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Motivation & Background

Landau levels without an external magnetic field.
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Example: Graphene under Strain

†Theory: F. Guinea et al., Nat. Phys. 6, 30 (2010). Exp.: N. Levy et al., Science 329, 544 (2010).
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Figure 1 | Designed strain can generate a strictly uniform pseudomagnetic field in graphene. a, Distortion of a graphene disc which is required to
generate uniform BS. The original shape is shown in blue. b, Orientation of the graphene crystal lattice with respect to the strain. Graphene is stretched or
compressed along equivalent crystallographic directions h100i. Two graphene sublattices are shown in red and green. c, Distribution of the forces applied
at the disc’s perimeter (arrows) that would create the strain required in a. The uniform colour inside the disc indicates strictly uniform pseudomagnetic
field. d, The shown shape allows uniform BS to be generated only by normal forces applied at the sample’s perimeter. The length of the arrows indicates the
required local stress.
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Figure 2 | Stretching graphene samples along h100i axes always generates a pseudomagnetic field that is fairly uniform at the centre. a, Distribution of
BS for a regular hexagon stretched by its three sides oriented perpendicular to h100i. Other examples are given in the Supplementary Information.
b, Normalized density of states for the hexagon in a with L= 30 nm and �m = 1%. The black curve is for the case of no strain and no magnetic field. The
peak at zero E is due to states at zigzag edges. The blue curve shows the Landau quantization induced by magnetic field B= 10 T. The pseudomagnetic field
with BS ⇡ 7 T near the hexagon’s centre induces the quantization shown by the red curve. Comparison between the curves shows that the smearing of the
pseudo-Landau levels is mostly due to the finite broadening � = 2 meV used in the tight-binding calculations (� corresponds to submicrometre mean free
paths attainable in graphene devices). The inhomogeneous BS plays little role in the broadening of the first few pseudo-Landau levels (see
Supplementary Fig. S4).

disc of diameter D, which experiences a maximum strain �m at
its perimeter, we find c = �m/D. For non-ambitious �m = 10%
and D= 100 nm, we find BS ⇡ 40 T, the effective magnetic length
lB = p

aD/8��m ⇡ 4 nm and the largest Landau gap of ⇡0.25 eV.
Note that distortions (2) are purely shear and do not result in any
changes in the area of a unit cell, which means that there is no
effective electrostatic potential generated by such strain23.

The lattice distortions in Fig. 1a can be induced by in-plane
forces F applied only at the perimeter and, for the case of a disc,
they are given simply by

F

x

(✓)/ µsin(2✓), F

y

(✓)/ µcos(2✓)

where µ is the shear modulus. Figure 1c shows the required force
pattern. It is difficult to create such strain experimentally because
this involves tangential forces and both stretching and compression.
To this end, we have solved an inverse problem to find out whether
uniform BS can be generated by normal forces only (Supplementary

Information, part I). There exists a unique solution for the shape of
a graphene sample that enables this (see Fig. 1d).

A strong pseudomagnetic field should lead to Landau quan-
tization and a QHE-like state. The latter is different from the
standard QHE because BS has opposite signs for charge carriers in
valleys K and K0 and, therefore, generates edges states that circulate
in opposite directions. The coexistence of gaps in the bulk and
counterpropagating states at the boundaries without breaking the
time-reversal symmetry is reminiscent of topological insulators15–20
and, in particular, the quantum valley Hall effect in ‘gapped
graphene’20 and the quantum spin Hall effect induced by strain16.
The latter theory has exploited the influence of three-dimensional
strain on spin–orbit coupling in semiconductor heterostructures,
which can lead to quasi-Landau quantization with opposite BS
acting on two spins rather than valleys. Weak spin–orbit coupling
allows only tiny Landau gaps < 1 µeV (ref. 16), which, to be
observable, would require temperatures below 10mK and carrier
mobilities higher than 107 cm2 V s�1. Our approach exploits the
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To this end, we have solved an inverse problem to find out whether
uniform BS can be generated by normal forces only (Supplementary

Information, part I). There exists a unique solution for the shape of
a graphene sample that enables this (see Fig. 1d).
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tization and a QHE-like state. The latter is different from the
standard QHE because BS has opposite signs for charge carriers in
valleys K and K0 and, therefore, generates edges states that circulate
in opposite directions. The coexistence of gaps in the bulk and
counterpropagating states at the boundaries without breaking the
time-reversal symmetry is reminiscent of topological insulators15–20
and, in particular, the quantum valley Hall effect in ‘gapped
graphene’20 and the quantum spin Hall effect induced by strain16.
The latter theory has exploited the influence of three-dimensional
strain on spin–orbit coupling in semiconductor heterostructures,
which can lead to quasi-Landau quantization with opposite BS
acting on two spins rather than valleys. Weak spin–orbit coupling
allows only tiny Landau gaps < 1 µeV (ref. 16), which, to be
observable, would require temperatures below 10mK and carrier
mobilities higher than 107 cm2 V s�1. Our approach exploits the
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dau quantization of the electronic spectrum was
observed by scanning tunnelingmicroscopy (STM),
which revealed pseudo–magnetic fields in excess
of 300 T. Such enormous strain-induced pseudo–
magnetic fields may allow the electronic proper-
ties of graphene to be controlled through various
schemes for applying strain (11), as well as the
exploration of new high-field physical regimes.

