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Topological Insulators and Topological Semimetals

Topological Insulators /
Dirac Fermions
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Topological Semimetals /
Weyl, Dirac and “beyond” Fermions
(3fold, 6fold and 8fold crossings)




NonSymmorphic Symmetries Bring In New Phenomena

Surface States in KHgSb
One glide plane allows for the presence of
Hourglass-like fermions on the surface
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Surface States in Sr2Pb3, a Dirac
Nonsymmorphic insulator
4-fold degeneracy surface state at the M
point with Two glide planes

Zaid t 3,6,8-degeneracies (3 can also be realized
» with symmorphic), nodal chains, etc




Non-predictive classification of Topological Bands

Open questions:

1. How do we know the classification is complete?

|

Given an orbital content on a material on a lattice, what are the topological phases?

2. How can we find topological materials?

200000 materials in ICSD database:

100 time reversal topological insulators
10 mirror Chern insulators
15 Weyl semimetals
15 Dirac semimetals
3 Non-Symmorphic topological insulators

Set of measure zero...
Are topological materials that esoteric?

Group
theory

Graph
theory

We propose a classification that captures all

crystal symmetries and has predictive power S a—



-} Recall: a space group is a set of symmetries that defines a
crystal structure in 3D i

o o
Ingredients: s K
530 e unit lattice translations (Z3)
. . . . G-0osb
Space-Groups e point group operations (rotations, reflections)
e non-symmorphic (screw, glide) T ’
e orbitals q; O z
. o o9 |y
e atoms in some lattice positions e

Image: 1605.06824 Ma et al

How do we go from real space orbitals sitting on lattice sites to
electronic bands (without a Hamiltonian)?

v

ELEMENTARY BAND REPRESENATIONS

Zak PRB 26 (1982)



Elementary Band Representations
(building blocks)

Band Representation (BR): set of bands linked to a localized orbital respecting all the crystal
symmetries. They relate electrons on site to momentum space description.

l

Elementary BR: smallest set of bands cannot be decomposed in elementary bands
Physical Elementary R: when EBR also respects TR symmetry
Composite BR: A BR which is not elementary is a “composite”

(P)EBRs are connected along the BZ

Zak PRB 26 (1982)



Induction of a (P)EBR: Example of the honeycomb lattice

Lets consider the generators of 2D P6mm: {C2,Cs,m17)

Lattice vectors: Lattice site: Wyckoff 2b, spinfull p;

Pz

4
{e1=\/3/2x+1/2y

ex=V3/2x-1/2y T
Site-symmetry group, Gq, leaves q invariant

Cosset decomposition of a Space Group :

G = U(ga) (GaXZ3)  ga g Gq




Induction of a (P)EBR: Example of the honeycomb lattice

Consider one lattice site:

"1 G =U(ga) (GaxZ3)

Pz 2) (1)

(4
U9

) Site-symmetry group, Ggq, leaves q invariant {Czl01}, {m+7100} = Cay
— Orbitals at q transform under a rep, p, of Gq

{Csl01} {Cal?}




Induction of a (P)EBR: Example of the honeycomb lattice

Consider one lattice site:

) Site-symmetry group, Ggq, leaves q invariant {Czl01}, {m+7100} = Cay
— Orbitals at q transform under a rep, p, of Gq

{Cal?}

{C3l01}




Induction of a (P)EBR: Example of the honeycomb lattice

Consider one lattice site:

"1 G =U(gl) (GaxZ?)
§ o)

(2) (1) ‘@

) Site-symmetry group, Ggq, leaves q invariant {Czl01}, {m+7100} = Cay
— Orbitals at q transform under a rep, p, of Gq

Rep|ECsME
—Te|21 0-2

Character table for the double-valued representation of Csy




Induction of a (P)EBR: Example of the honeycomb lattice

Consider one lattice site:

"1 G =U(gl) (GaxZ?)
< > Pz ) (1) ‘@3

) Site-symmetry group, Ggq, leaves q invariant {Czl01}, {m+7100} = Cay
— Orbitals at q transform under a rep, p, of Gq

2y  Elements of space group g ¢ Gq (cosset representatives) move sites
in an orbit “Wyckoff position” {C.l00},{EI00}

