Novel Quantum States in Condensed Matter 2017

University of Tokyo

Nobuyuki Yoshioka

Collaborators: Yutaka Akagi, Hosho Katsura

arXiv: 1709.05790

LEARNING DISORDERED TOPOLOGICAL PHASES BY STATISTICAL RECOVERY OF SYMMETRY

Introduction

Objective of Machine Learning Application to Physics

Method and Hamiltonian

Problem set up Classification by Artificial Neural Network

Result and Discussion

Introduction

Objective of Machine Learning Application to Physics

Method and Hamiltonian

Problem set up Classification by Artificial Neural Network

Result and Discussion

Machine Learning in Ordinary Life

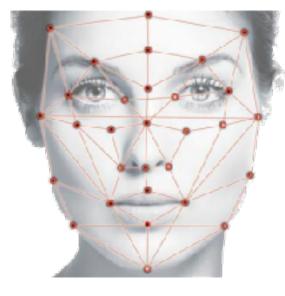


Image recognition

UC Berkeley Computer Vision Group

Machine translation

Well understanding on non-metamessage.

Triumph of Go/Shogi AI in 2017

ARTICLE

doi:10.1038/nature24270

Mastering the game of Go without human knowledge

David Silver¹*, Julian Schrittwieser¹*, Karen Simonyan¹*, Ioannis Antonoglou¹, Aja Huang¹, Arthur Guez¹, Thomas Hubert¹, Lucas Baker¹, Matthew Lai¹, Adrian Bolton¹, Yutian Chen¹, Timothy Lillicrap¹, Fan Hui¹, Laurent Sifre¹, George van den Driessche¹, Thore Graepel¹ & Demis Hassabis¹

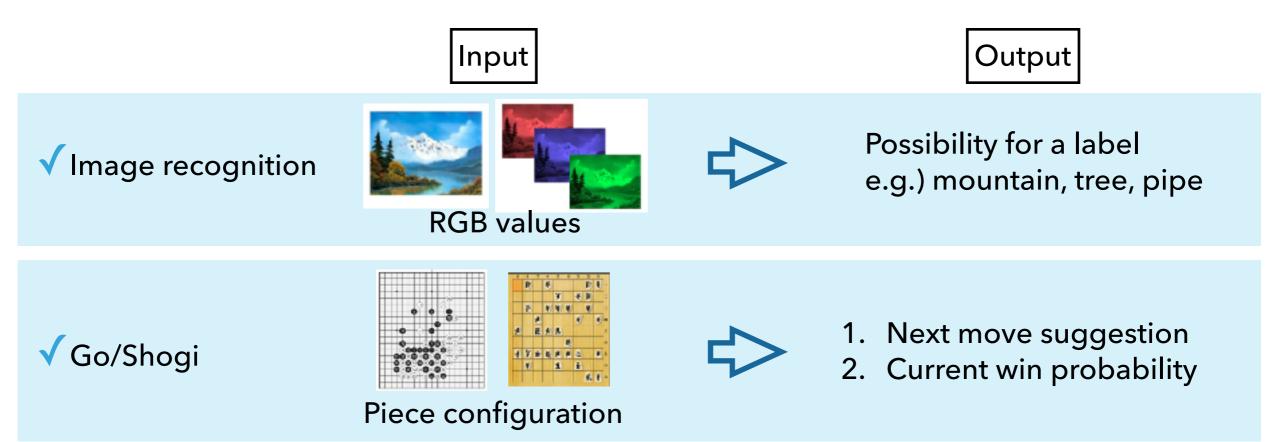
DeepMind group, Nature 550, 354 (2017).

Denou Sen Website http://denou.jp/2017/

Element-wise understanding of ML

Machine Learning = Computer algorithm that gives prediction/knowledge from huge amount of data beyond human resources.

Machine task = Construction of highly-nonlinear function. Recent progress: discovery of convolutional NN, ResNet etc.



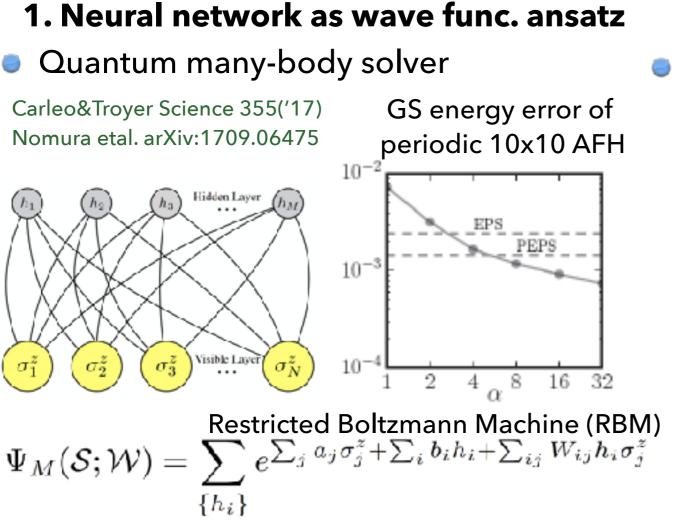
• Learning task = Optimization of "the Loss function" i.e. the "performance" of the machine e.g.) For data \mathbf{x} , label \mathcal{Y} , and some parametrized classifier \mathcal{F}_p , take

$$\mathcal{L}(\mathbf{x}) = \left| \mathcal{F}_p(\mathbf{x}) - y \right|$$
prediction error

and update $\,p
ightarrow p - \eta \partial_p \mathcal{L}\,$ in a stochastic manner.