Strained graphene nanobubbles were created
by in situ growth of sub-monolayer graphene
films in ultrahigh vacuum on a clean Pt(111) sur-
face (12) in order to avoid external contamination
and trapped gases. The epitaxial graphene was
grown by exposure of Pt(111) to ethylene followed
by annealing (13, 14). Graphene grown on Pt is
expected to be minimally coupled to the substrate,
compared to graphene grown on other catalytic
metals (15, 16). A Dirac-like band structure is
preserved for graphene on Pt(111), as verified by a
recent photoemission study (17). An STM to-

pograph of the graphene/Pt(111) surface prepared
in this manner (Fig. 1A) reveals a flat graphene
patch (partially surrounded by Pt) that encom-
passes five graphene nanobubbles. Graphene na-
nobubbles frequently appear near the edges of a
graphene patch, but are also sometimes observed
in the center of flat patches or near the boundaries
between patches and are presumably pinned near
these locations (Fig. 1A). These nanobubbles are
likely related to the larger-scale “wrinkle” struc-
tures observed by low energy electron microscopy
that form upon cooling as a result of the differing
thermal expansion coefficients of graphene and the
platinum surface (17).

Individual nanobubbles often have a triangu-
lar shape (Fig. 1A, inset), reflecting the lattice
symmetry of the graphene and the underlying Pt
surface, and are typically 4 to 10 nm across and
0.3 to 2.0 nm tall. Atomic-resolution imaging of
the nanobubbles confirms the honeycomb struc-

ture of graphene here (Fig. 1A, inset), although
the lattice is distorted because of the large strain
occurring in these structures. The expected strain-
induced pseudo–magnetic field in a graphene na-
nobubble can be estimated by using the relation
F ¼ ðbh2=laÞF0 for the flux per ripple in a dis-
torted graphene sheet (6), where h is the height, l
is the width, a is on the order of the C-C bond
length, andF0 is the quantum of flux. The param-
eterb ¼ ∂logðtÞ=∂logðaÞ relates the change in the
hopping amplitude between nearest neighbor
carbon atoms (t) to bond length and has a typical
magnitude of 2 < b < 3 for graphene. For a
nanobubble of l = 4 nm and h = 0.5 nm, this yields
a Bs of order 100 T. The large curvature and
correspondingly high strain incorporated into
the triangular nanoscale bubbles observed here
make them ideal candidates for the observation
of pseudo-LL because of large strain-induced
pseudo–magnetic fields.

The local electronic structure of strained graphene
nanobubbles and surrounding graphene films
was characterized by scanning tunneling spec-
troscopy (STS) performed at ~ 7.5 K by using
standard lock-in techniques to obtain differen-
tial conductance (dI/dV). The measurement of
dI/dV reflects features in the local density of
states (LDOS) of the surface at the position of the
STM tip (18). STS measurement of the bare Pt
surface was used to calibrate the LDOS of the tip
upon approach and between sequences of
spectra. STS spectra measured over the bare Pt
regions (Fig. 1B) are relatively featureless and
show the expected Pt(111) surface state (19).
Spectra recorded over the flat graphene patches
show a subtly modified structure compared with
the clean Pt(111) surface, and no clear signatures
of the graphene Dirac point were observed in
these regions (Fig. 1B). Spectra measured at the
boundary between the flat graphene and the
nanobubbles (fig. S2) exhibit features consistent
with a Dirac point located ~300 mV above the
Fermi energy, as recently observed by photoemis-
sion (17), as well as a gaplike feature with a full
width at half maximum (FWHM) of 127 T 9 mV
centered at the Fermi energy (Vsample = 0) recently

A B

Vsample (V)

Fig. 1. STM images and STS spectra
taken at 7.5 K. (A) Graphene mono-
layer patch on Pt(111) with four
nanobubbles at the graphene-Pt bor-
der and one in the patch interior.
Unreacted ethylene molecules and a
small hexagonal graphene patch can
be seen in the lower right (Itunneling =
50 pA, Vsample = 350 mV, 3D z-scale
enhanced 4.6×). (Inset) High-resolution

image of a graphene nanobubble showing distorted honeycomb lattice resulting from strain in the
bubble (Itunneling = 50 pA, Vsample = 200 mV, max z = 1.6 nm, 3D z-scale enhanced 2×). (B) STS
spectra of bare Pt(111), flat graphene on Pt(111) (shifted upward by 3 × 10−11 ohm−1), and the
center of a graphene bubble (shifted upward by 9 × 10−11 ohm−1). Vmod = 20 mV.

2nm
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Fig. 2. (A) Sequence of eight dI/dV spectra (T ~ 7.5 K, Vmod =
20 mV) taken in a line across a graphene nanobubble shown in
the image in (B). Red lines are data with quartic background
subtracted; black dotted lines are Lorentzian peak fits (center of
peaks indicated by dots, with blue dots indicating n = 0).
Vertical dash-dot lines follow the energy progression of each
peak order. (C) Normalized peak energy versus sgn(n)
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peaks observed on five different nanobubbles follow expected
scaling behavior from Eq. 1 (dashed line).
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Example: Artifitial System

2D electrons on Cu surface with arranged molecule depositionA completed ‘flake’ of molecular graphene is shown in topographic
form in Fig. 1b, demonstrating a perfect internal honeycomb lattice
and discernable edge effects at the termination boundaries. The spec-
trum shown in Fig. 1c was measured at the lattice C sites near the
centre of a lattice built using 271 CO molecules separated by a distance
d 5

ffiffiffi
3
p

a 5 19.23 Å. The spectra in all the figures show surface-state
conductance, ~g(E,r), where r denotes the measurement position.
(Henceforth, ‘tilde’ quantities refer to continuum properties of the
Dirac fermions.) These spectra are measured by taking the ratio, gR,
between the measured differential tunnelling conductance and the
spatially averaged value acquired on clean Cu(111) (Supplementary
Fig. 2). This normalization removes the featureless slope present in the
bare Cu spectrum and cancels the effect of possible energy-dependent
tunnelling matrix elements that may vary between different microscope
tips. The jump in differential conductance at the two-dimensional band
edge, g2D 5 m*/pB2 5 1.585 eV 21 nm22, additionally provides a
quantitative calibration of the surface density of states (DOS) and is
used to scale gR to meaningful units (Supplementary Information).

