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Plan

• Brief intro


• Symmetry-based indicator of band topology 
(noninteracting)


• Interaction effect (LSM theorem + recent development)



Three definitions of 
Topological insulators

Trivial insulatorsTopological insulators

• Have edge states?


• Topological Index? (e.g. Chern number, Z2 QSH index)


• Adiabatically connected to atomic limit (i.e. no hopping)?

= Valence bands can form good* Wannier orbitals?


Kane-Mele PRL (2005)
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Three definitions of 
Topological insulators

Trivial insulatorsTopological insulators

• Have edge states?


• Topological Index? (e.g. Chern number, Z2 QSH index)


• Adiabatically connected to atomic limit (i.e. no hopping)?

= Valence bands can form good* Wannier orbitals?


Yes No

Yes No

Kane-Mele PRL (2005)

*exponentially localized 

& symmetric

No Yes

Weakest definition



Generalization of
Fu-Kane Formula

• Z2 index for Quantum Hall Spin insulators 
Requires a careful gauge fixing and integration of 
Pfaffian in k space 

• For inversion-symmetric TI 
Fu-Kane formula: ν = Πk=TRIMs ξk = ±1 

Easy & Helpful for material search!

Combination of inversion eigenvalues indicates
the band insulator is Z2 QSH.
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Generalization of
Fu-Kane Formula

• Z2 index for Quantum Hall Spin insulators 
Requires a careful gauge fixing and integration of 
Pfaffian in k space 

• For inversion-symmetric TI 
Fu-Kane formula: ν = Πk=TRIMs ξk = ±1 

Easy & Helpful for material search!

Combination of inversion eigenvalues indicates
the band insulator is Z2 QSH.

Irreducible representations at high-sym momenta

Nontrivial (not adiabatically connected to the atomic limit)
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Symmetry and Topology
Example: Winding number of the map S1 to S1 → π1(S1) = Z
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Mirror symmetry
Mirror


symmetric

points



Symmetry and Topology

W = −1

W = +1

W = 0

W = +2

Same direction

→ W = even

Opposite direction

→ W = odd
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Symmetry Representation of 
Band Structures

(momentum space)



Irreducible Representation in 
Band Structure
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Irreducible Representation in 
Band Structure

Hemstreet & Fong (1974)

Focus on a set of bands with
band gap above and below 

at all high-symmetry momenta



Characterizing Band Structure by 
its representation contents

1. Collect all different types of high-sym k (points, lines, planes) 

2. For each k, define little group Gk = { g in G | gk = k + G } 

3. Find irreps ukα (α = 1, 2, …) of Gk

4. Count the number of times ukα appears in band structure {nkα} 

※ Note compatibility relations among {nkα} 

5. Form a vector b = (nk11, nk12, … nk21, nk22, …) for each BS 

6. Find the set of b’s (Band Structure Space) :  

{BS} = { b = {nkα} | satisfying compat. relations} = ZdBS



Example: 2D lattice with 
inversion symmetry

1. Collect all different types of high-sym k (point, line, plane) 

2. For each k, define little group Gk = { g in G | gk = k + G } 

3. Find irreps ukα (α = 1, 2, …) of Gk

(0,0) (π,0)

(0,π) (π,π)

Gk / Translation = {e, I } 

uk+(I) = +1, uk−(I) = −1



Example: 2D lattice with 
inversion symmetry

4. Count the number of times ukα appears in band structure {nkα} 

5. Form a vector b = (nk11, nk12, … nk21, nk22, …) for each BS

Γ = (0,0) X = (π,0)

Y = (0,π) M = (π,π)

−

+

+

+ b = (nΓ+,nΓ−,nX+,nX−,nY+,nY−,nM+,nM−) 

   = (0,1,1,0,1,0,1,0)



Example: 2D lattice with 
inversion symmetry

6. Find the set of b’s (Band Structure Space):  {BS} = { b = {nkα} }= ZdBS

Γ = (0,0) X = (π,0)

Y = (0,π) M = (π,π)

−−−−

+−−−

+−−−

++++ The general form of b in this case: 

b = (nΓ+,nΓ−,nX+,nX−,nY+,nY−,nM+,nM−) 

 → 8−3=5 independent n, {BS} = Z5

b = nΓ+(1,−1,0,0,0,0,0,0) + nX+(0,0,1,−1,0,0,0,0) 