Application to Physics

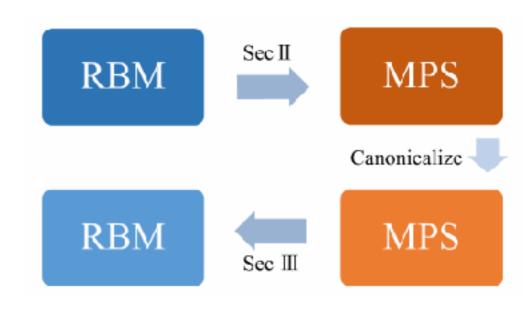
Three main approaches for <ML|cond-mat>



Glasser etal. arXiv:1710.04045 ('17) Clark arXiv:1710.03545 ('17)

RBM <-> Tensor network

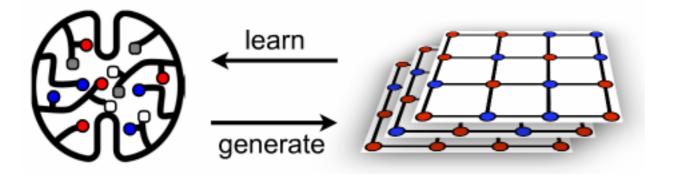
Chen etal arXiv:1701.04831 ('17)



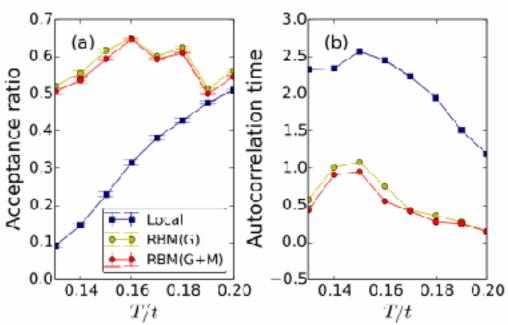
2. Speeding up Monte Carlo

Wang arXiv:1702.05856('17) Huang&Wang PRB 95('17)

Efficient cluster-update by learning thermal distribution



Falicov-Kimball model, 8x8 periodic square lattice

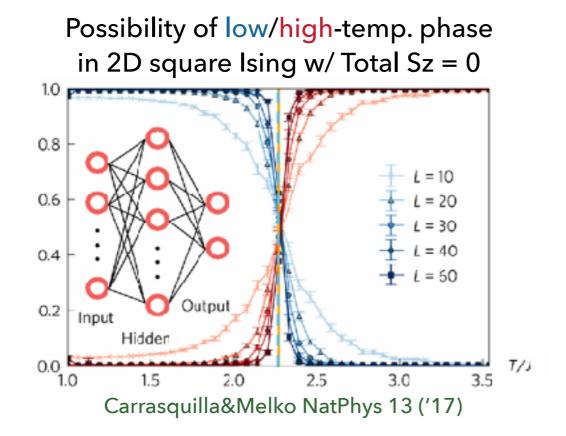


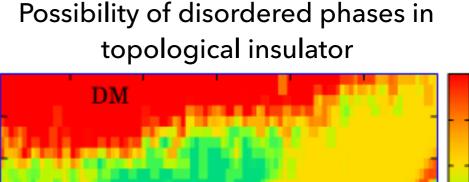
Three main approaches for <ML|cond-mat>

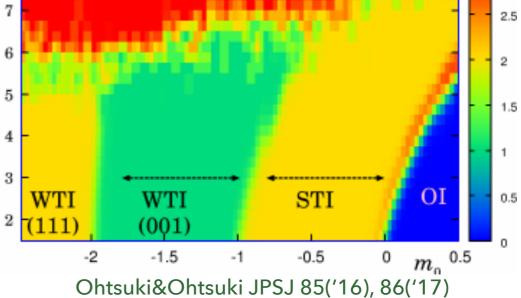
3. Classification of phases

Tanaka&Tomiya JPSJ 86 ('17) Broecker etal. SciRep 7 ('17) Ch'ng etal. PRX 7 ('17) Zhang&Kim PRL 118 ('17)

Supervised learning : <u>Teach the pattern. Then let it predict.</u>







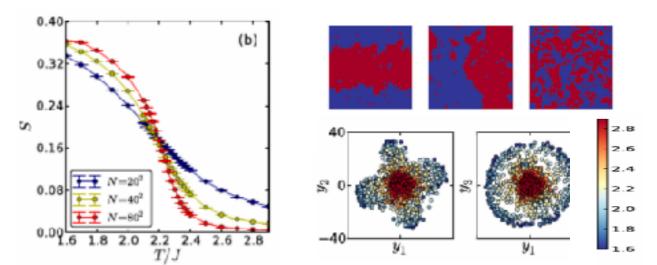
Data science methods e.g. PCA, VAE, tSNE L. Wang PRB 94 Ch'ng etal. ('17)

W

L. Wang PRB 94 ('16), S. Wetzel PRE 96 ('17) Ch'ng etal. ('17),

Extract patterns of spin configurations

Learning transition point <u>without</u> teaching the notion of "phase".



Today's talk

Learn the clean, classify the disordered by Neural Network

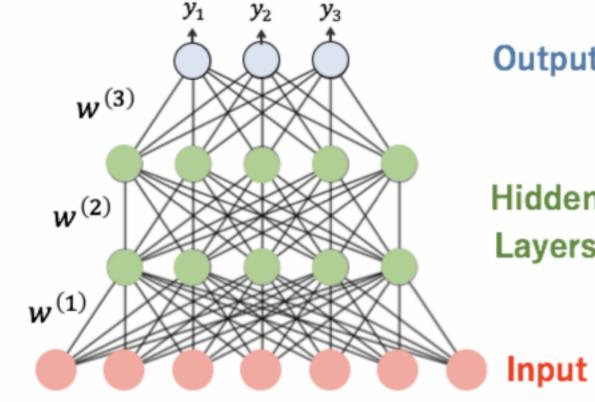
Goal	Р
	A

Phase classification of disordered TSC (e.g. 2d, class DIII)

Obstacle Break down of well-known formulae in lattice system

Use of NN.

