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 Nielsen-Ninomiya Theorem 

 Weyl fermion semimetal (WSM) and magnetic WSM 

 Discovery of Weyl fermion semimetal in TaAs, TaP, … (non-magnetic WSM) 

Two Weyl fermions with opposite magnetic charge appear in pair in the k-space 

MM AM 
Magnetic WSM (mWSM) 

 Novel magneto-transport properties, related to chiral anomaly in 3+1 D   

Burkov-Balents (2011),  Vazifeh-Franz (2013), . . .  

 Disorder-driven semimetal-metal quantum phase transition 
Fradkin (1986),   . . .  

Nielsen-Ninomiya  (1981)  



 Disorder-driven semimetal-metal quantum phase transition in mWSM 

∆ ∆c ∆=0 

renormalized WSM Diffusive Metal (DM) 

renormalized WSM : zero-energy DOS = 0  
DM : zero-energy DOS evolves continuously from zero 

 DOS scaling and zero-energy conductivity near Weyl node 

(WSM) (DM) 

Wegner’s relation 

Conductivity at Weyl node  
vanishes at QCP 

Kobayashi et.al. (2014), . . .  

Kobayashi et.al. (2014)  Liu et.al. (2016)  

Liu et.al. (2016)  

Fradkin (1986),   . . .  

Magnetic WSM Non-magnetic WSM 



 Disorder-driven Quantum Multicritlcality in disordered WSM (this work) 

 Quantum Multicritical Point with two parameter scalings 

QMCP 

QMCP 

 Spatially anisotropic scaling for conductivity and 
Diffusion Constant near Weyl node around QMCP and  

      quantum phase transition  line between CI and WSM 

 Conductivity and diffusion constant along one spatial direction  
obey different universal function with different exponents 
from that along the other spatial direction.  

 `Magnetic dipole’ model at FP0 (fixed point in the clean limit) 

MM AM 

 The anisotropy comes from a magnetic dipole in the k-space 

+ − 
Luo, Xu, Ohtsuki and RS, ArXiv:1710.00572v2 



 Disorder-driven Quantum Multicritlcality in disordered WSM (this work) 

CI phase with zero 
zero-energy DOS   

CI phase with finite 
zero-energy DOS   

Diffusive metal  
(DM) phase 

 For CI-DM branch, a mobility edge and band edge are distinct 
from each other in the phase diagram (For DM-WSM branch, 
where they are identical). 

E=0 (zero-energy) 

DOS at nodes  
has scaling  
property 

conductivity at nodes 
has scaling property  
(conventional 3D unitary class) 



 Disorder-driven Quantum Multicritlcality in disordered WSM (this work) 

 For CI-WSM branch, a transition is direct, whose  
      critical exponent is evaluated as 0.80 ±0.01 !? 

 Disorder average out the spatial anistorpy;  
1/3 (0.5+1+1) = 0.8333?  

Localization length  
along 3-direction  
(dipole direction) 

ν = 0.5 ν=1.0 
 Crossover behavior from FP1 and FP0 ?  
       large-n RG analysis      ν = 1/(2−2/n) = 1 @ FP1 

In other words, data points could range from the critical regime to its outside. 



 Magnetic dipole model 

MM AM 

where 

m>0 : WSM phase 

m=0 : a critical point  
Between WSM phase and  
3D Chern band insulator  

m<0 : 3D Chern band   
Insulator (CI) phase 

MM and AM locate at  

+ 

− 

Magnetic dipole 

Roy, et.al. (2016), Luo, et.al. (2017)  



 Effect of Disorders on Magnetic dipole model 
 A tree-level argument on replicated effective action  

To make S0 at the massless point (m=0) to be scale-invariant, . . .   

Free part :    

Disorder (`interaction’) part :    

∆ ∆c ∆=0 

Free part  
in the clean limit  Diffusive Metal (DM) 

with prime : After RG 
Without prime : Before RG 

with 



 Effect of Disorders on Magnetic dipole model 
 One-loop level RG (large-n expansion analysis ; n=2)  

where 

Roy, et.al. (2016), Luo, et.al. (2017)  



 Effect of Disorders on Magnetic dipole model 
 One-loop level RG (large-n expansion analysis ; n=2)  

FP1: an unstable fixed point with  
         relevant scaling variables  

where 

FP0: a saddle-point fixed point with   
         one relevant scaling variable and  
         one  irrelevant variable 

Roy, et.al. (2016), Luo, et.al. (2017)  



 Effect of Disorders on Magnetic dipole model 
 For positively larger m, . . . . 

