Complete Theory of Symmetry-Based Indicators of the Band Topology

Haruki Watanabe University of Tokyo

Ashvin Vishwanath moved to Harvard

This talk is based on: Sci. Adv. (2016) (feQBI) Phys. Rev. Lett. (2016) (filling-enforced) **Nat. Commun. (2017) (Indicator)** arXiv: 1707.01903 (MSG) arXiv: 1709.06551 (fragile topo.)

Hoi Chun Po (Adrian) Ashvin's student

(new) arXiv: 1710.07012 (Chern #) with my students and Ken Shiozaki

Plan

- Brief intro
- Symmetry-based indicator of band topology (noninteracting)
- Interaction effect (LSM theorem + recent development)

- Have edge states?
- Topological Index? (e.g. Chern number, Z2 QSH index)
- Adiabatically connected to atomic limit (i.e. no hopping)?
- = Valence bands can form good* Wannier orbitals?

• Have edge states?

Yes No

- Topological Index? (e.g. Chern number, Z2 QSH index)
- Adiabatically connected to atomic limit (i.e. no hopping)?
- = Valence bands can form good* Wannier orbitals?

• Have edge states?

Yes No

- Topological Index? (e.g. Chern number, Z2 QSH index)
 Yes
- Adiabatically connected to atomic limit (i.e. no hopping)?
- = Valence bands can form good* Wannier orbitals?

Yes

No

*exponentially localized & symmetric

• Topological Index? (e.g. Chern number, Z2 QSH index)

W	eakest definition	Yes	Νο	
	 Adiabatically 	connected t	o atomic limit (i.e. no hopping	g)?
	= Valence bands	s can form g	jood* Wannier orbitals?	
		Νο	Yes	

• Z₂ index for Quantum Hall Spin insulators

Requires a careful gauge fixing and integration of Pfaffian in k space

• Z₂ index for Quantum Hall Spin insulators

Requires a careful gauge fixing and integration of Pfaffian in k space

• For inversion-symmetric TI

Fu-Kane formula: $v = \prod_{k=TRIMs} \xi_k = \pm 1$

Easy & Helpful for material search!

• Z₂ index for Quantum Hall Spin insulators

Requires a careful gauge fixing and integration of Pfaffian in k space

• For inversion-symmetric TI

Fu-Kane formula: $v = \prod_{k=TRIMs} \xi_k = \pm 1$

Easy & Helpful for material search!

Combination of inversion eigenvalues *indicates* the band insulator is Z2 QSH.

• Z₂ index for Quantum Hall Spin insulators

Requires a careful gauge fixing and integration of Pfaffian in k space

• For inversion-symmetric TI

Fu-Kane formula: $v = \prod_{k=TRIMs} \xi_k = \pm 1$

Easy & Helpful for material search!

Irreducible representations at high-sym momenta Combination of inversion eigenvalues indicates the band insulator is Z2 QSH.

• Z₂ index for Quantum Hall Spin insulators

Requires a careful gauge fixing and integration of Pfaffian in k space

• For inversion-symmetric TI

Fu-Kane formula: $v = \prod_{k=TRIMs} \xi_k = \pm 1$

Easy & Helpful for material search!

Irreducible representations at high-sym momenta Combination of inversion eigenvalues indicates the band insulator is Z2 QSH. Nontrivial (not adiabatically connected to the atomic limit)

Example: Winding number of the map S¹ to S¹ $\rightarrow \pi_1(S^1) = Z$

$$W[oldsymbol{n}(heta)] = rac{1}{2\pi} \int_0^{2\pi} d heta \, \hat{z} \cdot oldsymbol{n} imes \partial_{ heta} oldsymbol{n}$$

Example: Winding number of the map S¹ to S¹ $\rightarrow \pi_1(S^1) = Z$

$$W[oldsymbol{n}(heta)] = rac{1}{2\pi} \int_0^{2\pi} d heta \, \hat{z} \cdot oldsymbol{n} imes \partial_ heta oldsymbol{n}$$

Example: Winding number of the map S¹ to S¹ $\rightarrow \pi_1(S^1) = Z$

$$W[oldsymbol{n}(heta)] = rac{1}{2\pi} \int_0^{2\pi} d heta \, \hat{z} \cdot oldsymbol{n} imes \partial_ heta oldsymbol{n}$$

Opposite direction \rightarrow W = odd

Same direction \rightarrow W = even

Opposite direction \rightarrow W = odd

Same direction \rightarrow W = even

Symmetry Representation of Band Structures (momentum space)

Irreducible Representation in Band Structure

Hemstreet & Fong (1974)

Irreducible Representation in Band Structure

Focus on a set of bands with band gap above and below at all high-symmetry momenta

Hemstreet & Fong (1974)

Characterizing Band Structure by its representation contents

- 1. Collect all different types of high-sym k (points, lines, planes)
- 2. For each **k**, define little group $G_k = \{ g \text{ in } G \mid gk = k + G \}$
- 3. Find irreps u_{k}^{α} ($\alpha = 1, 2, ...$) of G_{k}
- 4. Count the number of times $u_{\mathbf{k}}^{\alpha}$ appears in band structure $\{n_{\mathbf{k}}^{\alpha}\}$