SolutionTrained merely at clean limit, disordered phases classified correctly.Phases not present at clean limit also correctly detected.



Output : Probability of the corresponding phases

Hidden : Extract the feature of the data Layers

t : Statistical average of quasiparticle distribution

Introduction

Objective of Machine Learning Application to Physics

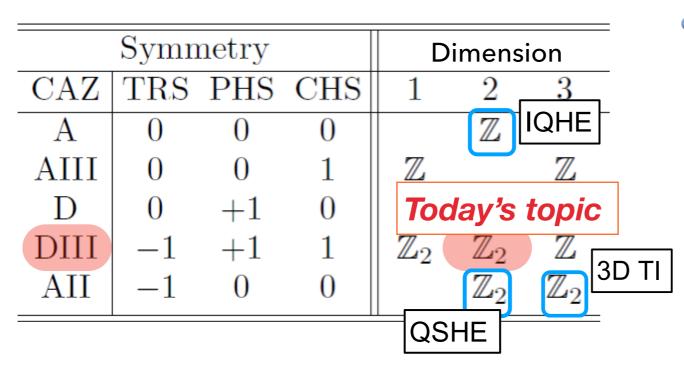
Method and Hamiltonian

Problem set up Classification by Artificial Neural Network

Result and Discussion

2d Class DIII Topological Superconductor

Class DIII in the "Periodic table" Schnyder etal. PRB 78 ('08) Kitaev AIP Conf. Proc. 1134 ('09)



BdG system with TRS, w/o SU(2) symm. TRS: $\Theta^{-1}H_{\mathbf{k}}\Theta = H_{-\mathbf{k}}, \Theta^2 = -1$

PHS:
$$\Xi^{-1}H_{\mathbf{k}}\Xi = -H_{-\mathbf{k}}, \Xi^2 = 1$$

CHS:
$$\Gamma^{-1}H_{\mathbf{k}}\Gamma = -H_{\mathbf{k}}, \Gamma = i\Xi\Theta$$

Majorana edge mode as topo. feature
 e.g.) Cu_xBi₂Se₃, Hasan group('10)

quasi-2D, surface modes

BdG Hamiltonian in k-space, square-lattice

Sato&Fujimoto PRB 79('09) Diez etal NewJPhys 16('14)

Z2 invariant Kane&Mele PRL 95('05) Fu&Kane PRB 76('07)

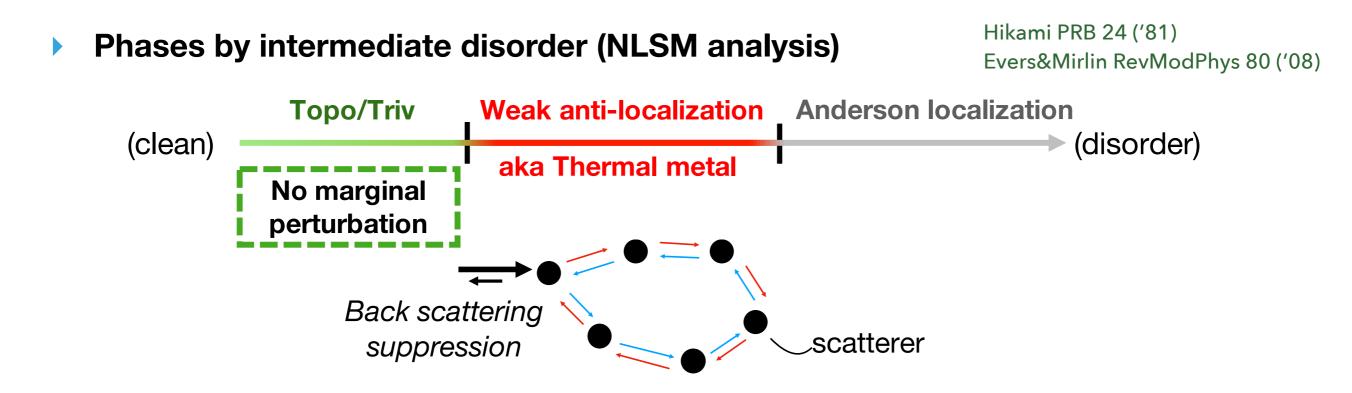
$$(-1)^{\nu} = \prod_{i=1}^{4} \frac{\Pr[\omega(\Lambda_i)]}{\sqrt{\det \omega(\Lambda_i)}}$$
$$(-1)^{\nu} = \sum_{i=1}^{4} \frac{\Pr[\omega(\Lambda_i)]}{\sqrt{\det \omega(\Lambda_i)}}$$

 $H_{\mathbf{k}} = \begin{pmatrix} \hat{\epsilon}_{\mathbf{k}} & \hat{\Delta}_{\mathbf{k}} \\ \hat{\Delta}_{\mathbf{k}}^{\dagger} & -\hat{\epsilon}_{-\mathbf{k}} \end{pmatrix}$

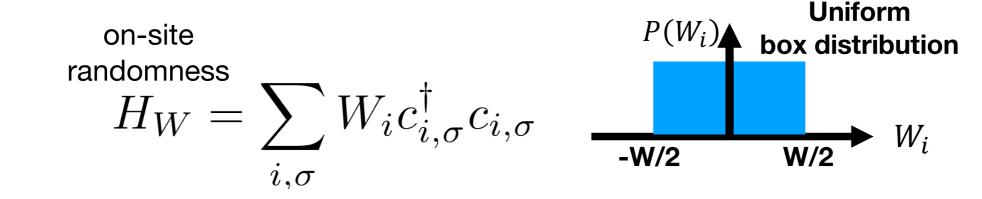
$$\hat{\epsilon}_{\mathbf{k}} = 2t(\cos k_x + \cos k_y) - \mu$$

Kinetic NN hopping chemical pot.