The edge of the gap at the M point in momentum space (Fig. 1c) is
marked by the peak in conductance at EM 5 2104 meV. The Dirac
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Figure 1 | Dirac fermions in molecular graphene. a, Sequence of constant-
current topographs during the assembly of a molecular graphene lattice
(V 5 10 mV, I 5 1 nA). b, Topograph of a molecular graphene lattice
composed of 149 CO molecules (lattice constant, d 5 8.8 Å). c, Spatially
averaged, normalized differential conductance spectrum, ~g(V) (solid line),
measured on the top sites near the centre of quasi-neutral molecular graphene
(d 5 19.2 Å), accompanied by a tight-binding DOS fit (dashed line) with
hopping parameters t 5 90 meV and t9 5 16 meV. Inset, resulting Dirac cone
realized in reciprocal space (corresponding to fit parameters). The tight-
binding spectrum is calculated by finding energy eigenvalues of a finite
graphene lattice with Lorentzian basis functions (to model the finite lifetime
due to scattering to bulk states and coupling to the two-dimensional continuum
at the graphene edges, we used an electron self-energy S 5 C/2, where the
linewidth is C 5 40 meV from observed broadening of states near EF).
d, Linearly dispersing quasi-particles revealed by the conductance spectra
~g(~E,r), plotted individually for sublattice A (filled circles: pseudospin sz 5 11/
2, |"æ) and sublattice B (open circles: pseudospin sz 5 21/2, |#æ), measured at
locations r illustrated in the inset. Points for | ~E | = eVrms, where Vrms is the
modulation voltage, are excluded from this plot because this instrumental
broadening prohibits their accurate measurement.
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Figure 2 | Dirac point engineering in a p–n–p junction. Spectroscopic
measurements made from a p–n–p lattice with alternating lattice spacings: d
changes abruptly from 17.8 to 20.4 Å and then back again. a, Topograph of the
p–n–p lattice. The conductance spectra were measured across the centre line
marked by the grey arrows. b, Intensity colour plot of the conductance spectra
~g(V ,x), where x denotes the distance along the centre line. The white line is the
locus of minima (the Dirac points (ED)) in the conductance spectra. The dashed
line marks the Fermi energy (EF). Illustrative Dirac cones are superimposed to
show the effective doping of each region. c, Spatially averaged, normalized
conductance spectra measured along the centre line (marked by arrows in
a). The first spectrum (blue, left) was measured in the left-hand, p-type, region
(d 5 17.8 Å), the second (orange, centre) was measured in the central, n-type,
region (d 5 20.4 Å) and the third (blue, right) was measured in the right-hand,
p-type, region (d 5 17.8 Å).

LETTER RESEARCH

1 5 M A R C H 2 0 1 2 | V O L 4 8 3 | N A T U R E | 3 0 7

Macmillan Publishers Limited. All rights reserved©2012

surface spectrum (~g) across the lattice along the line indicated (Fig. 2a, b,
arrows), crossing all regions. Because there are no charging effects, the
interface between the p- and n-type regions is very narrow: it is about
20 Å wide (Fig. 2b). The extremely short transition between the p- and
n-type regions makes this device a suitable candidate in which to study
phenomena such as the Klein paradox18 or to create a Veselago lens19.

Using atomic manipulation, we created both pseudospin-conserving
and pseudospin-breaking local disturbances further to reveal the
Dirac nature of our system. We started with quasi-neutral molecular
graphene with ED near EF (271 CO molecules, d 5 19.2 Å) and tested
two symmetries (a C-site defect (Fig. 3a), which locally imbalances the
sublattices, and an empty-site vacancy (Fig. 3c), which locally preserves
sublattice symmetry); these two structures are topologically distinct
because their potentials correspond respectively to a local vector
potential and a local scalar potential coupling to pseudospin. By sub-
tracting two low-bias scanning tunnelling microscope topographs, one
with the impurity and the other without it, and both locked to exactly the
same area and using identical measurement parameters, we obtain
detailed pseudospin maps resulting from the tiny DOS perturbations
caused by quantum interference. The distinct patterns observed have the
three-fold symmetry (Fig. 3b) predicted for single impurities in graphene
that disrupt the Berry phase20, rather than the full six-fold symmetry of
a scalar perturbation, which conserves pseudospin21–23 (Fig. 3d).