MM AM 

MM and AM locate at  

+ 

− 

Low energy effective Hamiltonian (E<m) 

: disordered single-Weyl node 

Fradkin (1986), . ..  

∆ FP2 

Renormalized  
WSM phase 

Diffusive Metal (DM) 

FP5 



 Scaling Theories of DOS, Diffusion Constant and conductivities  

CI 

 Critical Property near CI-WSM boundary is controlled by FP0 

 Critical Property near WSM-DM boundary is controlled by FP2 

 The system has gapless electronic dispersion at E=0 

DOS, Diffusion Constant, and   
     conductivity scaling at Weyl node Kobayashi et.al. (2014),  

Syzranov et.al. (2016), 
Liu et.al. (2016), . . .   

 Scaling Theories for CI-WSM branch  

Spatial anisotropic scaling 

  with prime : After RG 
Without prime : Before RG 

Total number of single-particle states  
per volume below an energy E 

with 



 Scaling Theories for CI-WSM branch  

 Density of States:  

 Take m to be tiny, while   
 Renormalize many times, such that   

 Solve “b” in favor for small “m”, and substitute the above equation.    

very small 

A universal Function which is encoded in FP5 

CI 

with 



 Scaling Theories for CI-WSM branch  
 Mean Square Displacement and diffusion constant  

Mean Square Displacement of single-particle states of  
energy “ε ” at a time “s” as a function of two scaling variables.  

Spatial anisotropic scaling 

  

CI 

Linear coefficient in time “s” = Diffusion constant   

Universal Functions encoded in FP5 



 Scaling Theories for CI-WSM branch  

CI 

 In WSM phase (m>0):   

  

 On a quantum critical line (m=0):   

CI   

Self-consistent Born (Liu et.al. (2016)) 



 Scaling Theories around QMCP (=FP1)  

CI 

, : two relevant scaling variables  
  two parameter scaling around QMCP 

z, y∆, ym :Dynamical exponents, scaling dimensions at QMCP (=FP1) 

 Approaching QMCP along m=0   

CI 
Crossover boundary: 



 Scaling Theories around QMCP (=FP1)  
 Approaching QMCP along m=0   

CI 

Determined by FP0 Determined by FP1 

+  



 Scaling Theories around QMCP (=FP1)  
 Approaching QMCP along δ∆0 =0   

CI 

Determined by FP2 Determined by FP1 

+  

z’ :Dynamical exponents around  
     FP2 (=Fradkin’s fixed point) 

z’ =d/2 + ….   
Syzranov et.al. (2016), Roy et.al. (2014,2016), .. 
Kobayashi et.al.(2014), Liu et.al. (2016), …   

 On QMCP at δ∆0 =0, m=0   

Crossover boundary: 
Determined only by dynamical 
Exponent at FP1, anisotropic  
in space. 



 effective velocities, and life time in WSM, on QMCP, critical  
      line between CI and WSM and that between DM and WSM.   

 DOS  velocities 
E.g. 

 Diffusion constant  
        velocities and life time 

 Effective velocities also shows strong spatial anisotropy  
 life time in two quantum critical lines as well as QMCP is always scaled as E-1  

(Einstein Relation) 

(i) 
(ii) 
(ii)’ 
(iii) 
(iii)’ 
(iv) 
(vii) 



 Nature of phase transitions from CI phase to DM phase 

CI phase with zero 
zero-energy DOS   

Diffusive metal  
(DM) phase 

CI phase with finite 
zero-energy DOS   

 Zero-energy Density of states (Kernel Polynomial) 

localized 

delocalized 

L increases 

 Localization length (transfer matrix method) 

Mobility edge 

band edge  For CI-DM branch,  
     Mobility edge and band edge  
     are distinct in the phase diagram  

Mobility edge 



 Criticality at mobility edge between  
      CI phase with finite zDOS and DM phase 
 Finite-size scaling analysis (Polynonial Fitting results)   Distribution of Conductance at the critical point  

     (CCD; critical conductance distribution)  

 CCD generally depends only on universality class and  
      system geometry, but free from the system size  
      (scale-invariance at the critical point). 