2d Class DIII Topological Superconductor II: Dirty



In lattice model...? For example,



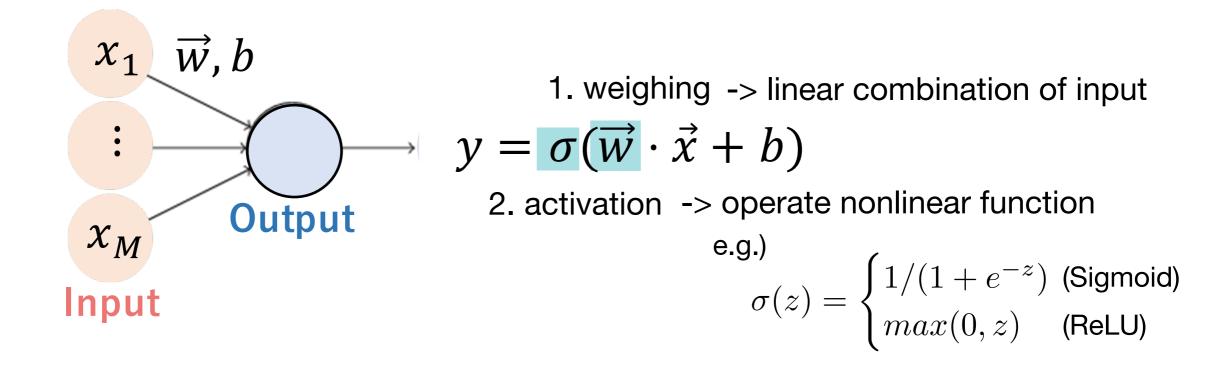
Break down of top.inv. formulae (e.g. Kane-Mele, Niu-Thouless-Wu)...

New approach introduced. NN.

Classification by ANN

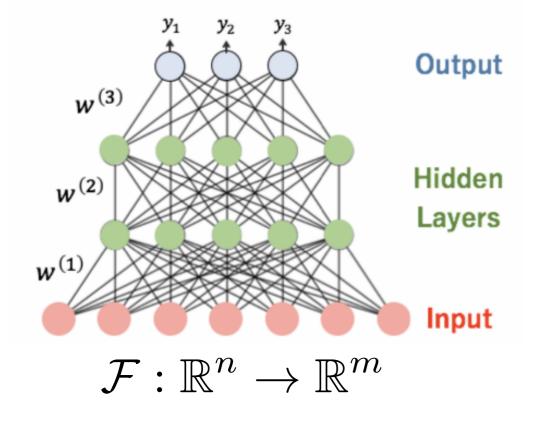
Single Neuron (perceptron)

Rosenblatt PsycoRev 65('58)



Deep Neural Network

Rumelhart etal. Nature 323('86) Hinton etal. Science 313 ('06)



- Weighing and activation sequentially/simultaneously.
 Hidden Layers extracts abstract feature efficiently.
- Output:

$$y_i = e^{-z_i} / (\sum_j e^{-z_j}) \quad \sum_i y_i = 1$$
 probability

- Universal approximation theorem for multilayer NN
 - Expression of any nonlinear function Cybbenko MathCon 2('89) Hornik etal. Neural Network 2('89)

Supervised Learning

... Tune parameters by minimizing the "distance" btw output and correct label

$$\mathcal{W}_{j,k}^{(i)} \to \mathcal{W}_{j,k}^{(i)} - \eta \left(\partial \mathcal{L} / \partial \mathcal{W}_{j,k}^{(i)} \right)$$

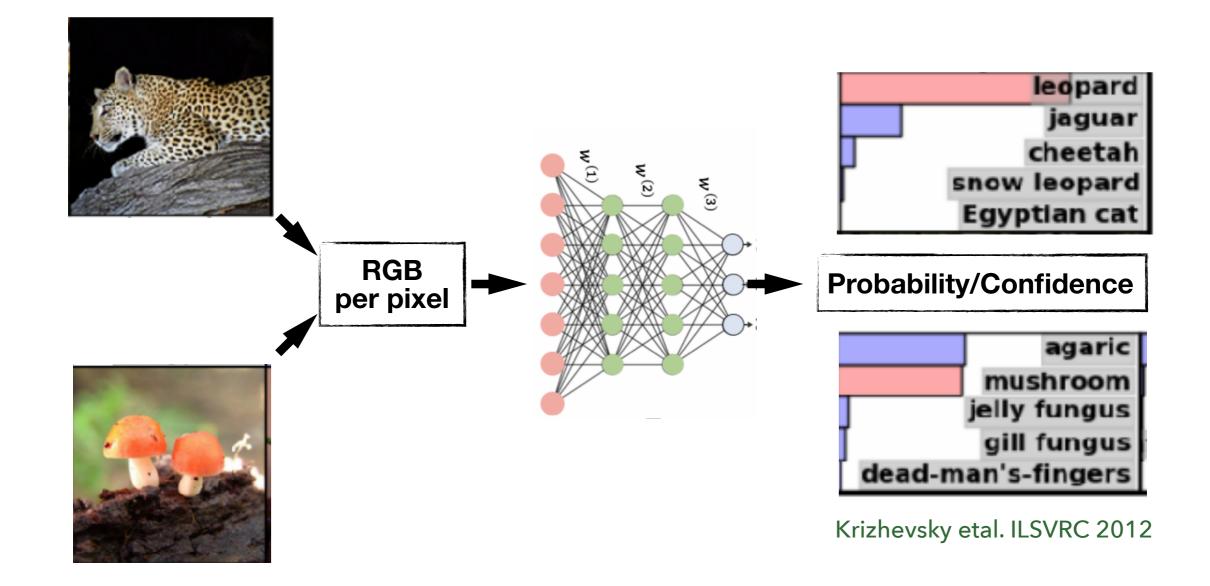
Loss = Cross entropy + L2 regularization:

$$\mathcal{L}(w) = -\sum_{j=1}^{(\#\text{data})} \sum_{k=1}^{(\#\text{class})} \hat{y}_j^{(k)} \log y_j^{(k)}(\mathbf{x}_j; \mathbf{w}) / (\#\text{data})$$
$$\frac{(\#\text{layers})}{+\lambda} \sum_{i=1}^{(\#\text{layers})} |W^{(i)}|^2.$$