Topological changes fundamentally alter the lattice symmetry and
are the key to unlocking physical phenomena such as electron fractio-
nalization6–8,10–12,22. In graphene, one of the simplest (yet unrealized)
deformations is the Kekulé distortion rooted in the historical inter-
pretation of benzene. This distortion breaks the bond symmetry of
graphene by forming two hopping elements, t1 and t2, in the pattern
shown in Fig. 3e. We produce this distortion using a special ‘Mercedes’
arrangement of CO molecules in the honeycomb empty sites. This has
the effect of modulating the strength of every other C–C bond along
the perimeter of each cell. Such a distortion adds an off-diagonal term
to the Hamiltonian11, such that

HG~
B~csNk DI2|2

D!I2|2 {B~csNk

! "

where I2|2 is the two-by-two identity matrix and an asterisk denotes
complex conjugate. This distortion is predicted to open an energy gap,
D, even if the underlying sublattice symmetry is not broken; notably, this
effect has never been observed. Figure 3f proves that the Kekulé distor-
tion works as theoretically predicted, creating massive Dirac fermions
out of the massless Dirac fermions in the pristine lattice. From fits to
theory, the mass of the emergent fermions is mD 5 0.1 6 0.02 me. The
Kekulé ground state10–12,24,25 has an intriguing mapping to a supercon-
ducting topological surface state26, after pseudospin is mapped to spin
and the valley degree of freedom to an isospin, equivalent to attaching a
scalar gauge field that produces a Dirac fermion mass. This scalar gauge
field is manifest in the bond-density wave mosaic structure visible in
Fig. 3e. The transition from massless to massive Dirac fermions has
been theoretically cast as a quantum phase transition3,11; the molecular
graphene system provides an experimental test bed of these ideas start-
ing with the spontaneous generation of mass observed here.

The chiral character of the electronic charge in graphene is due to the
pseudospin associated with the symmetry between the two triangular
sublattices that form the honeycomb lattice. It has been proposed that
by breaking this sublattice symmetry through strain, it is possible to
generate a pseudomagnetic field and therefore obtain Landau levels
and quantum Hall phases without breaking time reversal symmetry.
The effect of strain has recently been observed in graphene nano-
bubbles27, but tunable molecular graphene offers much more precise
and in situ control over internal gauge fields. The strain field displace-
ments in polar coordinates (r and h) suggested9 to generate a constant
field are (ur, uh) 5 (qr2sin(3h), qr2cos(3h)), where q is a parameter denot-
ing the strength of the strain. In our final experiment, we applied this
strain field to molecular graphene by means of atomic manipulation.

Topographs for successively strained graphene are shown in
Fig. 4a. The value of the pseudomagnetic field can be estimated as
~B 5 8bBq/ea 5 16pqB/3de, where b 5 2Lln(t)/Lln(a) < 2 (Supplemen-
tary Information). We study strain values up to q 5 1023 Å21, which is
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Figure 4 | Landau quantization and topological zero modes in a tunable
pseudomagnetic field. a, Sequence of topographs of molecular graphene
lattices with increasing values of triaxial strain. The position of each CO
molecule was determined by the dislocation vector defined in the main text.
From bottom to top, q 5 0, 2.5 3 1024, 5 3 1024, 7.5 3 1024 and 1023 Å21.
The corresponding values of the constant pseudomagnetic field are ~B 5 0, 15,
30, 45 and 60 T (felt in opposite directions by the two graphene valleys; see
d, top inset). b, Topograph at the centre of the lattice without strain distortion
(q 5 0 Å21), showing the unbroken symmetry between each sublattice
(pseudospin) of the honeycomb. c, Topograph at the centre of the lattice with
strain distortion (q 5 1023 Å21), showing the broken symmetry between each
sublattice (one bright and one dark) as a result of the localization of the zero
Landau level on half of the sample (bright sublattice). d, Left: normalized
conductance spectra measured on sublattice A (brighter top sites in c and
orange circles in inset schematic) for successive values of strain. The spectra
were measured near the centres of the lattices shown in a. Right: spectra
measured on sublattice B (darker top sites in c and blue circles in inset
schematic) for the same successive values of strain, showing the opening of a
Landau gap. Grey solid curves are tight-binding fits of strained finite lattices to
the experiment. The grey dotted curve shows a tight-binding calculation in a
real magnetic field, B 5 60 T, for an unstrained lattice of the same dimensions
and hopping parameters.
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Quantum Oscillation

Strained 3D Weyl semimetal
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Quantum oscillations without magnetic field

Tianyu Liu, D. I. Pikulin, and M. Franz
Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

and Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
(Received 19 August 2016; revised manuscript received 21 October 2016; published 9 January 2017)

When the magnetic field B is applied to a metal, nearly all observable quantities exhibit oscillations periodic
in 1/B. Such quantum oscillations reflect the fundamental reorganization of electron states into Landau levels as
a canonical response of the metal to the applied magnetic field. We predict here that, remarkably, in the recently
discovered Dirac and Weyl semimetals, quantum oscillations can occur in the complete absence of magnetic field.
These zero-field quantum oscillations are driven by elastic strain which, in the space of the low-energy Dirac
fermions, acts as a chiral gauge potential. We propose an experimental setup in which the strain in a thin film
(or nanowire) can generate a pseudomagnetic field b as large as 15 T and demonstrate the resulting de Haas–van
Alphen and Shubnikov–de Haas oscillations periodic in 1/b.

DOI: 10.1103/PhysRevB.95.041201

Dirac and Weyl semimetals [1–3] are known to ex-
hibit a variety of exotic behaviors owing to their unusual
electronic structure comprising linearly dispersing electron
bands at low energies. This includes pronounced negative
magnetoresistance [4–11] attributed to the phenomenon of
the chiral anomaly [12–14], theoretically predicted nonlocal
transport [15,16], Majorana flat bands [17], as well as unusual
types of quantum oscillations (QOs) that involve both bulk
and topologically protected surface states [18,19]. In this
theoretical study we establish a mechanism for QOs in Dirac
and Weyl semimetals that requires no magnetic field. These
zero-field oscillations occur as a function of the applied elastic
strain and, similar to the canonical de Haas–van Alphen and
Shubnikov–de Haas oscillations [20], manifest themselves as
oscillations periodic in 1/b, where b is the strain-induced
pseudomagnetic field, in all measurable thermodynamic and
transport properties.