 Compare with CCD of a reference tight-binding model  
      whose Anderson transition is known to belong to  
      conventional 3D  unitary class. 

Good coincidence with  
3D unitary class model  ν=1.44∗ : 3D unitary class   

Slevin-Ohtsuki (2016)   

 Finite DOS  dynamical exponent z=d  

Consistent with value  
of exponent in 3D unitary class  

 Criticality at the mobility edge in CI-DM branch  
      belongs to conventional 3D unitary class with z=3  



 Criticality at the band edge for CI-DM branch 

 DOS data for different β (or m) are fit into a  
     single-parameter scaling function !! 

  

3D unitary class  
(z=3, ν=1.44)   

Mobility edge 

DOS data stream  
at β=0.2 and β =0.3. 



 Summary (Disorder-driven quantum phase transition in WSM) 

 Novel disorder-driven Quantum multicriticality (QMC) 

 Rich scaling properties of DOS, conductivity, and  
diffusion constant around Weyl nodes 

 Spatially anisotropic scalings in QMCP and  
      critical line between  CI and WSM phases 

 New fixed points other than  
      Fradkin’s fixed point 

(i) 
(ii) 
(ii)’ 
(iii) 
(iii)’ 
(iv) 
(vii) 

(i) 
(ii) 
(ii)’ 
(iii) 
(iii)’ 
(iv) 
(vii) 

Luo, Xu, Ohtsuki and RS,  
ArXiv:1710.00572v2  
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 Experimental `Example’ of magnetic Weyl semimetal 
: 3D metal/semimetal under high magnetic field 

 “j” specifies a location of a single-particle  
     eigenstate localized along y-direction (yj)  
     and momentum along x-direction (kx) 

n=0 

n=1 

kz 

µ 

 confining potential V(x) around the boundaries 
 When magnetic length l << |dV/dx|-1 



 Experimental `Example’ of magnetic Weyl semimetal 
: 3D metal/semimetal under high magnetic field 

 When magnetic length l << |dV/dx|-1 

Localized at x=Ly/2, 
positive momentum  

along x-direction 

Localized at x=-Ly/2, 
positive momentum  

along x-direction 

Shifted by 

kx>0 kx<0 

H 

“Surface chiral Fermi arc (SCFA) state”  

Halperin (1982, 1985) 



Density Wave (DW) phases which break the  
translational symmetry along the field direction.    

 Peierls Instability in 3D metal/semimetal under high H 

 Tc increases on increasing the field H. 

“3D layered Chern band insulator” 

Logarithmic singularity 

(             By Fock term) 

RPA Density correlation function 
Yoshioka-Fukuyama (1980) 

Balents-Fisher (1998) 

From Gruner 



 Effect of Disorders on the Density Wave Phase  

Incommensurate   

 Effective Boson model for the density wave phases:  

Two-particle backward   
Scattering at the 1/2 filling  

φj(z) : Displacement field  
          along the field direction 

Πj(z) : current density field  
             along the field direction 

Coupled chain model, each 1D chain has two boson fields: Πj(z) and φj(z)  

  
: Single-particle backward scattering  

: Random “magnetic field” in the XY model 

(defined for each chain “j”) 

Zhang and RS (2017) 

kz 

µ 
2kF 

G :Reciprocal vector  Commensurate filling case : 3D Zn clock model  

incommensurate  filling case: 3D XY model 

Phason field exhibits a LRO 
by the Fock term (positive J)  



 Effect of Disorders on the Density Wave Phase  

kz 

µ 
2kF 

G 

 Small random “magnetic” field kills the ordered phase in the XY model (DW phase) 

 Chemical potential changes as a function of H 
H 

T 1/2 

1/3 2/3 
Imry-Ma (1975), Sham-Patton (1976), Fukuyama-Lee (1978), . .  

 commensurate DW phases which breaks  
      the discrete translational symmetry are not 

 Incommensurate DW phases which breaks  
      the continuous translational symmetry are  
      unstable against infinitesimally small disorder 



 Graphite (3D semimetal) under high H 
Graphite is a layered graphene. 