W q, q
Wyckoff multiplicity: 2
orbit of q



Induction of a (P)EBR: Example of the honeycomb lattice

s induced in Cay

electron bands sitting at pz orbitals in
Wyckoff 2b in Wall paper group 17

pa=p1G
Cosset representative g: {C2l00},{EI00} l h e G, generators of
honeycomb lattice: C»,Cs,0

piajp(N)=pi(Qas)
gas = §o{ Eltasthgs

l

Pg(h)=e'(k't“”)l)ij(9aﬂ)

dimension of this band representations = connectivity in the Brillouin zone




Subduction in k space: IRREPS at points, lines

- | e (p1G)| G
Restricting to the little group at k to find irreps at
each k point (subduction) -> all bands connected < ~Jl1 >
All 10403 decompositions now tabulated on the >=<
Bilbao Crystallographic Server >
I K M

By construction, a band representation has an atomic limit, and all atomic
limits yield a band representation

Recall: Topological bands CANNOT Have Maximally Localized Wannier
Functions...



Why are Elementary Band Representations
Important?

L I X K r

1) Bands in pg are connected (this phase can always realized) in the
Brillouin zone

2) Bands in pg are not connected: at least one topological band

Disconnected (P)EBR = set of disconnected bands that
connected form an (P)EBR



Why are Elementary Band Representations
Important?

L I X K r

1) Bands in pg are connected (this phase can always realized) in the
Brillouin zone

2) Bands in pg are not connected: at least one topological band

Disconnected (P)EBR = set of disconnected bands that
connected form an (P)EBR

Our definition of a topological band = anything that is not a band
representation -



Obstructed atomic limit

Orbital hybridization
BR are induced from localized molecular orbitals, away from the atoms

In terms of EBRs?
1t imit CBR: 6y T Ga ® O¢ T Ga

EBR>

--------------- } Composite BR

EBR;
2 nd limit CBR: Pv 1 Gm @ pc T Gm

1st limit: orbitals lie in the atomic sites
2 nd |imit: orbitals do not coincide with the atoms



Obstructed atomic limit

Orbital hybridization
BR are induced from localized molecular orbitals, away from the atoms

In terms of EBRs?
1t imit CBR: 6y T Ga ® O¢ T Ga

NntGa =0v @ O¢

--------------- } Composite BR
}7 T Gm ~ pV @ pC

2 nd limit CBR: Pv 1 Gm @ pc T Gm

1st limit: orbitals lie in the atomic sites
2 nd |[imit: orbitals do not coincide with the atoms

This is a “chemical bonding” transition (ex: from week to a strong covalent bonding)

N. Read Phys.Rev. B (2017), W. A. Benalcazar Science (2017)



TQC statement

All sets of bands induced from symmetric, localized

orbitals, are topologically trivial by design.

Zak PRB 26 (1982)



TQC statement

induced from symmetric, localized

orbitals, are topologically,trivial by design.

A

Zak PRB 26 (1982)



Elementary Band Representations
(reciprocal space)

S

i

Global information about band structure: enumerate all EBR

1. Maximal k-vectors and path
2. Compatibility relations
3. Graph theory: identification of disconnected bands

Zak PRB 26 (1982)



1. Maximal k-vectors and paths

For all the 203 SG:
maximal k-vectors + minimal set non-redundant connections

(1) k vector in a manifold is maximal if its little co-group
it’s not a subgroup of another manifold of vectors k’
(in general coincides with high-symmetry k-vector)

P4/ncc k.

Z E B Maximal
f . _t BZ) / k-vec mult. Coordinates Little co-group TR
( I rS r 1 (0,0,0) 4/mmm(Dyy) yes yes
Z 1 (0,0,1/2) 4/mmm(Dyy) yes yes
M 1 (1/2,1/2,0) 4/mmm(Day) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(Dyy) yes yes
R 2 0,1/2,1/2) mmm(Dyy,) yes yes
X 2 0,1/2,0) mmm(Dyy,) yes yes
A 2 0,0,w),0 <w < 1/2 4dmm(Cyy) no no
\% 2 1/2,1/2,w),0 <w < 1/2 Amm(Cyy) no no
w 4 0,1/2,w),0 < w < 1/2 mm2(Cyy) no no
) 4 (u,u,0),0 <u<1/2 mm?2(Cy,) no no
S 4 (u,u,1/2),0 <u <1/2 mm2(Cy,) no no
A 4 0,v,0),0 <v < 1/2 mm2(Cy,) no no
U 4 0,v,1/2),0 <v < 1/2 mm2(Cy,) no no
ky Y 4 (u,1/2,0),0 <u < 1/2 mm2(Cy,) no no
T 4 (u,1/2,1/2),0 <u < 1/2 mm?2(Ca,) no no
D 8 u,v,0),0 <u <v<1/2 m(Cy) no no
E 8 (u,v,1/2),0 <u <v<1/2 m(Cy) no no
k, C 8 (u,u,w),0 <u<w<1/2 m(Cy) no no
B 8 O,v,w),0 <v<w<1/2 m(Cy) no no
F 8 u,1/2,w),0 <u <w<1/2 m(Cs) no no
GP 16 u,o,w),0<u<v<w<l1/2 1(1) no no