Materials with linearly dispersing electrons respond in
peculiar ways to externally imposed elastic strain. In graphene,
for instance, the effect of curvature is famously analogous to a
pseudomagnetic field [21] that can be quite large and is known
to generate pronounced Landau levels observed in tunneling
spectroscopy [22]. Recent theoretical work [23–27] showed
that similar effects can be anticipated in three-dimensional
Dirac and Weyl semimetals, although the estimated field
strengths in the geometries that have been considered are
rather small (below 1 T in Ref. [26]). Ordinary quantum
oscillations, periodic in 1/B, have already been observed in
the Dirac semimetals Cd3As2 and Na3Bi [19,28–30] but the
magnetic field required is B ! 2 T. This, then, would seem to
rule out the observation of strain-induced QO in geometries
considered previously. We make a key advancement in this
Rapid Communication by devising a geometry in which a
pseudomagnetic field b as large as 15 T can be achieved. The
proposed setup consists of a thin film (or a nanowire) in which
a pseudomagnetic field b is generated by a simple bend, as
illustrated in Fig. 1.

For simplicity and concreteness we focus in the following
on the Dirac semimetal Cd3As2 [28,31–35] which is the best
characterized representative of this class of materials. Our
results are directly applicable also to Na3Bi [36–38], whose

low-energy description is identical, and are easily extended
to other Dirac and Weyl semimetals [39–44]. We start from
the tight-binding model formulated in Refs. [31,36], which
describes the low-energy physics of Cd3As2 by including the
band inversion of its atomic Cd 5s and As 4p levels near the
! point. In the basis of the spin-orbit-coupled states |P 3

2
, 3

2 ⟩,
|S 1

2
, 1

2 ⟩, |S 1
2
, − 1

2 ⟩, and |P 3
2
, − 3

2 ⟩, the model is defined by a
4 × 4 matrix Hamiltonian

H latt = ϵk +
(

hlatt 0
0 −hlatt

)
, (1)

on a simple rectangular lattice with spacings ax,y,z, where

hlatt(k) = mkτ
z + $(τ x sin axkx + τ y sin ayky), (2)

τ are Pauli matrices in the orbital space, and mk = t0 +
t1 cos azkz + t2(cos axkx + cos ayky). For the analytic calcu-
lations below we will assume ai = a, while in numerics
we will use the actual lattice constants of Cd3As2. Various
tunneling amplitudes and ϵk are given in the Supplemental
Material (SM) [45]. The low-energy spectrum of hlatt consists
of a pair of Weyl points, shown in Fig. 2(a), which carry
opposite chirality η = ±1 and are located at crystal momenta

z

x

y

umax
a

x

z

b
b

B

FIG. 1. Proposed setup for strain-induced quantum oscillation
observation in Dirac and Weyl semimetals. (a) The bent film is
analogous, in terms of its low-energy properties, to an unstrained film
subject to magnetic field B. (b) Detail of the atomic displacements in
the bent film. Displacements have been exaggerated for clarity.
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FIG. 4. Strain-induced quantum oscillations. The top panel shows
oscillations in DOS at energy 10 meV as a function of inverse
strain strength expressed as 1/b. For comparison, ordinary magnetic
oscillations are displayed, as well as the result of the bulk continuum
theory Eq. (8). Crosses indicate expected peak positions based on
the Lifshitz-Onsager theory. The bottom panel shows oscillations in
conductivity σyy assuming a Fermi energy EF = 10 meV. To simulate
the effect of disorder, all data are broadened by convolving in energy
with a Lorentzian with width δ = 0.25 meV. The same geometry and
parameters are used as in Fig. 3.

the presence of both b and B fields, the peaks split as two Weyl
cones feel different effective magnetic fields. These effects are
further discussed in SM.

The results presented above extend trivially to the full
Cd3As2 Hamiltonian Eq. (1), where the spin-down block
makes an identical contribution and the p-h symmetry break-
ing terms contained in ϵk bring only quantitative changes (see
SM for a discussion). Experimental studies [32–35] indicate
that the linear dispersion in Cd3As2 extends over a much
wider range of energies than theoretically anticipated [31] with
the Lifshitz transition occurring near 200 meV. We therefore
expect the zero-field strain-induced QO predicted in this work
to be easily observable in suitably fabricated Cd3As2 films
and nanowires and potentially also in other Dirac and Weyl
semimetals (see SM for a detailed sketch of the proposed
setup). Our results show that conditions for their observability
are identical to those required to detect ordinary QO. The
continuous tunability of the pseudomagnetic field in a large
parameter range provides an experimental basis for the study of
emergent gauge fields in three-dimensional crystalline solids.

The authors are indebted to D. A. Bonn, D. M. Broun, A.
Chen, I. Elfimov, and W. N. Hardy for illuminating discussions,
and thank NSERC, CIfAR, and Max Planck–UBC Centre for
Quantum Materials for support.
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Valley dependent Lorentz force in strained graphene

directions of polarization of these pseudospinors after the
!=" /2 rotation required by the K cone 2. In the K! cone 1,
the rotation angle is !=" /6 and, accordingly, the velocity
points in this direction, as one can see by the decomposition
of the velocity in the components !vx" #dashed$ and !vy"
#dotted$, which obey exactly the relations !vx"= #%3 /2$!v"
and !vy"= #1 /2$!v". Notice that the velocities converge ex-
actly to vF /2, a value that can also be obtained analytically
by making ky

0d→0 in Eq. #20$.
Henceforth, we will consider initial wave vectors q!0

around the Dirac points 2 and 5 of Fig. 1#b$, namely,

K = &0,
4"

3%3a0
' and K! = &0,−

4"

3%3a0
' , #21$

respectively. This choice is very convenient, since the rota-
tion angles for these points are !=" /2 and 3" /2, respec-
tively, so that the pseudospinor (1,1)T points to the y #−y$
direction in the former #latter$ case. Hence, with this pseu-
dospinor, wave packets in K #K!$ will propagate with posi-
tive #negative$ velocity in the vertical zigzag direction.