* Note *compatibility relations* among $\{n_{\mathbf{k}}^{\alpha}\}$

- 5. Form a vector $\mathbf{b} = (n_{\mathbf{k}1}^{1}, n_{\mathbf{k}1}^{2}, \dots n_{\mathbf{k}2}^{1}, n_{\mathbf{k}2}^{2}, \dots)$ for each BS
- 6. Find the set of **b**'s (Band Structure Space) :

 $\{BS\} = \{ \boldsymbol{b} = \{n_{\boldsymbol{k}}^{\alpha}\} \mid \text{satisfying compat. relations} \} = Z^{\alpha BS}$

- 1. Collect all different types of high-sym **k** (point, line, plane)
- 2. For each \mathbf{k} , define little group $G_{\mathbf{k}} = \{ g \text{ in } G \mid g\mathbf{k} = \mathbf{k} + \mathbf{G} \}$
- 3. Find irreps $U_{\mathbf{k}}^{\alpha}$ ($\alpha = 1, 2, ...$) of $G_{\mathbf{k}}$

- 4. Count the number of times $u_{\mathbf{k}}^{a}$ appears in band structure $\{n_{\mathbf{k}}^{a}\}$
- 5. Form a vector $\mathbf{b} = (n_{\mathbf{k}1}^{1}, n_{\mathbf{k}1}^{2}, \dots n_{\mathbf{k}2}^{1}, n_{\mathbf{k}2}^{2}, \dots)$ for each BS

$$Y = (0,\pi) \quad M = (\pi,\pi)$$

$$+ \qquad \qquad + \qquad \qquad + \qquad \qquad + \qquad \qquad = (n_{\Gamma^+}, n_{\Gamma^-}, n_{X^+}, n_{X^-}, n_{Y^+}, n_{Y^-}, n_{M^+}, n_{M^-})$$

$$= (0,1,1,0,1,0,1,0)$$

$$+ \qquad \qquad + \qquad \qquad = (0,1,1,0,1,0,1,0)$$

6. Find the set of **b**'s (Band Structure Space): $\{BS\} = \{ \mathbf{b} = \{n_{\mathbf{k}}a\} \} = Z^{dBS}$

- The general form of **b** in this case:
- $\boldsymbol{b} = (n_{\Gamma^+}, n_{\Gamma^-}, n_{X^+}, n_{X^-}, n_{Y^+}, n_{Y^-}, n_{M^+}, n_{M^-})$
- → 8–3=5 independent *n*, $\{BS\} = Z^5$

6. Find the set of **b**'s (Band Structure Space): $\{BS\} = \{ \mathbf{b} = \{n_{\mathbf{k}}a\} \} = Z^{dBS}$

The general form of **b** in this case:

$$\boldsymbol{b} = (n_{\Gamma^{+}}, n_{\Gamma^{-}}, n_{X^{+}}, n_{X^{-}}, n_{Y^{+}}, n_{Y^{-}}, n_{M^{+}}, n_{M^{-}})$$

→ 8–3=5 independent *n*, $\{BS\} = Z^5$

 $b = n_{\Gamma^{+}}(1, -1, 0, 0, 0, 0, 0, 0) + n_{X^{+}}(0, 0, 1, -1, 0, 0, 0, 0)$ + $n_{Y^{+}}(0, 0, 0, 0, 1, -1, 0, 0) + n_{M^{+}}(0, 0, 0, 0, 0, 0, 1, -1) + v(0, 1, 0, 1, 0, 1, 0, 1)$ 5-dimensional lattice in an imaginary space

Trivial Insulators (real space)

Atomic Insulators

Product state in real space (trivial) ⇔ Wannier orbitals

We have to specify the position x and the orbital type

- 1. Choose \boldsymbol{x} in unit cell. e.g. $\boldsymbol{x} = \boldsymbol{\bullet}$
- 2. Find little group (site-symmetry gr) G_x . $G_x = \{e, I\}$ at $x = \bullet$
- 3. Choose an orbit (an irrep of G_x).
- \bigcirc (*l* = +1) \bigcirc (*l* = -1)

Irrep contents of Al

- Representation content changes
- depending on the position **x** and the orbital type
 - 8 3 = 5 independent combinations

 $(\Gamma, X, Y, M) = (+, +, +, +)$

(+,-,+,-)

(-,+,-,+)

(+,-,-,+)

(-,-,+,+)

(-,+,+,-)

 $k = (\pi, 0)$ I = -1

Symmetry-Based Indicators of the Band Topology

Our main results

 $\boldsymbol{b} = (n_{\boldsymbol{k}1}^{1}, n_{\boldsymbol{k}1}^{2}, \dots n_{\boldsymbol{k}2}^{1}, n_{\boldsymbol{k}2}^{2}, \dots)$

- 1. Every **b** can be expanded as $\mathbf{b} = \Sigma_i q_i \mathbf{a}_i$ (We have enough varieties of AI)
- Conversly, one can get full list of **b** by superposing **a** (with possibly fractional coefficients)

Our main results

 $\boldsymbol{b} = (n_{\boldsymbol{k}1}^{1}, n_{\boldsymbol{k}1}^{2}, \dots n_{\boldsymbol{k}2}^{1}, n_{\boldsymbol{k}2}^{2}, \dots)$