+nY+(0,0,0,0,1,−1,0,0) + nM+(0,0,0,0,0,0,1,−1) + ν (0,1,0,1,0,1,0,1)

5-dimensional lattice in an imaginary space
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Trivial Insulators
(real space)



Atomic Insulators
Product state in real space (trivial)　⇔　Wannier orbitals

unit cell

We have to specify the position x and the orbital type


1. Choose x in unit cell.                                 e.g. x =


2. Find little group (site-symmetry gr) Gx.        Gx = {e, I} at x = 


3. Choose an orbit (an irrep of Gx).                (I = +1)          (I = −1) 



(+,+,+,+) (+,−,+,−) (+,+,−,−) (+,−,−,+)

(−,−,−,−) (−,+,−,+) (−,−,+,+) (−,+,+,−)

Irrep contents of AI

Γ = (0,0) X = (π,0)

Y = (0,π) M = (π,π)

(Γ,X,Y,M) =

(Γ,X,Y,M) =

Representation content changes  


depending on the position x and the orbital type

8 − 3 = 5 independent combinations



k = (0, π)

I = +1

k = (0, 0)

I = +1

k = (π, π)

I = −1

k = (π, 0)

I = −1



Symmetry-Based Indicators  
of the Band Topology



Our main results
1. Every b can be expanded as b = Σi qi ai 
(We have enough varieties of AI)
Conversly, one can get full list of b by superposing a 
(with possibly fractional coefficients)
2. Sufficient condition to be a topological insulators

(1) b = Σi ni ai     all ni ’s are nonnegative integers
(2) b = Σi ni ai     all ni ’s are integers but some of 

them are negative
(3) b = Σi qi ai      not all ni ’s are integers

 b = (nk11, nk12, … nk21, nk22, …)

Topological!
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(by product)
Filling constraints for band insulators
Nonsymmorphic symmetries protect additional band crossing


L. Michel and J. Zak, Phys. Rep. 341, 377 (2001)
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Filling constraints for band insulators
Nonsymmorphic symmetries protect additional band crossing


L. Michel and J. Zak, Phys. Rep. 341, 377 (2001)

How many number of bands do we need to realize band insulators?

Phys. Rev. Lett. (2016)



a1 = (+,+,+,+) a2 = (+,−,+,−) a3 = (−,−,+,+) a4 = (−,+,+,−)

+ +−=1/2

Example 1: Chern insulator

Γ = (0,0) X = (π,0)

Y = (0,π) M = (π,π)

−

+

+

+

b = (−,+,+,+)
Chern Insulator

Sum of atomic Insulators



Example 2: Fragile Topology 
“trivial = trivial + topological”

to appear

Example: TB model on honeycomb lattice with strong SOC

Not connected to atomic limit / no Wannier → topological

but NO topological index or edge state → fragile

a(triangular)a(honeycom)

a(honeycom) − a(triangular)



K-theory type classification
• Set of valid b’s : {BS} = ZdBS 

• Set of all a’s (b’s corresponding to AI): {AI} = ZdAI 

{BS} > {AI}



K-theory type classification
• Set of valid b’s : {BS} = ZdBS 

• Set of all a’s (b’s corresponding to AI): {AI} = ZdAI 

Quotient space: X = {BS}/{AI}  
= Zn1 × Zn2× … × ZnN

{BS} > {AI}



K-theory type classification
• Set of valid b’s : {BS} = ZdBS 

• Set of all a’s (b’s corresponding to AI): {AI} = ZdAI 

Quotient space: X = {BS}/{AI}  
= Zn1 × Zn2× … × ZnN

{BS}: lattice of b’s

{BS} > {AI}



K-theory type classification
• Set of valid b’s : {BS} = ZdBS 

• Set of all a’s (b’s corresponding to AI): {AI} = ZdAI 

Quotient space: X = {BS}/{AI}  
= Zn1 × Zn2× … × ZnN

{BS}: lattice of b’s

{BS} > {AI}

{AI}: lattice of a’s



K-theory type classification
• Set of valid b’s : {BS} = ZdBS 

• Set of all a’s (b’s corresponding to AI): {AI} = ZdAI 

Quotient space: X = {BS}/{AI}  
= Zn1 × Zn2× … × ZnN

{BS}: lattice of b’s

{BS} > {AI}

X = Z2 × Z2

{AI}: lattice of a’s



230 SGs x TRS with SOC



230 SGs x TRS without SOC



Example 3: reQBI

X = Z2 × Z2 × Z2 × Z4

Inversion &TR symmetric 3D system (SG2 & TRS)
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Example 3: reQBI

X = Z2 × Z2 × Z2 × Z4

Inversion &TR symmetric 3D system (SG2 & TRS)

weak TI strong TI + α

Two copies of TI 
No surface Dirac / no magnetoelectric response.

