariant of Haldane chain phase! 
 
 

 This means if one can “simulate” the real projective plane in the 
operator formalism, we get the “non-local order parameter” for the 
Haldane chain phase w/ TR symmetry.  
 

Sphere with a corss-cap 
= Real projective plane 

Klein bottle 
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TRS -> transpose  
(a heuristic derivation) 

 
 How to extract the information related to the TRS contained in a pure 

state? 
 

 Let’s consider: 
 
 
 
 

 This value is ill-defined because T is anti-linear.  
 

 However, its amplitude is well-defined.  
 
 



 
 Let’s consider a spin system.  

 
 The Hilbert space is the tensor product of local Hilbert spaces.  

 
 
 
 

 The matrix transpose is well-defined.  
 



 
 Amplitude:  

 
 
 
 
 
 
 
 
 
 
 
 

 Hermiticity was used 
 
 

 In this way, a TR operator T induces a sort of the matrix transpose. 
 

Matrix transpose 

Complex conjugate 



 
 The transpose is understood as the time-reversal transformation in 

the imaginary time path-integral.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 It is expected that the transpose serves to “simulate” unoriented 
manifolds.  

 



Bosonic partial transpose 
 
 

 Divide the Hilbert space to two subsystems.  
 
 
 
 
 

 A operator:  
 
 
 
 

 The partial transpose on the subsystem I1 is defined to be the matrix 
transpose on I1. 



Haldane chain w/ TRS 
 

 Haldane chain 
 

 
 
 
 

 (1+1)d bosonic SPT phase w/ TRS 
 

 Classification = Z2 
 

 Topological action is the 2nd Stiefel-Whitney class. 
 
 
 
 

 The Z2 “order parameter” of the Haldane chain w/ TRS is the 
partition function on RP2 (real projective plane). 

Spin 1/2 



 
 Let’s construct the Z2 “order parameter” in the operator formalism.  

 
 The rule of this game is:  

 
 Input data 

 
• Pure state (ground state)  

 
• TR operator 
 
 

 Out put = Z2 order parameter 
 
 

 The answer was known by [Pollmann-Turner, 1204.0704] 
 

 Z2 order parameter= the “partial transpose” on the two adjacent 
intervals.  



 Z2 invariant = partial transpose on the two adjacent intervals.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 MPS proves that  

[Pollmann-Turner] 

Replica 

Correlation length of bulk 



 Pollmann-Turner found this expression without using unoriented TQFTs.  
 

 It turns out that the Pollmann-Turner invariant is equivalent to the 
partition function over RP2. [KS-Ryu, 1607.06504] 
 



 In the same way, the partial transpose for disjoint two intervals is 
equivalent to the Klein bottle partition function. [Calabrese-Cardy-Tonni] 
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Fermionic Fock space 
 

 Let fj be complex fermions.  
 
 
 

 The Fock space   is spanned or defined by the occupation basis  
 
 
 
 

 We always assume the fermion parity symmetry.  



Operator algebra on the Fermionic Fock space 
 

 Define the Majorana fermions 
 
 
 

 Operator algebra = the complex Clifford algebra generated by 
Majorana fermions. 
 

 Every operator can be expanded by Majorana fermions.  
 
 
 
 

 Preserving the fermion parity means the operator consists only of 
even Majorana fermions.  
 
 
 

 An important property: if A preserves the fermion parity, then so is a 
reduced operator. 



Fermionic transpose 
 

 There is a canonical basis-independent transpose which is defined to 
be reordering Majorana fermions.  
 
 
 
 
 

 A basis change is written by 
 

 
 

 
 Under the basis change, the above transpose is unchanged in the 

sense of that  
 
 
 

 This can contrast to spin systems, where there is no canonical basis-
independent transpose in the absence of a TR operator.  



Fermionic partial transpose 
 [KS-Shapourian-Gomi-Ryu, 1710.01886,  

cf. Shapourian-KS-Ryu, 1607.03896] 
 
 

 Definition of the partial transpose for fermions: 
 

 Divide the degrees of freedom (per complex fermions) to two 
subsystems. 
 
 
 
 
 
 

 Want to define the partial transpose on the subspace I1 only on 
operators which preserve the total fermion parity:  
 
 
 



 
 It is natural to impose the following three good properties:  

 
1. Preserve the identity:  

 
 
 
 

2. The successive partial transposes on I1 and I2 goes back to the 
full transpose:  
 
 
 

3. Under basis changes preserving the division I1 ∪ I2, the partial 
transpose is unchanged:  

 



 From the Schur’s lemma, the condition 3 leads to that the partial 
transpose is a scalar multiplication which may depend on the number 
of the Majorana fermions in the subspace I1.  
 
 
 
 

 The conditions 1. and 2. reads  
 
 
 
 
 

 There are two solutions  
 
 

 
 which are related by the fermion parity. I employ the convention  

 
 
 

 If we includes k1+k2 = odd, there is no solution.  



 Summary of the definition of fermionic partial transpose:  
 

 A two-subdivision of the Fock space (per complex fermions) 
 
 
 
 
 

 The fermionic partial transpose is defined only on operators 
preserving the fermion parity. 

 KS-Shapourian-Gomi-Ryu, 1710.01886, Shapourian-KS-Ryu, 1607.03896 



Fermionic TR operator 
 

 There is a subtle point in the definition of the TR operator on the 
fermionic Fock space. I use the Fidkowski-Kitaev’s prescription:  
 

 Let T be a TR operator defined by  
 

(*) 
 

 We may try to define the “unitary part” of T.  
 