1. Every **b** can be expanded as $\mathbf{b} = \Sigma_i q_i \mathbf{a}_i$ (We have enough varieties of AI)

Conversly, one can get full list of **b** by superposing **a** (with possibly fractional coefficients)

2. Sufficient condition to be a topological insulators

(1) $\boldsymbol{b} = \Sigma_i n_i \boldsymbol{a_i}$ all n_i 's are nonnegative integers

- (2) $\boldsymbol{b} = \boldsymbol{\Sigma}_i \boldsymbol{n}_i \boldsymbol{a}_i$ all \boldsymbol{n}_i 's are integers but some of them are negative **Topological!**
- (3) $\boldsymbol{b} = \boldsymbol{\Sigma}_i \boldsymbol{q}_i \boldsymbol{a}_i$ not all \boldsymbol{n}_i 's are integers

(by product) Filling constraints for band insulators

Nonsymmorphic symmetries protect additional band crossing L. Michel and J. Zak, Phys. Rep. 341, 377 (2001)

(by product) Filling constraints for band insulators

Nonsymmorphic symmetries protect additional band crossing L. Michel and J. Zak, Phys. Rep. 341, 377 (2001)

(by product) Filling constraints for band insulators

Nonsymmorphic symmetries protect additional band crossing L. Michel and J. Zak, Phys. Rep. 341, 377 (2001)

How many number of bands do we need to realize band insulators? Phys. Rev. Lett. (2016)

	No.	ν	No.	ν	No.	ν	No.	ν	No.	ν	No.	ν	No.	ν	
	4	4n	39	4n	66	4n	100	4n	129	4n	165	4n	201	4n	
	7	4n	40	4n	67	4n	101	4n	130	8n	167	4n	203	4n	
Cilling	9	4n	41	4n	68	4n	102	4n	131	4n	169	1 2 n	205	8n	
Filling (11	4n	43	4n	70	4n	<i>103</i>	4n	132	4n	170	12n	206	8n	UIC
	13	4n	45	4n	72	4n	104	4n	133	8n	171	6n	208	4n	
	14	4n	46	4n	73	8n	105	4n	134	4n	172	6n	210	4n	
Nonsymme	15	4n	48	4n	74	4n	106	8n	135	8n	173	4n	212	8n	d cr
	17	4n	49	4n	76	8n	108	4n	136	4n	176	4n	213	8n	11, 37
	18	4n	50	4n	77	4n	109	4n	137	4n	178	12n	214	4n	
	19	8n	51	4n	78	8n	110	8n	138	8n	179	12n	218	4n	
	20	4n	52	8n	80	4n	112	4n	140	4n	180	6n	219	4n	
	24	4n	53	4n	84	4n	113	4n	141	4n	181	6n	220	$4n^+$	
	26	4n	54	8n	85	4n	114	4n	142	8n	182	4n	222	4n	
	27	4n	55	4n	86	4n	116	4n	144	6n	184	4n	223	4n	
\leq	28	4n	56	8n	88	4n	117	4n	145	6n	185	4n	224	4n	$\sum_{G=-}^{G=-}$
	29	8n	57	8n	90	4n	118	4n	151	6n	186	4n	226	4n	\rightarrow
· — π	30	4n	58	4n	91	8n	120	4n	152	6n	188	4n	227	4n	$a_1 \cdot k_1$
	31	4n	59	4n	92	8n	122	4n	153	6n	190	4n	228	8n	
	32	4n	60	8n	93	4n	124	4n	154	6n	192	4n	230	8n	
How many nu	33	8n	61	8n	94	4n	125	4n	158	4n	193	4n			าd in
	34	4n	62	8n	95	8n	126	4n	159	4n	194	4n			Rev
	36	4n	63	4n	96	8n	127	4n	161	4n	198	8n			I U V.
	37	4n	64	4n	98	4n	128	4n	163	4n	199	4n			

ulators

d crossing 11, 377 (2001)

nd insulators? Rev. Lett. (2016)

Example 1: Chern insulator

Sum of atomic Insulators

 $a_1 = (+,+,+,+)$ $a_2 = (+,-,+,-)$ $a_3 = (-,-,+,+)$ $a_4 = (-,+,+,-)$

Example 2: Fragile Topology "trivial = trivial + topological"

Example: TB model on honeycomb lattice with strong SOC

Not connected to atomic limit / no Wannier → topological but NO topological index or edge state → fragile

- Set of valid \boldsymbol{b} 's : {BS} = $Z^{d_{BS}}$ {BS} > {AI}
- Set of all **a**'s (**b**'s corresponding to AI): $\{AI\} = Z^{d_{AI}}$

- Set of valid \boldsymbol{b} 's : {BS} = $Z^{d_{BS}}$ {BS} > {AI}
- Set of all **a**'s (**b**'s corresponding to AI): $\{AI\} = Zd_{AI}$ Quotient space: X = $\{BS\}/\{AI\}$ $= Z_{n1} \times Z_{n2} \times \ldots \times Z_{nN}$

- Set of valid \boldsymbol{b} 's : {BS} = $Z^{d_{BS}}$ {BS} > {AI}
- Set of all **a**'s (**b**'s corresponding to AI): $\{AI\} = Zd_{AI}$ Quotient space: X = $\{BS\}/\{AI\}$ = $Z_{n1} \times Z_{n2} \times ... \times Z_{nN}$