(improves the generalization power) 1

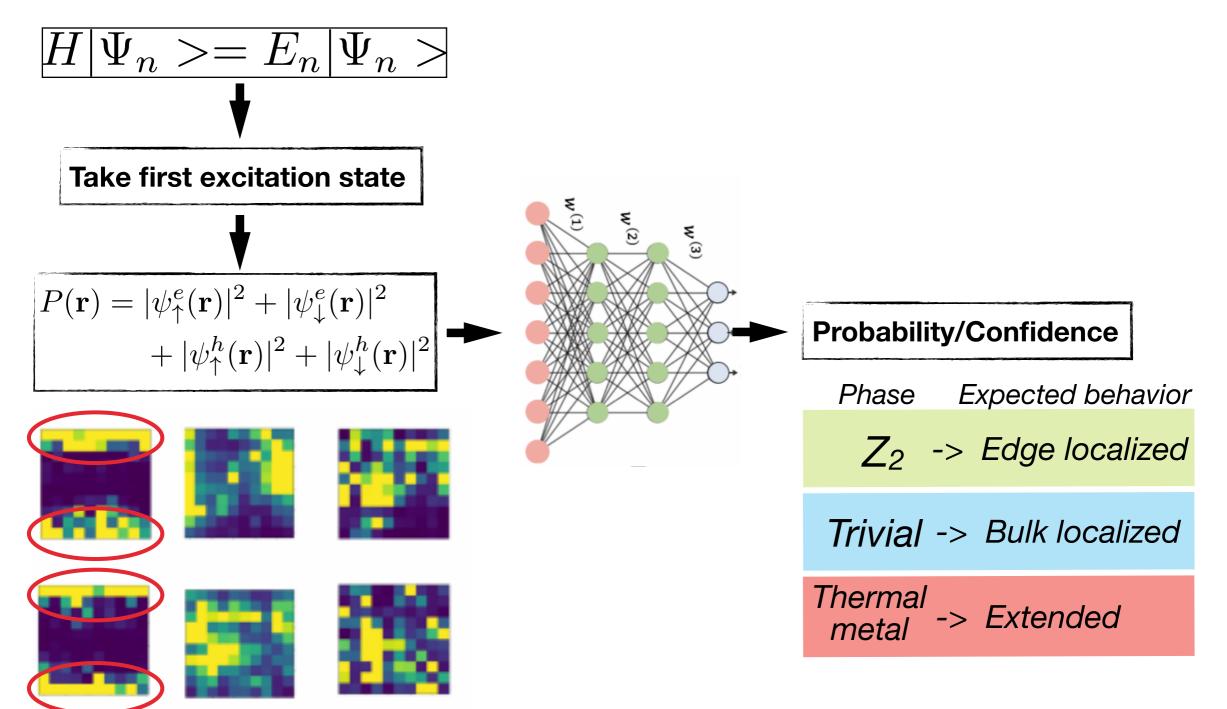
Classification by Artificial Neural Network