M Physical Review E 96 (2), 023310



1. Maximal k-vectors and paths

For all the 203 SG:
maximal k-vectors + minimal set non-redundant connections

(1) k vector in a manifold is maximal if its little co-group
it’s not a subgroup of another manifold of vectors k’
(in general coincides with high-symmetry k-vector)

P4/ncc o,

Z E B Maximal
f . _t BZ) / “K-vec mult. Coordinates Tittle Co-group TR
( I rS r 1 (0,0,0) 4/mmm(Dyy) yes yes
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M 1 (1/2,1/2,0) 4/mmm(Day) yes yes
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AN (\AVA/ 5 RY) W T7 A CC 5y ) 0 10
\% 2 1/2,1/2,w),0 <w < 1/2 Amm(Cyy) no no
w 4 0,1/2,w),0 <w < 1/2 mm2(Cp,) no no
) 4 (u,u,0),0 <u<1/2 mm?2(Cy,) no no
S 4 (u,u,1/2),0 <u <1/2 mm2(Cy,) no no
A 4 0,v,0),0 <v < 1/2 mm2(Cyy) no no
U 4 0,v,1/2),0 <v < 1/2 mm2(Cy,) no no
]{',y Y 4 u,1/2,0),0 <u < 1/2 mm2(Cp,) no no
T 4 (u,1/2,1/2),0 <u < 1/2 mm?2(Ca,) no no
D 8 u,v,0),0 <u <v<1/2 m(Cy) no no
E 8 (u,v,1/2),0 <u <v<1/2 m(Cy) no no
k, C 8 (u,u,w),0 <u<w<1/2 m(Cy) no no
B 8 O,v,w),0 <v<w<1/2 m(Cy) no no
F 8 u,1/2,w),0 <u <w<1/2 m(Cs) no no
GP 16 u,o,w),0<u<v<w<l1/2 1(1) no no




1. Maximal k-vectors and paths

(2) All possible connection between maximal and non-maximal k-vectors

— 2 manifolds are connected if:

‘ * ki (u1)=Kkq
K1 ki Ko ki (u2)=ko
for each max. k in *k and ki non-maximal

P4/ncc
first BZ
( St ) Maximal Connected Specific Connections
k-vec k-vecs coordinates with the star
I':(0,0,0) A:(0,0,w) w=20 2
A: (0,0,0) v=20 4
Y (u,u,0) u=20 4
B: (0,v,w) v=w=20 8
C: (u,u,w) u=w=>0 8
D: (u,v,0) u=v=20 8

I:3 lines and 3 planes

23



2. Compatibility Relations

Is the way in which both the point group symmetry and the translational symmetry of the crystal

lattice are incorporated into the formalism that describes elementary excitations in a solid.

* Bloch Hamiltonian is constrained by symmetry
A(G)H(k)A(G)"" = H(Gk)

* At high symmetry points ko, Bloch functions are classified by IRREPS

ok =k — kg > Hk)~ € Ha,, (k)

irreps

* Compatibility relations tell us how the different k - p hamiltonians
are connected



2. Compatibility Relations

* Let’s consider 2 high symmetry points of the SG 130 : " and X

1. symmetry operations point group I (k1) are the ones of Ox

2. symmetry operations point group X (k2) are the ones of D

* Both high symmetry points are connected through A (ki) with Ca,

* In general

k) p b G, @ D7 and (X (ka)): 0 4 G, = (D 7

Example:
< \/ . of O, is a reducible representation of C,,
>< Reduction of ", into irreducible representations
N2 of C,, yields the compatibility relation
A
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2. Compatibility Relations