- Set of valid \boldsymbol{b} 's : {BS} = $Z^{d_{BS}}$ {BS} > {AI}
- Set of all \boldsymbol{a} 's (\boldsymbol{b} 's corresponding to AI): {AI} = $Z^{d_{AI}}$

Quotient space: $X = {BS}/{AI}$ = $Z_{n1} \times Z_{n2} \times \ldots \times Z_{nN}$

- Set of valid \boldsymbol{b} 's : {BS} = $Z^{d_{BS}}$ {BS} > {AI}
- Set of all **a**'s (**b**'s corresponding to AI): $\{AI\} = Z^{d_{AI}}$

Quotient space: $X = {BS}/{AI}$ = $Z_{n1} \times Z_{n2} \times \ldots \times Z_{nN}$

 $X = Z_2 \times Z_2$

230 SGs x TRS with SOC

d	SGs
1	1, 3, 4, 5, 6, 7, 8, 9, 16, 17, 18, 19, 20
	$21,\ 22,\ 23,\ 24,\ 25,\ 26,\ 27,\ 28,\ 29,\ 30,\ 31,\ 32,\ 33$
	34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46
	76, 77, 78, 80, 91, 92, 93, 94, 95, 96, 98, 101, 102
	105, 106, 109, 110, 144, 145, 151, 152, 153, 154
	169, 170, 171, 172, 178, 179, 180, 181
2	79, 90, 97, 100, 104, 107, 108, 146, 155, 160, 161
	195, 196, 197, 198, 199, 208, 210, 212, 213, 214
3	$48,\ 50,\ 52,\ 54,\ 56,\ 57,\ 59,\ 60,\ 61,\ 62,\ 68,\ 70,\ 73$
	75, 89, 99, 103, 112, 113, 114, 116, 117, 118, 120
	122, 133, 142, 150, 157, 159, 173, 182, 185
	186, 209, 211
4	$63,\ 64,\ 72,\ 121,\ 126,\ 130,\ 135,\ 137,\ 138,\ 143,\ 149$
	156, 158, 168, 177, 183, 184, 207, 218, 219, 220
5	11, 13, 14, 15, 49, 51, 53, 55, 58, 66, 67, 74, 81
	$82,\ 86,\ 88,\ 111,\ 115,\ 119,\ 134,\ 136,\ 141,\ 167$
	217, 228, 230
6	69, 71, 85, 125, 129, 132, 163, 165, 190, 201
	203, 205, 206, 215, 216, 222
7	$12,\ 65,\ 84,\ 128,\ 131,\ 140,\ 188,\ 189,\ 202,\ 204,\ 223$
8	124, 127, 148, 166, 193, 200, 224, 226, 227
9	2, 10, 47, 87, 139, 147, 162, 164, 176, 192, 194
10	174, 187
11	225, 229
13	83, 123
14	175, 191, 221

$X_{\rm BS}$	SGs
\mathbb{Z}_2	81, 82, 111, 112, 113, 114, 115, 116, 117
	118, 119, 120, 121, 122, 215, 216, 217
	218, 219, 220
\mathbb{Z}_3	<i>188, 190</i>
\mathbb{Z}_4	$52,\ 56,\ 58,\ 60,\ 61,\ 62,\ 70,\ 88,\ 126$
	$130,\ 133,\ 135,\ 136,\ 137,\ 138,\ 141,\ 142$
	$163,\ 165,\ 167,\ 202,\ 203,\ 205,\ 222,\ 223$
	227, 228, 230
\mathbb{Z}_8	128, 225, 226
\mathbb{Z}_{12}	176, 192, 193, 194
$\mathbb{Z}_2 \times \mathbb{Z}_4$	14, 15, 48, 50, 53, 54, 55, 57, 59
	$63,\ 64,\ 66,\ 68,\ 71,\ 72,\ 73,\ 74,\ 84,\ 85$
	$m{86},\ m{125},\ m{129},\ m{131},\ m{132},\ m{134},\ m{147},\ m{148}$
	$162,\ 164,\ 166,\ 200,\ 201,\ 204,\ 206,\ 224$
$\mathbb{Z}_2 \times \mathbb{Z}_8$	87, 124, 139, 140, 229
$\mathbb{Z}_3 \times \mathbb{Z}_3$	174, 187, 189
$\mathbb{Z}_4 \times \mathbb{Z}_8$	127, 221
$\mathbb{Z}_6 \times \mathbb{Z}_{12}$	175, 191
$(Z_2)^2 \times \mathbb{Z}_4$	11, 12, 13, 49, 51, 65, 67, 69
$\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_8$	83, 123
$(\mathbb{Z}_2)^3 \times \mathbb{Z}_4$	2, 10, 47