Image -> Probability



Classification by Artificial Neural Network

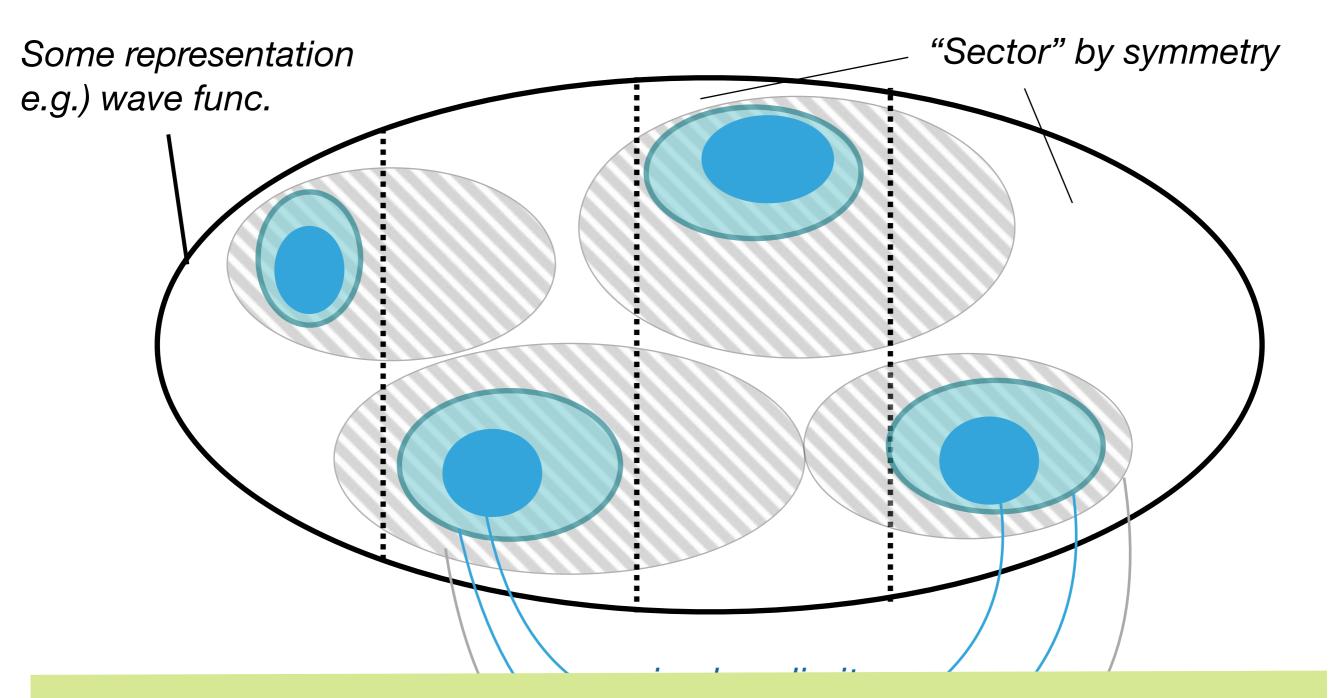
Quasiparticle dist. -> Probability



"Training" requires knowledge on disorder phase boundary. Possible to avoid it by statistical average!

"Statistical recovery" of translational symmetry

cf.) Recovery of TRS, Inv. Fulga et al.('14)



Learn in clean phase, classify dirty phase.

Introduction

Objective of Machine Learning Application to Physics

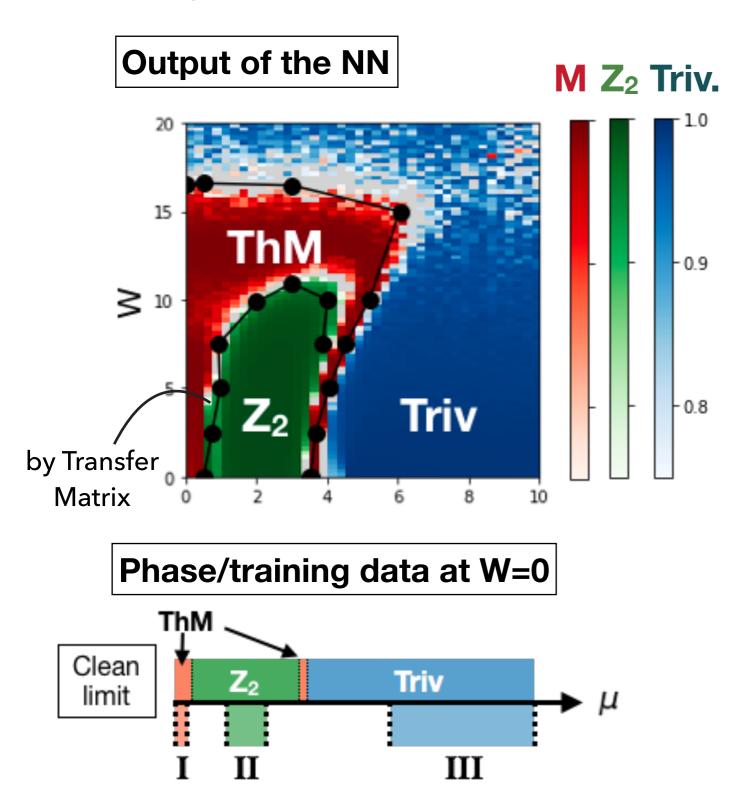
Method and Hamiltonian

Problem set up Classification by Artificial Neural Network

Result and Discussion

Result I: Ternary Classification

► t=1, Δ_p =3, Δ_s =2, Lx = Ly = 14



Phase boundary reproduced at W=0

- Accuracy>90% for test at $\mu \in [0, 10]$.
- Small window of ThM at µ~3.5 detected.