B. External magnetic fields and strain

Recently,24 it was shown theoretically that bending a
graphene sheet into an arc of a circle produces a strong and
almost uniform pseudomagnetic field profile. Figure 6#a$ il-
lustrates such a strained system, where the rectangular
graphene sample of width W and height L is bent into an arc
of a circle with inner radius R. As the #pseudo$magnetic field
points in the same direction #opposite directions$ at each K
and K! points,21 the combination of both external and strain-
induced magnetic field effects provides a valley-dependent
magnetic field. If one applies the appropriate external mag-
netic field for some configuration of the strained graphene,
one can obtain an almost perfect suppression of the effective

magnetic field at one of the Dirac cones, while the effective
field in the other cone is enhanced. This leads to a compli-
cated system to be studied within the Dirac approximation,
since one has two completely different systems for the K and
K! valleys. Namely, Landau levels would be present only
around one of the cones #though one cannot expect a perfect
Landau level spectrum, since the strain-induced magnetic
field is not perfectly uniform in space$, whereas in the other
cone, the usual continuum spectrum would be observed. This
motivated us to analyze the trajectories of a wave packet in
such a system within the TB model, where we do not need to
include the pseudomagnetic fields artificially in the Dirac
cones, since they appear naturally when we consider the ef-
fect of the strain-induced changes in the inter-site distances
on the hopping energies, as explained in the previous section.

In this section, we investigate the dynamics of a wave
packet with width d=200 Å and initial wave vector kx

0=0
and ky

0=0.02 Å−1 around the Dirac points K and K! of Eq.
#21$ in the presence of external and strain-induced magnetic
field barrier steps. As in the K! valley the pseudospinor
(1,1)T is polarized in the negative y direction of the
graphene lattice, we choose (1,−1)T for this case, so that a
wave packet in this valley will also propagate in the positive
y direction. In order to obtain a pseudomagnetic field barrier
step, we consider that the graphene layer is strained only in
the y#0 region, as sketched in Fig. 6#b$. We also consider
an external magnetic field B! =B$#y$ẑ, where $#y$ is the
Heaviside step function, which leads to a magnetic barrier
step for y#0, described by the vector potential A! = (
−By$#y$ ,0 ,0). In order to avoid effects due to zitter-
bewegung in the #pseudo$ magnetic field region, the wave
packet starts at the position x0=0, y0=−420 Å, so that it can
travel for some time in the magnetic field-free region y%0
until its velocity converge to a time-independent value.

The influence of the external and strain-induced magnetic
field barriers on the trajectories of the wave packet are ana-
lyzed separately in Fig. 7, which shows the trajectory of the
centroid of the wave packets in K #symbols$ and K! #curves$
points, calculated as !r"= #!x" , !y"$, #a$ in a nonstrained
graphene sheet with magnetic field barriers B=5 T #solid,
circles$, 7 T #dashed, triangles$ and 10 T #dotted, squares$

FIG. 5. #Color online$ #a$ Expectation value of the velocity as a
function of time, for wave packets with ky

0=kx
0=0 and pseudospinor

(1,1)T #solid$ and (1, i)T #circles$ at the Dirac point K
= #0,4" /3%3a0$ (point 2 in Fig. 1#b$), and (1,1)T #triangles$ at
K!= #2" /3a0 ,2" /3%3a0$ (point 1 in Fig. 1#b$). The x and y com-
ponents of the velocity in the latter case are shown as dashed and
dotted curves, respectively.

L

W

R

y

x

0

(a) (b)

FIG. 6. #Color online$ #a$ Sketch of the strained graphene sheet:
we consider a rectangular sample of width W and height L, bent into
an arc of circle with inner radius R. The unstrained graphene sheet
is shown as open circles, for comparison. #b$ Strain-induced mag-
netic field barrier step, obtained by bending the graphene lattice
only in the y#0 region. The number of atoms was reduced in both
figures, in comparison to the lattices studied in this work, in order to
improve the visualization.
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and !b" in a strained graphene sheet with radius R=1 !m
!solid, circles", 0.8 !m !dashed, triangles" and 0.6 !m !dot-
ted, squares". All the trajectories form semi-circles in the y
"0 region, which is due to the Lorentz force produced by
the !pseudo" magnetic field. As the external magnetic field
!radius of the strained region" increases !decreases", the radii
of these semicircular trajectories are reduced, since a higher
!pseudo"magnetic field produces a stronger modulus of the
Lorentz force. Notice that the radii of trajectories in the ex-
ternal and pseudomagnetic fields cases are comparable,
which means that for radii R=1−0.6 !m of the strained
graphene, the generated pseudomagnetic field is also within
#5 T and 10 T. Indeed, the strain induced pseudomagnetic
field distribution for the bend graphene ribbon is given by24

BS!x,y" = − 4c
#$0

aL
arcsin$ L

2R
%cos&2x

L
arcsin$ L

2R
%'