* Let’s consider 2 high symmetry points of the SG 130 : " and X

1. symmetry operations point group I (k1) are the ones of Ox

2. symmetry operations point group X (k2) are the ones of D

* Both high symmetry points are connected through A (ki) with Ca,

* In general

k) p b G, @ D7 and (X (ka)): 0 4 G, = (D 7

Example:
A2 A2
< Lo . of O, is a reducible representation of C,,
>< Reduction of 't into irreducible representations
p2d of C,, yields the compatibility relation
s < A}“X\-'_Z M5 = A1 412
A



2. Compatibility Relations

Reducing the number of paths

(i) Paths are subspace of other paths
kv and k2um connect through kp and ki, kp Is redundant

(i) Paths related by symmetry operations
A single line or plane of the *k gives all independent restrictions

(iil) Paths that are combinations of other paths

* additional restrictions in non-symmorphic groups (monodromy)

30



3. Connectivity graphs

(honeycomb lattice)

We must ensure compatibility relations are T A

satisfied along the lines and planes joining

little groups

There will be many ways to form energy Al

bands, consisten with compatibility relations 4

Goal: classify the valid band structures 1_“21g ]\})

We can accomplish this introducing a graph- -

theory picture Ag
l )

I A

Partition: High symmetry point
Nodes: irreps of the little group AZ
Graph connectivity: Band connectivity problem



3. Connectivity graphs

Adjacency matrix: m x m matrix, where the (ij)’th entry is the number of edge connection i to j

Degree matrix: diagonal matrix is whose (ii)'th entry is the degree of the node |

Laplacian matrix: L
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For each connected component of a graph, there is a 0 eigenvector of the Laplacian



Results: Graphene

2 independent Adjacency matrices:

= " &
T K M T K M
k k
- Single connected component - Splitting of EBR
= Fully connected and protected semi-metallic phase — Topological bands

Vanderbilt, Soluyanov PRB 83, 035108 (2011)



Results: Graphene

What makes the disconnected bands topological?

All four bands come from a single set of localized orbitals (p,, spin up/down)

= g—

Local description: @

Wannier functions = m
atomic orbitals

Symmetry enforced semi-metal Topological insulator )

— —

Cannot be described by localized Wannier

functions while preserving symmetries
(Soluyanov and Vanderbilt 2011)

Disconnected bands are topological because they lack
localized Wannier functions that obey TR

Kane, Mele Phys. Rev. Lett (2005)



General method

( P T G) J, Gki subduction into maximal k-vecs

Y VvV
@ <«— k- p theory (compatibility relations)

l P T G induction (BR)

Connected EBR Disconnected EBR

——
—_— |

Topological insulator

Topological semi-metal



Band Representations in the
Bilbao Crystallographic Server

http://www.cryst.ehu.es/cryst/bandrep

Band Representations Please, enter the sequential number of group as given in the International Tables
for Crystallography, Vol. A

choose it

This program calculates the band representations (BR) induced
from the irreps of the site-symmetry group of a given Wyckoff

position.

glternagvely, it gives the set of elementary BRs of a Double 1 Getthe elementary BRs without time-reversal symmetry Elementary
pace Group. o

In both cases, it can be chosen to get the BRs with or without 2. Get the elementary BRs with time-reversal symmetry Elementary TR

time-reversal symmetry.

The program also indicates if the elementary BRs are
decomposable or indecomposable. If it is decomposable, the 4. Get the BRs with time-reversal symmetry from a Wyckoff position Wyckoff TR
program gives all the possible ways to decompose it.

3. Get the BRs without time-reversal symmetry from a Wyckoff position Wyckoff

For comments, please mail to
http://www.cryst.ehu.es


http://www.cryst.ehu.es/cryst/bandrep

http://www.cryst.ehu.es/cryst/bandrep

Output

Elementary band-representations without time-reversal symmetry of the Double Space Group /243 (No. 199)

The first row shows the Wyckoff position from which the band representation is induced.
In parenthesis, the symbol of the point group isomorphic to the site-symmetry group.

The second row gives the symbol p1G, where p is the irrep of the site-symmetry group.
In parenthesis, the dimension of the representation.