 The precise meaning of the TR operator is that for a state  
 
 
 

 
 on the Fock space, the TR operator acts on it by the complex 
 conjugation on  the wave function  
 
 
 and the basis change by (*).  



 Under this definition of the TR operator, the unitary part CT of T is 
identified with the following particle-hole transformation:  
 
 
 
 

 Ex:  
 
 
 
 
 

 In fact, under a basis change  
 
 

 
 T and CT share the same change 
 



Fermionic partial TR transformation 
 
 
 

 Combining the fermionic partial transpose and the unitary part CT of a 
given TR operator T, one can introduce the fermionic partial TR 
transformation: 
 

 Def. (Femrionic partial TR transformation)  
 

 Let A be an operator preserving the fermion parity defined on the 
two intervals I1∪I2.  
 
 
 
 

 Let   be the unitary part of T on the subsystem I1.  
 

 The partial TR transformation on I1 is defined by  

KS-Shapourian-Gomi-Ryu, 1710.01886,  
Shapourian-KS-Ryu, 1607.03896 



 In the coherent state basis  
 
 
 
 

 the partial TR transformation reads as  
 
 
 
 
 
 This is the same as the TR transformation on the subsystem I1 in the 

imaginary time path-integral.  
 

 Therefore, the partial TR transformation serves to simulate the real 
projective plane and the Klein bottle. 

= RP2 



Z8 invariant of the Kitaev Chain 
 

 (1+1)d class BDI superconductors 
 
 
 
 
 

 Classification = Z8 [Fidkowski-Kitaev].  
 

 Background structure = pin- structrue 
 
 Topological action = eta invariant (see Kapustin-Thorngren-Turzillo-Wang)  

 
 
 
 
 

 For M= RP2, the eta invariant takes the smallest value ±1.  
 
 

 This means that the partition function on RP2 is the Z8 order 
parameter of the Kitaev chian with TRS, as for the Haldane chain.  

Majorana fermion 

Pin- str. Z8 valued: 



 Network rep. for RP2 



 Cf. Network rep. for the Klein bottle (detect the Z4 subgroup) 



 Numerical result [arXiv:1607.03896] 



Manybody Z2 Kane-Mele invariant 
 

 (2+1)d class AII insulator (TR symmetry with Kramers) 
 

 The manybody classification is Z2.  
 

 The generating manifold is the Klein bottle × S1 with a unit magnetic 
flux. [Witten, RMP] 



Manybody Z2 Kane-Mele invariant 
 

 Combine two technics:  
 

 Disjoint partial transpose -> Klein bottle  
 

 Twist operator -> a unit magnetic flux 
 

 
 We get the interacting Kane-Mele invariant:  



Manybody Z2 Kane-Mele invariant 
 

 Numerical calculation for a free fermion model 



Summary 
 

 The TQFT description of SPT phases w/ TR symmetry suggest using 
unoriented manifolds.   
 

 The problem is how to obtain unoriented manifolds from the TR  
operator.  
 

 The (fermionic) partial transpose can simulate the partition function 
over (i) the real projective plane and (ii) the Klein bottle.  
 

 We defined the fermionic analog of the partial transpose, and our 
definition correctly simulate the partition function over unoriented 
manifolds in fermionic systems.  
 

 Various non-local order parameters for fermionic SPT phases are 
constructed in this way. Please see the list in [arXiv:1710.01886].  
 
 

 Another topic: our definition of fernionic partial transpose can be 
used to define a fermionic analog of entanglement negativity. 
[arXiv:1611.07536] 





The TQFT description of SPT phases 
 
 

 The classification of SPT phases  
 ～ The classification of U(1)-valued topological partition functions 

[Kapustin, Freed-Hopkins, …] 
 
 
 
 
 
 
 
 
 
 
 

No information for 
gapped and unique 
ground states 

Describes SPT phases 

Background field 
introduced by gauging 
onsite symmetry 

M can be unoriented if 
there is an orientation 
reversing symmetry. 



The TQFT description of SPT phases 
 
 

 The classification of U(1)-valued topological partition functions 
 
 
 

 can be done by some mathematical framework (group cohomology, 
 cobordism,…).  
 
 
 Ex: Haldane chain phase w/ TR symmetry 

 
 Topological action: 2nd SW class of M  
 
 
 
 
 
 



 Applications of the fermionic partial transpose 
 
 
 To simulate the partition function on unoriented manifolds in the 

operator formalism 
 
 

 Manybody SPT invariant for Kitaev chain 
 [Shapourian-KS-Ryu, arXiv:1607.03896] 
 

 
 Fermionic entanglement negativity  
 [Shapourian-KS-Ryu, arXiv:1611.07536] 



 The emergence of the matrix transpose can be also understood as 
follows: In the matrix algebra, every linear anti-automorphism  
 
 
 

 can be written in a form   
 
 
 
 with U a unitary matrix.  

 
 Under a basis change, the linear anti-automorphism Φ is changed as  

 
 
 

 Hence, the unitary matrix U for Φ is changed as  
 
 
 

 This is nothing but the basis change of the unitary part of TRS. 
 



Comment (1) 
 

 It should be noted that the matrix transpose is basis-dependent: 
under a basis change, the matrix transpose is changed as  
 

 
 
 

 In general, VVtr is not the identity, implying the absence of a 
“canonical” transpose in the operator algebra of spin systems.  
 
 

 The transpose is well-defined only in the presence of a TRS T.  
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