% &1 −
R + y

L
arcsin$ L

2R
%' , !22"

where ##2 and c is a dimensionless constant which de-
pends on the details of the atomic displacements.22 Consid-
ering L /R→0 in Eq. !22" the pseudomagnetic field can be
approximated as BS#−c#$0 /aR=& /R. Using the value &
#4.5%104 T Å estimated numerically in Ref. 23, one ob-
tains pseudomagnetic fields within BS#4.5–7.5 T for R
=1 !m−0.6 !m, which are of the same order of magnitude
as the external magnetic fields that we considered. For the
external magnetic field barrier, the trajectories of wave pack-
ets in K and K! points form circles in opposite directions, as
shown in Fig. 7!a", which is reasonable, since these packets
have opposite momentum, which causes a sign change in the
Lorentz force. Conversely, considering the strain-induced
magnetic barrier illustrated in Fig. 6!b", the trajectories of

wave packets in K and K! curve in the same direction, since,
although their momenta have opposite signs, the pseudomag-
netic fields also point in opposite directions at each Dirac
cone K and K!.

C. Strain-induced valley filter

Let us consider the strained sample in Fig. 6!b" with R
=1 !m. By comparing the radius of the semicircular trajec-
tory of the wave packet in such a system with those obtained
for different intensities of the external magnetic field barrier,
one obtains the strain-induced magnetic field for this value of
R as #4.9 T. Figure 8!a" shows the trajectories in the x-y
plane of the centroid of the wave packets in a system where
we combine a R=1 !m strain for y"0 with an external
magnetic field barrier B=0 T !solid, open" and 4.9 T
!dashed, full", for wave packets in the K !symbols" and K!
!curves" Dirac points. In the absence of the external magnetic
field, both the K and K! packets exhibit the same semicircu-
lar trajectory, as discussed earlier. However, when we com-
bine the effect of the strain-induced and external magnetic
field barriers, the wave packet in K! undergoes a stronger
Lorentz force and is readily reflected, whereas the one in the
K point performs a practically straight trajectory, as if this
packet is not influenced by any Lorentz force. This is a con-
sequence of the fact that combining the effects of a pseudo-
magnetic field produced by a R=1 !m strain and a B
=4.9 T external magnetic field produces a stronger magnetic
field in the K! point, while in the K point these fields equili-
brate, producing a practically magnetic field-free region for
particles in this cone. In this situation, the system works as a
valley filter, where only wave packets in the K Dirac cone
are allowed to pass through the strained region, whereas the
wave packets in K! are reflected. The results for the wave
packet in K for two other values of the external magnetic
field are shown as thin solid lines, showing that within a
range of 'B= (0.2 T around B=4.9 T, which is a reason-
able range for magnetic field intensities in experiments, only

FIG. 7. !Color online" Trajectories of the wave packet in the x-y
plane, obtained by the TB method for such a system, for initial
momentum ky

0=0.02 Å−1 around K !symbols" and K! !curves"
points, for !a" nonstrained graphene with magnetic barrier height
B=5 T !solid, circles", 7 T !dashed, triangles", and 10 T !dotted,
squares", and for !b" a graphene sheet bent into an arc of circle with
radius R=1 !m !solid, circles", 0.8 !m !dashed, triangles", and
0.6 !m !dotted, squares", considering B=0 T. In !b", symbols and
curves coincide for each value of R.

FIG. 8. !Color online" !a" Trajectories on the x-y plane for wave
packets with initial momentum ky

0=0.02 Å−1 around K !symbols"
and K! !curves" points, considering a graphene sheet bent into an
arc of circle with radius R=1 !m and an external magnetic field
B=0 T !open, solid" and 4.9 T !full, dashed". The thin solid curves
show the results for two other magnetic field intensities for the K
packet. !b" Probability of finding the particle in y"0 as a function
of time, for wave packets with the same configurations as in !a".
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FIG. 1. (Color online) Upper row:: Left: Spin-degenerate interpenetrating LLs of HD[A,a]. Here we have shown the LLs for n = 0, ± 1, ± 2
only. Two LLs have the degeneracies 2D± = (b ± B) per unit area. Right: Schematic variation of Hall conductances Gxy in a hole-doped
graphene, without (a) and with (b) Zeeman splitting (!z). Here, En

σ =
√

2n(b + σB), Enα
σ = En

σ + α!z with σ,α = ±. In the electron-doped
system, Gxy changes sign. We only show the spin splitting of n = 1 LL. Splitting of n = 2 LL is identical. Lower row: The energy spectrum
(left) and wave functions (WFs) (right) for a strained graphene in magnetic field when B < b. WFs localized on one edge live on opposite side
at two valleys, explicitly, A(B) and D (C) are localized on the left (right) edge, therefore carrying opposite chirality.

counterpropagating edge modes, the two-terminal conduc-
tance Gxx is expected to increase monotonically. However,
the lack of equilibration ruins the quantization of Hall
conductance in a four-terminal measurement.19 But in reality,
there is always back scattering between counterpropagating
edge modes that live along the same edge; this not only
equilibrates these modes but also localizes them, except for the
two additional modes associated with the occupied extra LLs.
As a result both σxy and Gxx are quantized at the same value.

The oscillatory sequence of σxy is strictly true only in the
vicinity of the CNP. The spacing of the Dirac LL decreases

with the LL index (n), and the effective magnetic field for two
sets of LLs are different. Hence, far away from the CNP, LL
crossing is unavoidable, and one may see quantized plateaus
of σxy at 3e2/h or higher. If B ≪ b, the LL crossing occurs
for n ≫ 1. Assuming that the chemical potential is not too
far from the Dirac points, one can then safely neglect the LL
crossing.