The output shows the decomposition of the band representations into irreps of the little groups
of the given k-vectors in the first column.
In parenthesis, the dimensions of the representations.
Minimal set of paths and compatibility relations to analyse the connectivity

Show all types of k-vectors

Wyckoff pos. 8a(3) 8a(3) 8a(3) 8a(3) 8a(3) 8a(3) 12b(2) 12b(2) 12b(2) 12b(2)
Band-Rep. AiTG(4) 'ETG(4) ETG(4) 'ETc(e) ’ETG(4) ETG(4) ATG(6) BTG(6) 'Efc(e) %EfG(e)
2:::;“;::::::‘3 Indecomposable | Indecomposable | Indecomposable | Indecomposable | Indecomposable | Indecomposable Indecomposable Indecomposable Indecomposable B
r:(0,0,0) F1(1) @ I4(3) M2(1) @ T4(3) F3(1) @ F4(3) T5(2) @ Tg(2) F5(2) @ T7(2) Fs(2) @ T7(2) | M4(1) @ Mx(1) @ M3(1) @ My(3) 2T4@3) F5(2) @ Fg(2) @ M7(2) T5(2) @ Tg(2) @ T7(2)
H:(1,1,1) Hi(1) @ Hy(3) Ha(1) ® Hy(3) H3(1) ® Hy(3) Hs(2) © Hg(2) Hs(2) @ H7(2) Hg(2) © H7(2) 2 Hq3) Hq(1) ® Ha(1) ® H3(1) ® Hg(3) | Hs(2) @ Hg(2) © Hy(2) Hs(2) ® Hg(2) @ Hy(2)
N:(1/2,42,0) | 2N4(1) @ 2N5(1) | 2N4(1) @ 2N5(1) | 2Ny(1) ® 2Ny(1) | 2N3(1) ® 2N(1) | 2N3(1) @ 2N4(1) | 2N3(1) @ 2Ng(1) 3N4(1) @ 3 Ny(1) 3Ny(1) @ 3 Na(1) 4N5(1) © 2 Ng(1) 2N3(1) ® 4 Ng(1)
P:(1/2,1/2,1/2) P1(2) ® P3(2) P4(2) ® P2(2) P2(2) © P3(2) Pg(1) @ P7(3) Ps(1) @ P4(3) P4(1) @ P4(3) P1(2) ® P2(2) ® P3(2) P1(2) ® P,(2) ® P3(2) 2P;(3) P4(1) ® P5(1) ® Pg(1) @ P4(3)




http://www.cryst.ehu.es/cryst/bandrep

Output

Elementary band-representations without time-reversal symmetry of the Double Space Group /243 (No. 199)

The first row shows the Wyckoff position from which the band representation is induced.
In parenthesis, the symbol of the point group isomorphic to the site-symmetry group.

The second row gives the symbol p1G, where p is the irrep of the site-symmetry group.
In parenthesis, the dimension of the representation.

The output shows the decomposition of the band representations into irreps of the little groups
of the given k-vectors in the first column.
In parenthesis, the dimensions of the representations.
Minimal set of paths and compatibility relations to analyse the connectivity

Show all types of k-vectors

Wyckoff pos. 8a(3) 8a(3) 8a(3) 8a(3) 8a(3) 8a(3) 12b(2) 12b(2) 12b(2)
Band-Rep. ATGM) 'ETG(4) ETG(4) 'ETG4) ETG(e) ETG(4) ATG(6) BTG(6) ETG(6)
2:2:;“;::::::‘3 Indecomposable | Indecomposable | Indecomposable | Indecomposable | Indecomposable | Indecomposable Indecomposable Indecomposable B
r:(0,0,0) F1(1) @ I4(3) M2(1) @ T4(3) F3(1) @ F4(3) T5(2) @ Tg(2) F5(2) ® T7(2) Fs(2) @ T7(2) | M4(1) @ Mx(1) @ M3(1) @ My(3) 2T4@3) T5(2) @ Tg(2) @ T7(2)
H:(1,1,1) Hi(1) @ Hy(3) Ha(1) ® Hy(3) H3(1) ® Hy(3) Hs(2) © Hg(2) Hs(2) @ H7(2) Hg(2) © H7(2) 2 Hq3) H1(1) @ Hz(1) @ H3(1) © Hy(3) Hs(2) ® Hg(2) @ Hy(2)
N:(112,4/2,0) | 2N4(1) @ 2Na(1) | 2Ng(1) @ 2Na(1) | 2Nq(1) @ 2Ny(1) | 2N3(1) @ 2Ns(1) | 2N3(1) @ 2N4(1) | 2 N3(1) @ 2Ny(1) 3N4(1) @ 3 Ny(1) 3Ny(1) @ 3 Na(1) 2N3(1) @ 4 Ng(1)
P:(1/2,1/2,1/2) P1(2) ® P3(2) P4(2) ® P2(2) P2(2) © P3(2) Pg(1) @ P7(3) Ps(1) @ P(3) P4(1) @ P4(3) P1(2) ® P2(2) ® P3(2) P1(2) ® P,(2) ® P3(2) P4(1) ® P5(1) ® Pg(1) @ P4(3)