Metal-insulator transition under high field (30T),  
   and insulator-metal transition under 75 T (re-entrant).   
Insulating phase in a wide range of field ??   

Re-entrant transition under 75T ??   

 Incommensurate DW phases are unstable  
           against infinitesimally small disorder !! 

 Other insulating phase (Neither CDW or SDW phase)   
        excitonic insulator phase with spin nematic order    
 “Dip” of the resistance reflects  a competition  
      between the insulating phase and com-DW phase.  

Yoshioka-Fukuyama (1980) 

“Dip”  

C.f. 
Faque et.al. PRL (2013) 

Pan and RS,  in preparation. 



 Two-carrier model, Hall conductivity, Charge neutrality region, and Umklapp process  

Takada-Goto (1996) 

SCFA of  
electron 

SCFA  
of hole 

2π/c0 : xe-xh= 1/c0 :2π l2×(Ne-Nh)  
 
 
 

= 1010  : 2.3×106 = 1: 2.3×10-4 (H=30T)   

xe 

xh 

Charge neutrality region (30T<H<57T) 

Electron and hole pockets 

  Umklapp scattering process associated  
with electron and Hole pockets 

 Hall conductivity  
from the Kubo formula  

Ne : number of electron carriers 
Nh : number of hole carriers 

See also Akiba et.al. (2015) Akiba et.al. JPSJ (2015) 

 According to the band structure calculation, there exist  
    two electron pockets and two hole pockets in 30T<H<50T. 



 excitonic Insulator Phase in graphite under H 

electron 

hole 

hole 

X+Y’ = X’+Y 

: Locked 0 or pi  excitonic insulator phase 

: Locked 0 or pi  spin nematic order 

U(1) spin rotation around the z-axis is broken spontaneously  
by the ordering of spin quadrupole moment 

(But no magnetic dipole moment) 

  Under the charge neutrality condition, there exists eight  
     (or four) different kinds of Umklapp processes, while the  
      following phenomenology does not depend on choice of  
      particular Umklapp process.   

4-bands model (two E-pockets, two H-pockets) Pan and RS,  in preparation. 



 excitonic Insulator Phase in graphite under high H 
 A tree-level argument on Umklapp term  where Kj  : Luttinger parameter for each pocket (j=1,2,3,4) 

 One-loop level RG argument on Umklapp term  
Umklapp term generates two new terms which help 
 the umklapp term to grow up in the one-loop level; C>0.  

where 

Umklapp term is always renormalized to zero near  
the trivial fixed point in the non-interacting  limit.   

[1] 

[1] 

[2] 

[2] 

One of the generated terms 

c.f. 

Pan and RS,  in preparation. 
>2 



 excitonic Insulator Phase in graphite under high H 
 Quantum phase Transition at finite critical interaction strength  

gc 

There exists a critical interaction strength “gc”, 
     above which gjm blows up into a larger value,   
     while below which gjm is renormalized to zero. 

The critical value increases on increasing T 
     or when the one of the Luttinger parameter “Kj”  
     deviates from 1. 

c.f. 

 Phenomenology of re-entrant transition in Graphite under high H 

When the outer two branches, (0 up) and (-1,down), are about  
     to “leave” the Fermi level, the Luttinger parameter for these  
     two branches becomes increasingly smaller (velocities smaller). 
 
 

          The critical interaction strength “gc” becomes larger, which  
               kills the excitonic insulator phase.    

Normal metallic  
phase 

Mott insulator  
phase 

 In the higher field side of the re-entrant transition, the system 
still possesses four branches, which lead to a metallic behavior.     

Takada-Goto (1996) 

Schematic RG phase diagram 



 Summary (Metal-Insulator transition in graphite under high H) 

 Novel interaction-driven MI and IM transition in four bands model 

 The theory gives a natural explanation of phenomenology of  
   Re-entrant MI transition observed in graphite under high H   

 Robust against single-particle backward type 
      disorder, accompanied with spin nematic order 

 Competition between com.-DW and EI ?  

 In-plane metallic behaviour ?  

Pan and RS,  in preparation. 
Zhang and RS, Phys. Rev. B 95, 205108 (2017)  

“Dip”  

Fauque et.al. PRL (2013) 
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