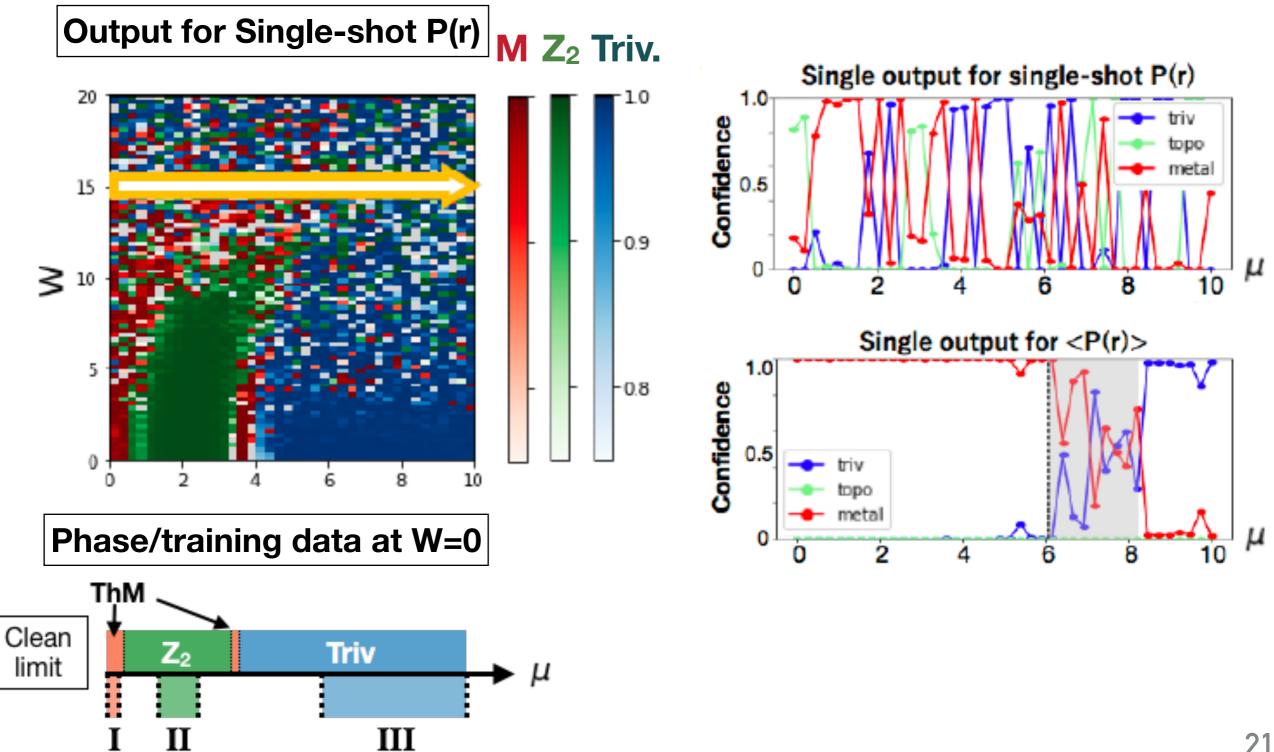
Consistency with Transfer Matrix at W>0

- ThM-Z2-ThM transition at μ ~3.5.
- Close boundaries of Z2-Thm, ThM-Triv.

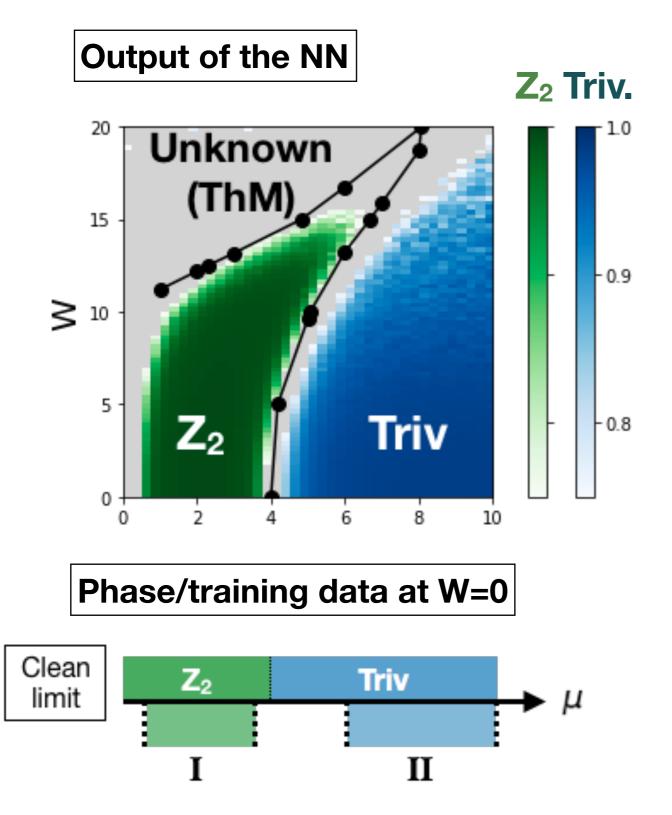
- Confusion(gray) at W~15 improved by increasing disorder average.

Fails without statistical symmetry recovery

t=1, Δ_p =3, Δ_s =2, Lx = Ly = 14



• $t=1, \Delta_p=3, \Delta_s=0, Lx = Ly = 14$



Consistency with TM

- Accuracy>95% for test at $\mu \in [0, 10]$, W=0.
- Z2-triv phase boundary reproduced.
- Z2-Z2 boundary for confusion at μ ~0

Confused region above Z2 phase

- Output convergence below 0.75.
- Detection of metallic phase.
 - Shrink of Z2 phase due to finite-size effect.

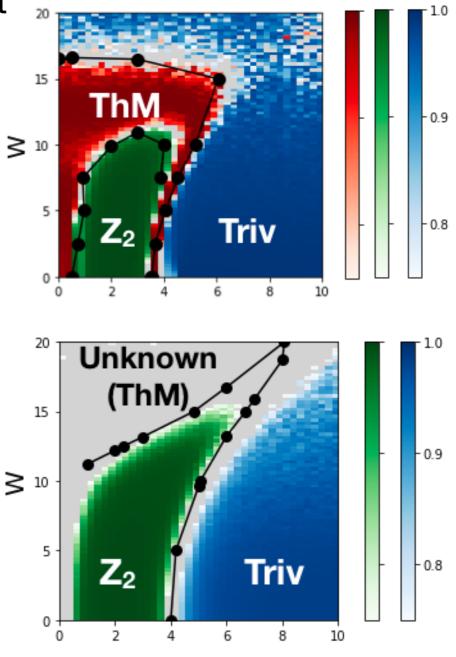
Over the set of the s

- Extension of phase boundary from clean limit
- Consistency with TM (and NCI)
- Higher precision by increasing samples

Inclusion of higher moments

Application to many-body system with disorder

Further classification within the unknown phase

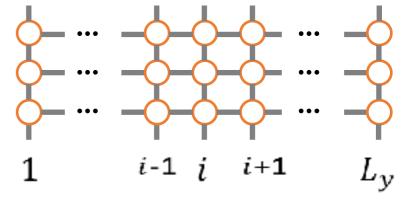


Supplement 1:Transfer Matrix

Localization length in quasi-1D system

$$V_{i,i-1}\boldsymbol{\psi}_{i-1} + H_i\boldsymbol{\psi}_i + V_{i+1,i}\boldsymbol{\psi}_{i+1} = E\boldsymbol{\psi}_i$$