http://www.cryst.ehu.es/cryst/bandrep

Output
branch 1 branch 2
1 | Hs,I'5,P5,Pg,Ng,Ny | Hg,H7.l6.17,P4,P7,N3,N3,N4,Ny
w:k ,:- 2 ﬁs,rs,p-4,§6,N-4,N—4 F|'7,ﬁ5f5,r7P5P7,N3,N3,N4,N4
mom ol 3| Hy,I7,P4,P5,Ng,Ny | Hs,Hg,l'5,T'6,P6,P7,N3,N3,Ng,Ny [

l _ ' AR B _ _ 1 B |




http://www.cryst.ehu.es/cryst/bandrep

Output

Elementary band-representations without time-reversal symmetry of the Double Space Group /243 (No. 199)

The first row shows the Wyckoff position from which the band representation is induced.
In parenthesis, the symbol of the point group isomorphic to the site-symmetry group.

The second row gives the symbol p1G, where p is the irrep of the site-symmetry group.
In parenthesis, the dimension of the representation.

The output shows the decomposition g ations into irreps of the little groups

-\

parenthesis, the dimensions of the rep

resentations:

Minimal set of paths and compatibility relations to analyse the connectivity

Show all types of k-vectors

Wyckoff pos. 8a(3) 8a(3) 8a(3) 8a(3) 12b(2) 12b(2) 12b(2)
Band-Rep. ATG(@) 'ETG() E16(4) 'ET6(@) BTG(6) 'ETG(6) ETG(6)
2:2:;“;::::::‘3 Indecomposable | Indecomposable | Indecomposable | Indecomposable | Indecomposable | Indecomposable Indecomposable Indecomposable Indecomposable B
r:(0,0,0) F1(1) @ I4(3) M2(1) @ T4(3) F3(1) @ F4(3) T5(2) @ Tg(2) F5(2) @ T7(2) Fs(2) @ T7(2) | M4(1) @ Mx(1) @ M3(1) @ My(3) 2T4@3) F5(2) @ Fg(2) @ M7(2) T5(2) @ Tg(2) @ T7(2)
H:(1,1,1) Hi(1) @ Hy(3) Ha(1) ® Hy(3) H3(1) ® Hy(3) Hs(2) © Hg(2) Hs(2) @ H7(2) Hg(2) © H7(2) 2 Hq3) Hq(1) ® Ha(1) ® H3(1) ® Hg(3) | Hs(2) @ Hg(2) © Hy(2) Hs(2) ® Hg(2) @ Hy(2)
N:(1/2,42,0) | 2N4(1) @ 2N5(1) | 2N4(1) @ 2N5(1) | 2Ny(1) ® 2Ny(1) | 2N3(1) ® 2N(1) | 2N3(1) @ 2N4(1) | 2N3(1) @ 2Ng(1) 3N4(1) @ 3 Ny(1) 3Ny(1) @ 3 Na(1) 4N5(1) ® 2 Ny(1) 2N3(1) @ 4 Ng(1)
P:(1/2,1/2,1/2) P1(2) ® P3(2) P4(2) ® P2(2) P2(2) © P3(2) Pg(1) @ P7(3) Ps(1) @ P(3) P4(1) @ P4(3) P1(2) ® P2(2) ® P3(2) P1(2) ® P,(2) ® P3(2) 2P;(3) P4(1) ® P5(1) ® Pg(1) @ P4(3)




Output

Wyckoff pos.

Band-Rep.