230 SGs x TRS without SOC

d	SGs
1	1, 4, 7, 9, 19, 29, 33, 76, 78, 144, 145, 169, 170
2	8, 31, 36, 41, 43, 80, 92, 96, 110, 146, 161, 198
3	5, 6, 18, 20, 26, 30, 32, 34, 40, 45, 46, 61, 106
	109, 151, 152, 153, 154, 159, 160, 171, 172, 173,
	178, 179, 199, 212, 213
4	24, 28, 37, 39, 60, 62, 77, 79, 91, 95, 102, 104
	143, 155, 157, 158, 185, 186, 196, 197, 210
5	3, 14, 17, 27, 42, 44, 52, 56, 57, 94, 98, 100, 101
	108, 114, 122, 150, 156, 182, 214, 220
6	11, 15, 35, 38, 54, 70, 73, 75, 88, 90, 103, 105, 107
	113, 142, 149, 167, 168, 184, 195, 205, 219
7	13, 22, 23, 59, 64, 68, 82, 86, 117, 118, 120, 130, 163
	$165,\ 180,\ 181,\ 203,\ 206,\ 208,\ 209,\ 211,\ 218,\ 228,\ 230$
8	21, 58, 63, 81, 85, 97, 116, 133, 135, 137, 148,
	183 190 201 217
	100, 100, 201, 21
9	2, 25, 48, 50, 53, 55, 72, 99, 121, 126, 138, 141
9	2, 25, 48, 50, 53, 55, 72, 99, 121, 126, 138, 141 147, 188, 207, 216, 222
9 10	2, 25, 48, 50, 53, 55, 72, 99, 121, 126, 138, 141 147, 188, 207, 216, 222 12, 74, 93, 112, 119, 176, 177, 202, 204, 215
9 10 11	$\begin{array}{c} 2,\ 25,\ 48,\ 50,\ 53,\ 55,\ 72,\ 99,\ 121,\ 126,\ 138,\ 141\\ 147,\ 188,\ 207,\ 216,\ 222\\ 12,\ 74,\ 93,\ 112,\ 119,\ 176,\ 177,\ 202,\ 204,\ 215\\ 66,\ 84,\ 128,\ 136,\ 166,\ 227\\ \end{array}$
9 10 11 12	$\begin{array}{c} 2,\ 25,\ 48,\ 50,\ 53,\ 55,\ 72,\ 99,\ 121,\ 126,\ 138,\ 141\\ 147,\ 188,\ 207,\ 216,\ 222\\ 12,\ 74,\ 93,\ 112,\ 119,\ 176,\ 177,\ 202,\ 204,\ 215\\ 66,\ 84,\ 128,\ 136,\ 166,\ 227\\ 51,\ 87,\ 89,\ 115,\ 129,\ 134,\ 162,\ 164,\ 174,\ 189,\end{array}$
9 10 11 12	$\begin{array}{c} 2,\ 25,\ 48,\ 50,\ 53,\ 55,\ 72,\ 99,\ 121,\ 126,\ 138,\ 141\\ 147,\ 188,\ 207,\ 216,\ 222\\ 12,\ 74,\ 93,\ 112,\ 119,\ 176,\ 177,\ 202,\ 204,\ 215\\ 66,\ 84,\ 128,\ 136,\ 166,\ 227\\ 51,\ 87,\ 89,\ 115,\ 129,\ 134,\ 162,\ 164,\ 174,\ 189,\\ 193,\ 223,\ 226\end{array}$
9 10 11 12 13	$\begin{array}{c} 2, 25, 48, 50, 53, 55, 72, 99, 121, 126, 138, 141 \\ 147, 188, 207, 216, 222 \\ 12, 74, 93, 112, 119, 176, 177, 202, 204, 215 \\ 66, 84, 128, 136, 166, 227 \\ 51, 87, 89, 115, 129, 134, 162, 164, 174, 189, \\ 193, 223, 226 \\ 16, 67, 111, 125, 194, 224 \end{array}$
9 10 11 12 13 14	2, 25, 48, 50, 53, 55, 72, 99, 121, 126, 138, 141 147, 188, 207, 216, 222 12, 74, 93, 112, 119, 176, 177, 202, 204, 215 66, 84, 128, 136, 166, 227 51, 87, 89, 115, 129, 134, 162, 164, 174, 189, 193, 223, 226 16, 67, 111, 125, 194, 224 49, 140, 192, 200
9 10 11 12 13 14 15	2, 25, 48, 50, 53, 55, 72, 99, 121, 126, 138, 141 147, 188, 207, 216, 222 12, 74, 93, 112, 119, 176, 177, 202, 204, 215 66, 84, 128, 136, 166, 227 51, 87, 89, 115, 129, 134, 162, 164, 174, 189, 193, 223, 226 16, 67, 111, 125, 194, 224 49, 140, 192, 200 10, 69, 71, 124, 127, 132, 187
9 10 11 12 13 14 15 17	$\begin{array}{c} 2, 25, 48, 50, 53, 55, 72, 99, 121, 126, 138, 141 \\ 147, 188, 207, 216, 222 \\ 12, 74, 93, 112, 119, 176, 177, 202, 204, 215 \\ 66, 84, 128, 136, 166, 227 \\ 51, 87, 89, 115, 129, 134, 162, 164, 174, 189, \\ 193, 223, 226 \\ 16, 67, 111, 125, 194, 224 \\ 49, 140, 192, 200 \\ 10, 69, 71, 124, 127, 132, 187 \\ 225, 229 \end{array}$
9 10 11 12 13 14 15 17 18	$\begin{array}{c} 2, 25, 48, 50, 53, 55, 72, 99, 121, 126, 138, 141 \\ 147, 188, 207, 216, 222 \\ 12, 74, 93, 112, 119, 176, 177, 202, 204, 215 \\ 66, 84, 128, 136, 166, 227 \\ 51, 87, 89, 115, 129, 134, 162, 164, 174, 189, \\ 193, 223, 226 \\ 16, 67, 111, 125, 194, 224 \\ 49, 140, 192, 200 \\ 10, 69, 71, 124, 127, 132, 187 \\ 225, 229 \\ 65, 83, 131, 139, 175 \\ \end{array}$
9 10 11 12 13 14 15 17 18 22	2, 25, 48, 50, 53, 55, 72, 99, 121, 126, 138, 141 147, 188, 207, 216, 222 12, 74, 93, 112, 119, 176, 177, 202, 204, 215 66, 84, 128, 136, 166, 227 51, 87, 89, 115, 129, 134, 162, 164, 174, 189, 193, 223, 226 16, 67, 111, 125, 194, 224 49, 140, 192, 200 10, 69, 71, 124, 127, 132, 187 225, 229 65, 83, 131, 139, 175 221
9 10 11 12 13 14 15 17 18 22 24	2, 25, 48, 50, 53, 55, 72, 99, 121, 126, 138, 141 147, 188, 207, 216, 222 12, 74, 93, 112, 119, 176, 177, 202, 204, 215 66, 84, 128, 136, 166, 227 51, 87, 89, 115, 129, 134, 162, 164, 174, 189, 193, 223, 226 16, 67, 111, 125, 194, 224 49, 140, 192, 200 10, 69, 71, 124, 127, 132, 187 225, 229 65, 83, 131, 139, 175 221 191

