

Magnetic states in a strongly correlated topological insulator

Robert Peters

T. Yoshida (Kyoto University) N. Kawakami (Kyoto University)

Correlation effects in topological Kondo insulators

Magnetic states

"Coexistence of light and heavy surface states in a topological multi-band Kondo insulator" RP, T Yoshida, H Sakakibara, and N Kawakami Phys. Rev. B 93, 235159 (2016)

"Magnetic states in a strongly correlated topological Kondo insulator" in preparation

Kondo insulator

Dzero et al.; Annual Review of Condensed Matter Physics, Volume 7 (2016)

- Due to a hybridization between two bands a gap opens
- In f-electron systems: Due to a strong correlation effect in the f-orbital, the Kondo effect becomes important and the gap is renormalized.

resistivity strongly increases at low temperature

Hundley, et al. PRB 42 6842 (1990)

from a Kondo insulator to a topological Kondo insulator

topological Kondo insulator

Dzero et al.; Annual Review of Condensed Matter Physics, Volume **7** (2016);

Dzero et al PRL 104 106408 (2010)

topological Kondoinsulator

candidate SmB6

topological Kondoinsulator

M.Baťková Proceedings SCES 2005

LDA for SmB₆

LDA + Gutzwiller

surface states due to the topology

SmB₆ a three dimensional strongly correlated topological insulator

heavy surface states

first LDA calculation T. Takimoto JPSJ 2011

topological Kondoinsulator

Interplay between topology and strong correlations

band structure of SmB₆

strong topological insulator

band structure of SmB₆

open surface in z-direction

surface states at Γ and X

open boundaries in z-direction

NRG

- Logarithmic discretization of the energy band
- Iterative Diagonalization
- Able to calculate real frequency spectral functions
- •We resolve **details** around the Fermi energy down to **0.00001eV**

Ralf Bulla, Theo A. Costi, and Thomas Pruschke Rev. Mod. Phys. 80, 395 (2008)

general self-energy for these parameter

- This self-energy results in a renormalization of the band structure.
 - The gap becomes smaller!

The surface layer are much stronger correlated than the bulk

Kondo breakdown at the surface

Victor Alexandrov, Piers Coleman, and Onur Erten Phys. Rev. Lett. 114, 177202

The surface states change their behavior depending on the temperature

at T=0, surface electron are strongly confined to the Fermi energy and form heavy Dirac cones

the bulk gap is larger than band width of the surface electrons

As a consequence there are light electrons in the second layer connecting the heavy electron bands of the surface and the bulk electrons.

Jiang et al. Nature Comm. 4 1 (2013)

Nature Communications 7, 13762 (2016)

Discussion

- strong topological insulator
- strongly correlated
- especially in the surface layer, f-electrons are strongly confined close to the Fermi energy

 BUT, the topology demands/protects surface states penetrating the whole gap.

Thus, there appear light "surface" states in the next layer

Magnetic States

- Are there magnetic solutions, when doping the system away from integer filling?
- What becomes of the surface states, which were protected by time-reversal symmetry?

Magnetism in the Kondolattice

Doniach phase diagram

P. Coleman in "Many-Body Physics: From Kondo to Hubbard" (eds E. Pavarini, E. Koch and P. Coleman),

RP et al. PRB 92 , 075103 (2015)

Magnetism in a topological Kondoinsulator

AF-F: in-plane ferromagnetic out-of-plane antiferromagnetic

╶┿╹┿╹╪╪╺╵ ┇┇┱╕┇┇

Topological Materials Science

- + + + + + + + +
- ***† † † † †** † † 1
- ferromagnetic
- ┼┼└┼┾╄┼╀╵╵ ┼┩┼╫┡╪┦╿┼╵
- **† 1 † 1 † 1 † 1**
- f h t f h t 1

Ferromagnetism by Doping bulk <n>=1.7

 Although there are bands crossing the Fermi energy f-electron ↑ and c-electron ↓ seems to be gapped
RP et al. Phys. Rev. Lett. 108, 0

half-metal (spinselective Kondoinsulator)

RP et al. Phys. Rev. Lett. **108**, 08640 (2012) Yoshida et al. Phys. Rev. B **87** 165109 (2013)

Ferromagnetism by Doping open surface: z-direction

- Although this component is gapped, the surface Dirac-cones have vanished
- •The surface states were protected by time-reversal symmetry, which is now broken

Ferromagnetism by Doping

open surface: x-direction

 For surfaces where the magnetization is in-plane, we find Dirac cones at the surface.

Ferromagnetism by Doping open surface: x-direction

Ferromagnetism by Doping open surface: x-direction

•spin-selective gap and Dirac-cones

- f-up and c-down electrons are gapped in the bulk and show Dirac cones at the surface
- •f-down electrons are metallic

Ferromagnetism by Doping open surface: x-direction

•The Dirac cones lie not at $k_y = 0$ and $k_y = \pi$

Topological Protection?

•The ferromagnetic state has a bulk gap in one of these components (here: f-up +c-down) spin-selective Kondoinsulator

Spin-selective Kondoinsulator RP et al. Phys. Rev. Lett. **108**, 08640 (2012) Yoshida et al. Phys. Rev. B **87** 165109 (2013)

Topological Protection?

 The ferromagnetic state has a bulk gap in one of these components (here: f-up +c-down) spin-selective Kondoinsul

spin-selective Kondoinsulator RP et al. Phys. Rev. Lett. **108**, 08640 (2012) Yoshida et al. Phys. Rev. B **87** 165109 (2013)

•The Hamiltonian describes a cubic system. •We can define **reflection operators** $R_z = i\sigma^z P_z$

reflection for one plane $P_z: k_z \to -k_z$

•This operator commutes with the Hamiltonian for certain momenta, $k_z = 0$ and $k_z = \pi$, even in the presence of a magnetic order in z-direction

Topological Protection?

•This reflection operator, $R_{xy} = i\sigma^z P_z$ defines two planes on which topological protection works

$$(k_x, k_y, k_z) = (k_x, k_y, \pm \pi)$$
$$(k_x, k_y, k_z) = (k_x, k_y, 0)$$

Conclusions

surface is of topological Kondo insulator is much stronger correlated than the bulk

combination of light and heavy surface states Kondo breakdown when increasing temperature

• We can realize a ferromagnetic state by doping

 We find a spin-selective Kondo insulator, where surface Dirac cones are protected by reflection symmetry