 $= \dots = M(E) \left(\begin{array}{c} \psi_1 \\ \psi_0 \end{array} \right)$



$$\begin{pmatrix} \boldsymbol{\psi}_{i+1} \\ \boldsymbol{\psi}_{i} \end{pmatrix} = \begin{pmatrix} V_{i+1,i}^{-1}(E-H_{i}) & V_{i+1,i}^{-1}V_{i-1,i} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{\psi}_{i} \\ \boldsymbol{\psi}_{i-1} \end{pmatrix}$$

$$= \dots = M(E) \begin{pmatrix} \psi_0 \end{pmatrix}$$

Localization
length
$$\lim (MM^{\dagger})^{1/2L_x} = U^{\dagger} \operatorname{diag}(e^{\pm L_y/\Lambda_1}, \dots, e^{\pm L_y/\Lambda_{L_y}})U$$

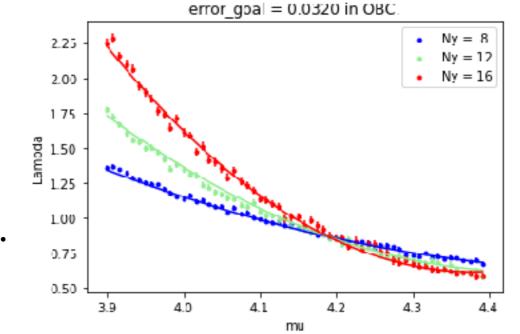
Finite-size scaling

 $L_x \to \infty$

Scaling A equivalent to scaling conductance g. MacKinnon & Kramer (1983), Yamakage et al. (2012)

$$\Lambda = \Lambda_0 + \sum_n a_n (\mathbf{q} - q_c)^n L_y^{n/\nu}$$

 $\mu \text{ or } W$ critical exp.



muc = 4.18948 +- 0.00461, Lambc = 0.86641 +- 0.00900, nu = 0.88665 +- 0.02390 under W = 5.00, D = 3.00.

Supp 2: Methods in real-space regularized system

O Noncommutative Geometry (new)

$$\nu = \frac{1}{2} \dim \ker[\mathcal{A} - 1] \mod 2$$

Proj. on Fermi sea.

$$A = \sigma_3(P_F - D_a P_F D_a)$$

Pauli mat. Dirac operator
on aux. field

- Proof in infinite system : Katsura&Koma('16)
- Demonstration in finite system : This work, Akagi et al. (arXiv:1709.05853)

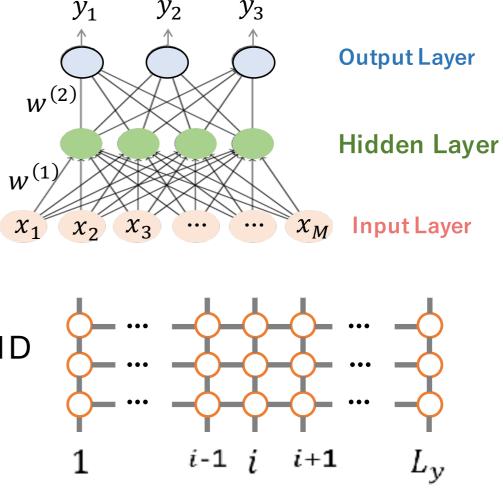
O Machine Learning (new)

- Classification of phases by neural network.
- Learn clean phase, predict dirty phase.
- Focused talk on 09/24 15:30

Transfer Matrix Method MacKinnon('83)

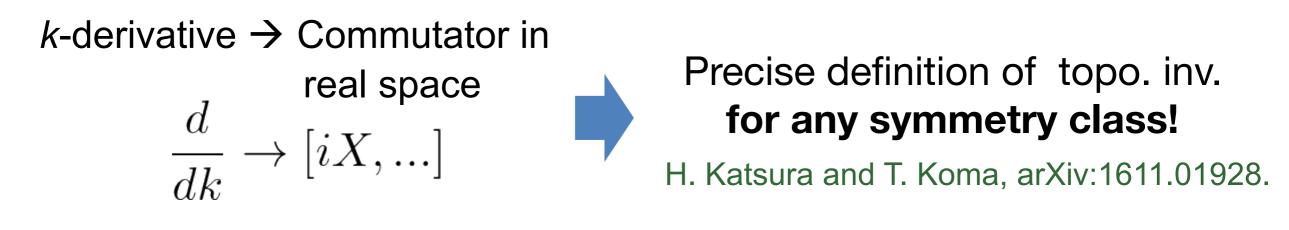
Finite-size scaling of localization length in quasi-1D

$$\Lambda = \Lambda_0 + \sum_n a_n (q - q_c)^n L_y^{n/\nu}$$



Supplement 3: Defining Z2 topo. inv.

Noncommutative Geometry Avron, Seiler & Simon ('94)



In practice, results in counting #(eigenvalue = 1) of

$$\mathcal{A} = \sigma_3[D_a(\vec{x}), D_a(\vec{x})P_F] \quad \begin{pmatrix} \text{Commutator for} \\ \text{space-dependent operator} \end{pmatrix}$$

i.e., $\nu = \frac{1}{2} \dim \ker[\mathcal{A} - 1] \mod 2$
where
$$\begin{cases} D_a(\vec{x}) \coloneqq \frac{1}{|\vec{x} - \vec{a}|} (\vec{x} - \vec{a}) \cdot \vec{\sigma} &: \text{Dirac operator} \\ (D_a^2 = 1, D_a = D_a^{\dagger}, \sigma \text{ for aux. field}) \end{cases}$$
$$P_F = \frac{1}{2\pi i} \oint_{\mathcal{C}} (z - H)^{-1} dz : \text{Projection on Fermi sea} \end{cases}$$