$X_{\rm BS}$	SGs
7	0 11 11 07 07 19 10 50 50 50 51 56
<i>¹</i> ²	5, 11, 14, 27, 57, 48, 49, 50, 52, 55, 54, 50
	$58,\ 60,\ 66,\ 68,\ 70,\ 75,\ 77,\ 82,\ 85,\ 86,\ 88$
	103, 124, 128, 130, 162, 163, 164, 165, 166
	167, 168, 171, 172, 176, 184, 192, 201, 203
$(\mathbb{Z}_2)^2$	<i>12, 13, 15, 81, 84, 87</i>
$\mathbb{Z}_2 imes \mathbb{Z}_4$	147, 148
$(\mathbb{Z}_2)^3$	<i>10, 83, 175</i>
$(\mathbb{Z}_2)^3 imes \mathbb{Z}_4$	2

Inversion &TR symmetric 3D system (SG2 & TRS)

$X = Z_2 \times Z_2 \times Z_2 \times Z_4$

Inversion &TR symmetric 3D system (SG2 & TRS)

weak TI

Inversion &TR symmetric 3D system (SG2 & TRS)

weak TI strong TI + α

Inversion &TR symmetric 3D system (SG2 & TRS)

weak TI strong TI + α

Two copies of TI No surface Dirac / no magnetoelectric response.

Inversion &TR symmetric 3D system (SG2 & TRS)

weak TI strong TI + α

Two copies of TI No surface Dirac / no magnetoelectric response.

Still topologically nontrivial.

1D edge state on the surface of 3D TCI

These 1D edges can be identified from the symmetry-based indicator!!

Example 4: Representation-enforced Semimetal

Inversion symmetric but TR broken 3D system (SG2)

A. Turner, ..., A. Vishwanath (2010) Weyl SM

Example 4: Representation-enforced Semimetal

Inversion symmetric but TR broken 3D system (SG2)

A. Turner, ..., A. Vishwanath (2010) Weyl SM

{BS}: "band structure" can be *semimetal* (band touching at generic points in BZ)

(We demanded band gap only at high-symmetric momenta)

Interaction effect

Three possibilities of Low energy spectrum

- Exact diagonalization under the periodic boundary condition
- Neglect finite size effect

GS: unique Excitation: gapped

GS: degeneracy Excitation: gapped

GS: NA Excitation: gapless

Band insulators Haldane phase IQHS

Symmetry-breaking FQHS gapped QSL Symmetry breaking S=1/2 spin chain Fermi liquid gapless QSL

Filling constraints in interacting systems Lieb-Schultz-Mattis theorem

LSM (1961)

Unique Gapped GS \rightarrow filling v is even

- Assume U(1) & translation symmetry
- filing v = average number of particles per uc
- Extension to general class of H, higher D

Affleck-Lieb (1988) Yamanaka-Oshikawa-Affleck (1997) Oshikawa (2000) Hastings (2004)

Refinement of Lieb-Schultz-Mattis for nonsymmorphic SGs

- Assume U(1) & space group symmetry
- Unique Gapped GS \rightarrow filling v is an integer multiple of m
- *m* = 2, 3, 4, 6 depending on SG

Sid et al, (2013) PNAS (2015)

Refinement of Lieb-Schultz-Mattis for spin-orbit coupled electrons

• If S_z is conserved $v = v_{\uparrow} + v_{\downarrow}$

Apply LSM for v_{\uparrow} and v_{\downarrow} separately

 $v = v_{\uparrow} + v_{\downarrow} (v_{\uparrow} = v_{\downarrow})$ must be even for unique gapped GS

