g fermions or bosoNS =sww.

H = Z Jq;jkz...(CZCjC/zCl )

e~ drawn from static
random distribution
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... the advent of ‘embedded random matrix ensembles’ (in nuclear theory)

The (last result shows that) GOE can meaningfully be used in predicting spectral
fluctuation properties of nuclei and other systems governed by two-body interactions
(atoms and molecules). Nonetheless, embedded ensembles rather than GRTM would

offer the proper way of formulating statistical nuclear spectroscopy. Unfortunately, an
analytical treatment of the embedded ensembles is still missing.

Guhr, Muller-Groeling and Weidenmdiller, 1997
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Universal Quantum-Critical Dynamics of Two-Dimensional Antiferromagnets

Subir Sachdev and Jinwu Ye
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The universal dynamic and static propertics of two-dimensional antifcrromagnets in the vicinity of a
zero-temperature phase transition from long-range magnetic order to a quantum-disordered phase are
studied. Random antiferromagnets with both Neel and spin-glass long-range magnetic order are con-
sidered. Explict quantum-critical dynamic scaling functions are computed in a 1/V expansion to two-
loop level for certain nonrandom, frustrated square-lattice antiferromagnets. Implications for neutron
scatiering experiments on the doped cuprates are noted.

PACS numbers: 75.10.0m, 05.30.Fk. 75.50 Ee

... identification of conformal symmetries



Sachdev-Ye-Kitaev Model (15)

A model of N randomly interacting Majorana fermions

N
H = Z ikl XaXjXkXI, {xi, X5} = 20i;
ijkl

SYK model

where the interaction constants are static and random,

(1 ijwt|*) = <5

Three perspectives:

= random matrix theory
= strong correlation physics
= holography



gquantum chaos



random matrix correlations:

Verbaarschot, Garcia-Garcia, 16

o 'N = 28' T |
a N=32
— GUE ...........................
— GSE .............
1- - GOE -
2 F
(L)
0.5kf
1 ) ‘ | |
O(T . 40
L

Note: depending on the value of N mod 8 the model realizes different symmetries

Cotler et al. 17
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strong correlations



Strong interactions:

N
H = Z Jijkl XiXGXkEXI
o

‘infinite range’, strong, chaotic: amenable to large N mean field methods

first assault: diagrammatic expansion of Majorana propagator

] : disorder average

 structureless

0710 | — =




path integral approach

standard imaginary time coherent state field integral construction followed by disorder

average leads to

7 = / DIG, 5] exp(~5G, %)

large N
B/2

= Y [ [ anar

—B/2

: replica
: matrix fields

iself energy

2

Trlog(0,6% + B7%) + 1[G + 578, G,

Green function:




stationary phase v B/2 2
SQ;GFZ_EE//‘de[ﬂmg@mwb+nﬂg+~prﬁq4+2%ﬁaﬁﬂ
—B/2

variational equations
~0,4+%)-G=1; 2=JG] —= F———

with solutions (0r < J)

:replica isotropy

h o §ab sgn(t — 7')
JU2 |5 — (L2

Gt — 1) =

7172 0% sgn(1 — 7')

ab ! :_3
LU —1) b T — 77|3/2

‘numerical factor



Symmetries

N[

action (neglecting time derivatives) f
invariant under reparameterization of
time

f:8" =8t r— f(r),
f € Diff(S*)

Elements of the diffeomorphism manifold describe reparameterizations of time.
Infinitesimally: generated by Virasoro algebra. Weakly broken by time derivatives
— problem has NCFT1symmetry (Maldacena and Stanford, 15).




Symmetry of the mean field

b 6% sgn(r —7')

ab(_ 1\ _
G (r =7 T2 | — 7|12
0% sgn(1 — 7')
ab(_ 1\ _ _ 33 71/2
X (r —7) b>J PR—TETE
. . , atT + b . |
invariance under conformal transformations 7 — ¥ e SL(2, R) C Diff(S")
T+ ¢

each f : S* = S*, 7 — f(7), f € Diff(S")/SL(2, R) generates new solution

1Y — ()14 DV () (A b ol — 7 F(r)V/AF ()14
G(Ufl,m,7) = f(r) G(f(r) = f(«) () 172580 )|f(7) T

f'(7)3/4 3/4
S([f),77) = FAS(f(r) — FE) £ = 68 2sgn(r — ) LIS

1
() = f() P/



Goldstone mode manifold

emergence of infinite dimensional Goldstone mode manifold

Diff (S')/SL(2, R)

SL(2, R)

Diff(S*)



holographic interpretation

(amateur perspective)



Holographic interpretation (Maldacena & Stanford, 16; Almheiri & Polchinksi, 16)
Consider 2d Einstein-Hilbert action

:also constant : positive cosmological
: iconstant

S:lngOG/@(R+A)

Sgravitational constant

action invariant under conformal deformations of 2d space (because it is topological)

S3Faw, boundary
S i (where SYK lives)

WP deformation mode

conformal

écompactified space

AdS metric (spontaneously) breaks symmetry to SL(2,R). Reparameterization
Goldstone modes without action.