Still topologically nontrivial.



1D edge state on the 
surface of 3D TCI

C. Fang, L. Fu, arXiv:1709.01929

Z. Song, Z. Fang, and C. Fang, arXiv:1708.02952

These 1D edges can be identified 

from the symmetry-based indicator!!



Example 4: 
Representation-enforced Semimetal
Inversion symmetric but TR broken 3D system (SG2)

X = Z2 × Z2 × Z2 × Z4

Weyl SMA. Turner, …, A. Vishwanath (2010)



Example 4: 
Representation-enforced Semimetal
Inversion symmetric but TR broken 3D system (SG2)

X = Z2 × Z2 × Z2 × Z4

Weyl SMA. Turner, …, A. Vishwanath (2010)

{BS}: “band structure” can be semimetal 
(band touching at generic points in BZ)

(We demanded band gap only at high-symmetric momenta)



Interaction effect



Three possibilities of 
Low energy spectrum

• Exact diagonalization under the periodic boundary condition 


• Neglect finite size effect 

Excitation gap

GS: unique 
Excitation: gapped

GS: degeneracy 
Excitation: gapped

GS: NA 
Excitation: gapless



Excitation gap

GS: unique 
Excitation: gapped

GS: degeneracy 
Excitation: gapped

GS: NA 
Excitation: gapless

Band insulators

Haldane phase


IQHS

…

Symmetry-breaking

FQHS


gapped QSL

…

Symmetry breaking

S=1/2 spin chain


Fermi liquid

gapless QSL


…

Three possibilities of 
Low energy spectrum



Filling constraints in interacting systems 
Lieb-Schultz-Mattis theorem

Unique Gapped GS → filling ν is even 

• Assume U(1) & translation symmetry


• filing ν = average number of particles per uc


• Extension to general class of H, higher D

LSM (1961)

Yamanaka-Oshikawa-Affleck (1997)

Oshikawa (2000)

Hastings (2004)

Affleck-Lieb (1988)



• Assume U(1) & space group symmetry


• Unique Gapped GS → filling ν is an integer multiple of m


• m = 2, 3, 4, 6 depending on SG

Refinement of Lieb-Schultz-Mattis 
for nonsymmorphic SGs

Sid et al, (2013)

PNAS (2015)



• If Sz is conservedν = ν↑ + ν↓

Apply LSM for ν↑ and ν↓ separately


ν = ν↑ + ν↓ (ν↑=ν↓) must be even for unique gapped GS


• Even when Sz is not conserved

TRS is sufficient to prove ν must be even

ν must be an integer multiple of 2m

Refinement of Lieb-Schultz-Mattis 
for spin-orbit coupled electrons

PNAS (2015)





Refinement of Lieb-Schultz-Mattis 
for spin models with Z2 x Z2



Symmetry-based indicators 
of Chern numbers
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Symmetry-based indicators 
of Chern numbers

P2

P3
P4
P6

Cn rotation eigenvalues → Chern number modulo n
Chen Fang, Matthew J. Gilbert, B. Andrei Bernevig
Phys. Rev. B 86, 115112 (2012)



Symmetry-based indicators 
of many-body Chern number

θy

θx

arXiv: 1710.07012 



New filling-constraints on 
many-body Chern number 

under external magnetic field
• Very nice work by Y.-M. Lu, Y. Ran, and M. Oshikawa 

(arXiv:1705.09298)

→



filling and symmetry-based indicator of 
many-body Chern number 

under external magnetic field
θy

θx

arXiv: 1710.07012 

→



Summary

• Symmetry enrich symmetry-protected topological phases


• Symmetry puts constraints on possible topological 
phases


• There must be more relations between symmetry and 
topology