• Even when S_z is not conserved

TRS is sufficient to prove v must be even

PNAS (2015)

v must be an integer multiple of 2m

No.		No.		No.		No.		No.		No.		No.	
4	4n	<i>39</i>	4n	66	4n	100	4n	129	4n	165	4n	201	4n
7	4n	40	4n	67	4n	101	4n	130	8n	167	4n	203	4n
9	4n	41	4n	68	4n	102	4n	131	4n	169	12n	205	8n
11	4n	43	4n	70	4n	103	4n	132	4n	170	12n	206	$4n^{\dagger}$
13	4n	45	4n	72	4n	104	4n	133	$4n^{\dagger}$	171	6n	208	4n
14	4n	46	4n	73	$4n^{\dagger a}$	105	4n	134	4n	172	6n	210	4n
15	4n	48	4n	74	4n	106	$4n^{\dagger}$	135	$4n^{\dagger}$	173	4n	212	8n
17	4n	49	4n	76	8n	108	4n	136	4n	176	4n	213	8n
18	4n	50	4n	77	4n	109	4n	137	4n	178	12n	214	4n
19	8n	51	4n	78	8n	110	$4n^{\dagger}$	138	8n	179	12n	218	4n
20	4n	52	8n	80	4n	112	4n	140	4n	180	6n	219	4n
24	4n	53	4n	84	4n	113	4n	141	4n	181	6n	220	$4n^{\mathbf{b}}$
26	4n	54	8n	85	4n	114	4n	142	$4n^{\dagger}$	182	4n	222	4n
27	4n	55	4n	86	4n	116	4n	144	6n	184	4n	223	4n
28	4n	56	8n	88	4n	117	4n	145	6n	185	4n	224	4n
29	8n	57	8n	<i>90</i>	4n	118	4n	151	6n	186	4n	226	4n
30	4n	58	4n	91	8n	120	4n	152	6n	188	4n	227	4n
31	4n	59	4n	92	8n	122	4n	153	6n	190	4n	228	$4n^{\dagger}$
32	4n	60	8n	93	4n	124	4n	154	6n	<i>192</i>	4n	230	$4n^{\dagger}$
33	8n	61	8n	<i>9</i> 4	4n	125	4n	158	4n	<i>193</i>	4n		
34	4n	62	8n	95	8n	126	4n	159	4n	<i>194</i>	4n		
36	4n	63	4n	<i>96</i>	8n	127	4n	161	4n	<i>198</i>	8n		
37	4n	64	4n	98	4n	128	4n	163	4n	199	4n		

Refinement of Lieb-Schultz-Mattis for spin models with Z₂ x Z₂

PRL 119, 127202 (2017)

PHYSICAL REVIEW LETTERS

week ending 22 SEPTEMBER 2017

Lattice Homotopy Constraints on Phases of Quantum Magnets

Hoi Chun Po,^{1,2} Haruki Watanabe,³ Chao-Ming Jian,^{4,5} and Michael P. Zaletel⁶
 ¹Department of Physics, University of California, Berkeley, California 94720, USA
 ²Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
 ³Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
 ⁴Station Q, Microsoft Research, Santa Barbara, California 93106, USA
 ⁵Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
 ⁶Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
 (Received 21 June 2017; published 22 September 2017)

The Lieb-Schultz-Mattis (LSM) theorem and its extensions forbid trivial phases from arising in certain quantum magnets. Constraining infrared behavior with the ultraviolet data encoded in the microscopic lattice of spins, these theorems tie the absence of spontaneous symmetry breaking to the emergence of exotic phases like quantum spin liquids. In this work, we take a new topological perspective on these theorems, by arguing they originate from an obstruction to "trivializing" the lattice under smooth, symmetric deformations, which we call the "lattice homotopy problem." We conjecture that all LSM-like theorems for quantum magnets (many previously unknown) can be understood from lattice homotopy, which automatically incorporates the full spatial symmetry group of the lattice, including all its point-group symmetries. One consequence is that any spin-symmetric magnet with a half-integer moment on a site with even-order rotational symmetry must be a spin liquid. To substantiate the claim, we prove the conjecture in two dimensions for some physically relevant settings.

DOI: 10.1103/PhysRevLett.119.127202

Symmetry-based indicators of Chern numbers

TABLE XII. Symmetry-based indicators of band topology for systems of spinless fermions without time-reversal symmetry.

Space groups
3, 11, 14, 27, 37, 45, 48, 49, 50, 52, 53, 54, 56, 58, 60, 61, 66, 68, 70, 73, 77, 79,
103,104,106,110,112,114,116,117,118,120,122,126,130,133,142,162,163,164,165,166,167,171,116,116,116,116,116
172, 184, 201, 203, 205, 206, 218, 219, 220, 222, 228, 230
143, 173, 188, 190
75, 124, 128
168, 192
12, 13, 15, 86, 88
84, 85, 148
147
176
87
10, 82
81
174
83
175
2

 $X_{\rm BS}$: the quotient group between the group of band structures and atomic insulators.

Symmetry-based indicators of Chern numbers

TABLE XII. Symmetry-based indicators of band topology for systems of spinless fermions without time-reversal symmetry.