To compute the LL spectrum, we here construct an
8-component Dirac spinor $ =

(
$↑,$↓

)⊤, where $⊤
σ =

[u†
σ (K⃗ + q⃗),v†

σ (K⃗ + q⃗),u†
σ (−K⃗ + q⃗),v†

σ (−K⃗ + q⃗)], with
σ =↑ , ↓ as electrons spin projection along the z direction.

121408-2

B. Roy, Z.-X. Hu, and K. Yang, Phys. Rev. B 87, 121408 (2013).
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Topic

1. Simple setup for pseudo magnetic field generation

É not necessary strain

2. Concise formula to estimate pseudo magnetic field

É Counting number of “observable” Landau levels
É Effects of anisotropy of Dirac cones

3. Application to an exsisting material

É 3D Dirac cones in an antiperovskite family
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Setup

“Simplest” configuration

“B”
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
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Δk ΔE

bulk 2 bulk 1

Important Parameters

É L: thickness of the buffer layer
É Δk: size of the Dirac cone shift

See also, A. G. Grushin et al., Phys. Rev. X 6, 041046 (2016). C. Brendel et al.,

Proc. Natl. Acad. Sci. USA 114, 3390 (2017). H. Abbaszadeh et al., arXiv:1610.06406.
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Formulation

H
(±)
~k
= ℏ( ~k ± ~k0) · ~σ←→ H(±) = ℏ(−~∇ ± ~k0(y)) · ~σ

~A(±) = ∓
ℏ

e
~k0(y), | ~B| = |~∇ × ~A| ∼

ℏ

e

Δk

L
=

h

e2
R

N

Δk =
2πR


, L = N
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Formulation

H
(±)
~k
= ℏ( ~k ± ~k0) · ~σ←→ H(±) = ℏ(−~∇ ± ~k0(y)) · ~σ

~A(±) = ∓
ℏ

e
~k0(y), | ~B| = |~∇ × ~A| ∼

ℏ

e

Δk

L
=

h

e2
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N

Δk =
2πR


, L = N

R: Dirac cone shift, N: buffer thickness
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Formulation

É typical case

 ∼ 5Å → | ~B| ∼ 1.6 × 104 ×
R

N
[T]

É observable Landau levels

En =

√

√

√4π2ℏ2R|n|

N2
<

ℏΔk

2
→ |n| <

π

4
NR

“B”

bulk 2

bulk 1

bufferlayer
L



y

z k

Δk ΔE

bulk 2 bulk 1

R: Dirac cone shift, N: buffer thickness

;
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Toy Model

H ~k = [1 + δ + 2(cosk + cosky)]σz + 2α sinkyσy

H ~k ∼ −
p

3[(k̃ − δ̃)σz + α̃kyσy]

k̃ = k −
2π

3
, δ̃ =

δ
p
3
, α̃ =

2α
p
3

δ̃↔A & α̃↔y/
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Results
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Anisotropy

ΔE = ℏΔk

En =

√

√

√4πyℏ2R|n|

N2

|n| <
π

4



y
NR
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N = 50

/y ∼ 2

N = 50

/y ∼ 0.5

Anisotropy is advantageous for observing the LL structure!

R: Dirac cone shift, N: buffer thickness

;
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Materials

É Antiperovskite A3EO (A=Ca,Sr,Ba and E=Sn,Pb) family





















    







Pb 6s

O 2p

Pb 6p

overlap

Ca 3d

Dirac Point

O
Ca, Sr, Ba

Sn, Pb

3D Dirac cones (with tiny

mass) by d-p overlap!

3D linear

dispersion

TK and M. Ogata, J. Phys. Soc. Jpn. 80, 083704 (2011).

;
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Materials

Band overlap
S
O
C

Ca Sr Ba

Pb

Sn

J = 3
2

J = 1
2

overlap

dominant

SOC

dominant

(Potentially) tunable!

TK and M. Ogata, arXiv:1705.08934, to appear in PRMaterials.
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Materials

É Ba3SnO (band inversion dominant) vs Ca3PbO (SOC dominant)
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Strategy

É Inducing Dirac cone shift by modulating chemical composition

É Ca3SnO↔ Sr3SnO

É Estimating R instead of |Bpseudo|, to avoid computational burden
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(Quasi) Ab-Initio Estimation: Wannier Interpolation

1. Derive effective models for the two end materials Ca3SnO and

Sr3SnO

2. Interpolate the parameters to obtain a model for

Ca3(1−)Sr3SnO
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(Quasi) Ab-Initio Estimation: Wannier Interpolation

1. Derive effective models for the two end materials Ca3SnO and

Sr3SnO

2. Interpolate the parameters to obtain a model for
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(Quasi) Ab-Initio Estimation

É heterostructure Ca3(1−)Sr3SnO,  = (=0 + =1)/2
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(Quasi) Ab-Initio Estimation

É heterostructure Ca3(1−)Sr3SnO,  = (=0 + =1)/2
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Fabrication of Films

É Sr3PbO, molecular beam epitaxy, thickness 200nm-300nm

D. Samal, H. Nakamura, and H. Takagi, APLMater. 4, 076101 (2016).

É Ca3SnO, pulsed laser deposition

M. Minohara et al., arXiv:1710.03406.
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Summary

É Concise formulae for the pseudo magnetic field & pseudo

Landau levels

B ∼
h

e2
R

N
, |n| <

π

4



y
NR

É Anisotropic Dirac cones are better to observe LL structures.

É Estimation of R for an existing material

Perspective

É Interesting physical consequences!

É eg. coexistence with a real magnetic field

TK, arXiv:1707.08601
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