Holographic interpretation (continued)

Improve situation by upgrading pure gravity action to dilaton action

inow a field

.
S = 1§;G/\/§(R+A) >167TG/\/§¢(R+A)+...

Jackiw Teitelboim gravity

This action (i) is non-topological, (ii) fluctuations of the dilaton field weakly break
conformal symmetry (—> non-vanishing boundary action) and (iii) afford physical

interpretation if AdS2 action is seen as boundary theory of higher dimensional extremal
black hole.

Combination (i-iii) motivates boundary with conformal invariance breaking and
signatures of quantum chaos.



Large conformal Goldstone mode
fluctuations in the SYK model

Kyoto, NQS2017
Alexander Altland, Dmitry Bagrets (Cologne), Alex Kamenev (Minnesota)

conformal symmetry & Liouville guantum
mechanics

quantum chaos & OTO correlation functions

Nucl. Phys. B 911, 191 (2016)
Nucl. Phys. B 921, 727 (2017)



conformal symmetry &
Liouville guantum mechanics



Goldstone mode manifold

emergence of infinite dimensional Goldstone mode manifold

Diff (S')/SL(2, R)

SL(2, R)

Diff(S*)



reparameterization action

Goal: construct effective (“magnon”) action describing cost of reparameterization
fluctuations.

Expand |
B/2 _ _
N ; ’ J2 4
S[3, G| = 5 drdr" | Trlog(0; + ¥ /) + T G| +2:Gr
—B/2 ] :numerical constant -
N b2N f 3/2f (T /)3/2
— Tr(0,GO,-G) rdr’ .
p 16.J // - f(7)P
UV regularization :
at ~J
M f// 7‘ > bZ
dr M = — Nlog (N
/ ( (7) 1= 357 Vios ()
: Goldstone mode action étime scgle at which
: fluctuations become
: strong

Form of the action suggested by Maldacena et al. 16, present derivation (Bagrets et al.
16) identifies M.



Low energy theory

. |eft invariant measure
i involves functional determinant

Integral over left invariant measure (Bagrets et al. 16) D( f o g) = Df not innocent
(Witten & Stanford 17, Kitaev unpublished) as including integration over non-compact
symmetry SL(2, R).



reparameterization freedom

creatively use freedom of reparameterization to obtain user friendly representation of
field integral.

f(1) = h(7) = tan(vT'f (7)) = ¢(7) = In(h'(7))

N[

%
i
N[

V] Re
-

!




Reparameterization mapping to Liouville Quantum mechanics

L /Dsgpexp(—s[sp])» s[-@] — M/dT (%(@’)2 +26—¢)

: flat measure : action of Liouville QM

effect of low energy Goldstone mode fluctuations encapsulated in Liouville QM.
Universal feature (Shelton, Tsvelik 98): all operator correlation functions decay as

(O(N)O()) ~ |7 — 7|73



Sanity check |: Green function

path integral representation of Green function

N b f/(7)1/4f/(7'/)1/4
G = =357 (g% ),

f(7) = h(r) =tan(aT f(7)) — ¢(7) = In(h' (7))

b 1 > d —a [™2 ds e®(s)
_ <€z(¢(71)+¢(72))/ da —afrase? >

NCIRE o Va ,

guench potential

: time local operator



Sanity check |: Green function

: 1/2 400 : 9
Gle) = -2 (i> / djp FB2TR) 1o (L4 ik) T2 (2 —ik) ——
0]

27T2 4 4

E, =k*/2M

SYK Green function beyond mean field: resurrection of full symmetry at small energies

3.0 : - : : 5r— S
i \\ //
2.5} 4 JRalN
/ \
/ N\ .
20 3 ((' 2 // \:\ 8-'/4
%15 O g :
© O |
1.0 - 2|
0.5 : :
0.0 - - N
0 0.1 0.2 0.3 0.4 0.5 0.01 0.05 0.1 050
e el) |

:  mean field
: strong Goldstone mode
: fluctuations

analytical GF énumerical (N=24) GF



sanity check Il: SYK partition sum

7 = (il /Dsoexp Slpl) ==
_ %/O de p(€) e P€, p(€) o< sinh(2mv Me)

20 -
| : N=34 data courtesy Garcia-Garcia

15|

100

0,

p(e€) is many body density of states above ground state. Previously obtained by
combinatorial methods (Verbaarschot, Garcia-Garcia, 16), and within the limiting
approximation of an g-body interaction model (Cotler et al. 16)

Note: field integral for partition sum is semiclassically exact (Stanford & Witten, 17).



chaos and OTO
correlation functions



OTO correlation function

Out of time order (OTO) correlation function: a tool for diagnosing early stages of
quantum chaotic dynamics (Larkin, Ovchinikov 69):

AN

F(t) = tr (e—ﬁﬁ X?(t)XY(t))

X,Y one-body operators in many body context.