	~
X _{BS}	Space groups
\mathbb{Z}_2	P2(3,11, 14, 27, 37, 45, 48, 49, 50, 52, 53, 54, 56, 58, 60, 61, 66, 68, 70, 73, 77, 79,
	103,104,106,110,112,114,116,117,118,120,122,126,130,133,142,162,163,164,165,166,167,171,116,116,116,116,116
	172, 184, 201, 203, 205, 206, 218, 219, 220, 222, 228, 230
\mathbb{Z}_3	P3 (143, 173, 188, 190
\mathbb{Z}_4	P4 (75) 124, 128
\mathbb{Z}_6	P6 168, 192
$\mathbb{Z}_2 imes \mathbb{Z}_2$	12, 13, 15, 86, 88
$\mathbb{Z}_2 imes \mathbb{Z}_4$	84, 85, 148
$\mathbb{Z}_2 \times \mathbb{Z}_{12}$	147
$\mathbb{Z}_3 imes \mathbb{Z}_6$	176
$\mathbb{Z}_4 imes \mathbb{Z}_4$	87
$\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2$	10, 82
$\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_4$	81
$\mathbb{Z}_3 imes \mathbb{Z}_3 imes \mathbb{Z}_3$	174
$\mathbb{Z}_4\times\mathbb{Z}_4\times\mathbb{Z}_4$	83
$\mathbb{Z}_6 imes \mathbb{Z}_6 imes \mathbb{Z}_6$	175
$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$	2

 $X_{\rm BS}$: the quotient group between the group of band structures and atomic insulators.

Symmetry-based indicators of Chern numbers

TABLE XII. Symmetry-based indicators of band topology for systems of spinless fermions without time-reversal symmetry.

	Change mouth
ABS	Space groups
\mathbb{Z}_2	P2(3,11, 14, 27, 37, 45, 48, 49, 50, 52, 53, 54, 56, 58, 60, 61, 66, 68, 70, 73, 77, 79,
	103,104,106,110,112,114,116,117,118,120,122,126,130,133,142,162,163,164,165,166,167,171,116,116,116,116,116
	172, 184, 201, 203, 205, 206, 218, 219, 220, 222, 228, 230
\mathbb{Z}_3	P3 143, 173, 188, 190
\mathbb{Z}_4	P4 (75) 124, 128
\mathbb{Z}_6	P6 168, 192
$\mathbb{Z}_2 imes \mathbb{Z}_2$	12, 13, 15, 86, 88
$\mathbb{Z}_2 imes \mathbb{Z}_4$	84, 85, 148
$\mathbb{Z}_2 \times \mathbb{Z}_{12}$	147
$\mathbb{Z}_3 imes \mathbb{Z}_6$	Cn rotation eigenvalues \rightarrow Chern number modulo n
$\mathbb{Z}_4 imes \mathbb{Z}_4$	Phys. Rev. B 86, 115112 (2012)
$\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_2$	$C = \prod_{i=1}^{n} (i + i) E_{i} (i + i) + (i + i) + (i + i)$
$\mathbb{Z}_2 imes \mathbb{Z}_2 imes \mathbb{Z}_4$	$i^{\mathcal{C}} = \prod (-1)^r \xi_i(\Gamma) \xi_i(M) \zeta_i(Y).$
$\mathbb{Z}_3 imes \mathbb{Z}_3 imes \mathbb{Z}_3$	$i \in occ.$
$\mathbb{Z}_4 imes \mathbb{Z}_4 imes \mathbb{Z}_4$	83
$\mathbb{Z}_6 imes \mathbb{Z}_6 imes \mathbb{Z}_6$	175
$\mathbb{Z}_2\times\mathbb{Z}_2\times\mathbb{Z}_2\times\mathbb{Z}_4$	2

 $X_{\rm BS}$: the quotient group between the group of band structures and atomic insulators.

Symmetry-based indicators of many-body Chern number

arXiv: 1710.07012

New filling-constraints on many-body Chern number under external magnetic field

 Very nice work by Y.-M. Lu, Y. Ran, and M. Oshikawa (arXiv:1705.09298)

Theorem 1. Filling-enforced constraint on σ_{xy} for IQHE:

In a generic two-dimensional (2d) system of bosons and/or fermions preserving magnetic translation symmetry (9) and U(1) charge conservation, if it has a unique gapped ground state on torus, its Hall conductivity must satisfy the following condition:

$$\tilde{\sigma}_{xy} \cdot \phi = \bar{\rho} \mod 1,$$
(25)

where $\tilde{\sigma}_{xy} = \sigma_{xy} \cdot h/e^2$ is the Hall conductivity in the unit of e^2/h , and $\bar{\rho}$ is the number of particles (or the charge in unit of fundamental charge e) per unit cell.

$$e^{2\pi iC} = 1.$$
 \rightarrow $e^{2\pi i(\frac{p}{q}C - \bar{\rho})} = 1.$

filling and symmetry-based indicator of many-body Chern number under external magnetic field

$$e^{\pi i C} = (-1)^C = rac{w^X_{C_2} w^Y_{C_2}}{w^\Gamma_{C_2} w^M_{C_2}},$$

$$\bullet \ e^{\pi i (\frac{p}{q}C - \bar{\rho})} = (-1)^{\frac{p}{q}C - \bar{\rho}} = \frac{w_{C_2}^X w_{T_x C_2}^{Y'}}{w_{C_2}^\Gamma w_{T_x C_2}^{M'}},$$

arXiv: 1710.07012

Summary

- Symmetry enrich symmetry-protected topological phases
- Symmetry puts constraints on possible topological phases
- There must be more relations between symmetry and topology