A A

Interpretation I: up to inessential terms, F'(t) = ([X, Y (¢)]?). For single particle
system

X=p ¥ =d F(t)= (infp. o)) x B(0,0(0))?) o 1 exp(2A1)
leading Lyapunov

exponent

correlation function assumes sizable values at t; = A~ * In(h), the Ehrenfest time.

A

Interpretation II: for many (qubit) system, and X = 0.i,Y = 0, ,non-vanishing
commutator builds up at times sufficiently large to entangle sites, i,/.



OTO correlation function continued
F(t) = tr (e—ﬂﬁ XY(t)X?(t))

Interpretation IlI: quantum butterfly effect

..........................................................

¥ 3

A

X




OTO correlation function cont’d

a close cousin of F'(t) = tr (6_5

T,
<
=
<
~
T

BFIA BH
1

v (t)

for low temperatures T' < i\ growth rate of F set by chaos bound T'/h (Maldacena &
Stanford, 16)



SYK OTO correlation function

obtained from contour-ordered four-point Green function

Ga(T1, T2, T3, T4) = ;2 Z(Trxv;(ﬁ)xz'(@)xy'(TB)Xj(74)>

after analytic continuation into complex plane

1t 1t
3 gT 2
> ]: Thd ¢ - — Sossssssscos==== > 0)
¢ A I 72 g
g T3 ¢ \/ .)
(. v t T1




Short time OTQO: stationary phase

At short times large explicit symmetry breaking ‘magnon’ regime of Goldstone modes.
Apply stationary phase method (neglecting quench potentials) to obtain

/8627Tt/,8

F(t)=1- " — - O(e™/P /M)

in agreement with earlier results (Maldacena et al. 16)

Result can be trusted up to effective Ehrenfest time (chaos bound maxed out!)

At intermediate timestg < t < M stationary phase
method including quench potentials yields \

F(t) =In(MT) g ™r(—tg) | 7T




Long time OTO: Liouville Schrodinger equation

At long times large Goldstone mode fluctuations suggest analysis of time dependent
Schrodinger equation equivalent to path integral

2
Hamiltonian: H () = ? -~ (t)e?
(1) =517+
| piecewise constant
: quench potential
2
Eigenfunctions:(¢|k) = Vi (¢) = Np Ko (2 2M~ e¢/2) , Ny = ,
['(2ik)
‘momentum’
k2
Eigenvalues: €, = i (independent of potential strength)

Spectral decomposition of 4-point function leads to

3/2 6
o () () o




OTO result

F
1 — e27(t—tr) T > M1
1
9 T~ B N 6—27r2MT 4+—6 3
te 2 M




Interpretation of the power law

Interpretation I. consequence of gapless dispersion of Liouville momentum, k.

Interpretation II: Liouville universality

(O(MO(r)) ~ |7 —7'[7%/2
evaluated on correlation function on four time contours, implies -6=4x(-3/2) power law.

Interpretation Ill: Lehmannize original expression

1

G4(7_177-277-377_4) = m <TTX7/(7_1)X'L(TZ)X](T3)Xj(7-4)>
0]
— N2 Z <<m1‘X’i‘m2><m2‘Xj’m3><m3‘xfi’m4><m4\xj\m1>e_(§+”)em1_(g_”)emg—(§+@t)€m3—(§—zt)em4>

Z]vmz :
: (random) many body matrix
i elements

4

N </OO dep(€)€(5/4—|—it)€> Nt_6
0



OTO result (including low temeratures, T<1/M)

F
1 — ¢ (t=tr) T>M""
1
' o~ T(t—tp)
2\ _______ - e~2MT 4=6 g
T T >
lE 21 M L

Interpretation IV: At time scales t>M the system looses its semiclassical character



summary

conformal symmetry breaking in SYK model leads to
large Goldstone mode fluctuations

fluctuations qualitatively affect physics at large time
scales, t>N/J, and

modify correlation functions.

But what is the holographic interpretation®?

And how do conformal fluctuations relate to RMT?