Decomposable\
ndecomposable

Indec

r:(0,0,0)

ry(

H:(1,1,1)

Hq(

N:(1/2,1/2,0)

2 Ny(

P:(112,112,1/2)

P4(:

http://www.cryst.ehu.es/cryst/bandrep

Maximal k-vec|Compatibility relations Intermediate path|Compatibility relations Maximal k-vec
r1(1)—41(1) H1(1)—A2(1)
r2(1)—A41(1) H2(1)—242(1)
r3(1)—41(1) H3(1)—242(1)
:(0,0,0) r4(3)—A41(1) ® 2 42(1) A:(0,v,0) H4(3)—2 A1(1) @ A2(1) H:(1,1,1)
T5(2)—B3(1) ® Ba(1) Hs(2)—B3(1) © B4(1)
T6(2)—B3(1) ® Ba(1) He(2)—B3(1) @ B4(1)
['7(2)—A43(1) ® A4(1) H7(2)—A3(1) © A4(1)
r1(1)-A1(1) H1(1)—A1(1)
r2(1)—A2(1) H2(1)—A2(1)
r3(1)—A3(1) H3(1)—A3(1)
:(0,0,0) F4(3)—A1(1) @ A2(1) ® A3(1) A(-u,u,-u) Ha(3)=A1(1) @ A2(1) ® A3(1)| H:(1,1,1)
T5(2)—As(1) ® Ag(1) Hs(2)—As(1) @ Ag(1)
T6(2)—A4(1) @ Ag(1) He(2)—A4(1) @ Ag(1)
['7(2)—A4(1) ® As(1) H7(2)—>A4(1) ® As(1)
r1(1)-A1(1) P1(2)-A1(1) @ A2(1)
r2(1)—A2(1) P2(2)—A2(1) @ A3(1)
r3(1)—A3(1) P3(2)—A1(1) ® A3(1)
r(0,0,0) r4(3)—A1(1) @ A2(1) ® A3(1)| A:(-u,u,-u) P4(1)—A4(1) P:(1/2,1/2,1/2)
T5(2)—As(1) ® Ag(1) Ps(1)—As(1)
r'e(2)—N\4(1) ® Ag(1) Pe(1)—Aes(1)

F7(2)-A4(1) © As(1)

P7(3)-A4(1) @ As(1) @ Ag(1)

‘-‘ ’ ‘ ‘ ‘

P+(3)



Materials?

We tabulated all the different EBRs (10403) of all the 230 SG.

SG MWP WM PG Irrep Dim KR Bands Re E PE||SG MWP WM PG Irrep Dim KR Bands Re E PE
1 1la 1 1 I 1 1 1 1 e e 131 2d 2 g8 I'y 1 1 2 1 e e
1 la 1 1 T2 1 2 2 2 ee |[1312¢ 2 8 Iy 1 1 2 1 ee
2 la 1 2 T 1 1 1 1 ee |[1312d 2 8 Iy 1 1 2 1 ee
2 la 1 2 Iy 1 1 1 1 e e 131 2d 2 8 F;r 1 1 2 1 e e
2 la 1 2 I3 1 2 2 2 e e 131 2d 2 8 I'y 1 1 2 1 e e
2  la 1 2 I 1 2 2 2 ee (13124 2 8 Is 2 1 4 1 ee
2 1 1 2 I 1 1 1 1 ee |[1312d 2 8 Is 2 1 4 1 ee
2 1b 1 2 Iy 1 1 1 1 e e 131 2e 2 14 Iy 1 1 2 1 e e
2 1b 1 2 I3 1 2 2 2 e e 131 2e 2 14 I'y 1 1 2 1 e e

SG: Space Group KR: 1 for PEBR, 2 for EBR (f and s)

MWP: Maximal Wyckoff Position Bands: Total number of bands

WM: Wyckoff multiplicity in the primitive cell Re: 1 for TRS at each k, 2 for connection with its conjugate

PG: Point group number of the site-symmetry E: e for elementary, ¢ for composite

Irrep: Name of the Irrep of the site-symmetry for each BR PE: e for elementary, ¢ for composite



Materials?

We tabulated all the different EBRs (10403) of all the 230 SG.

SG MWP WM PG Irrep Dim KR Bands Re E PE||SG MWP WM PG Irrep Dim KR Bands Re E PE
1 la 1 1 I'; 1 1 1 1 e e [|131 24 2 8 I'; 1 1 2 1 ece
1 la 1 1 I, 1 2 2 2 e e |[[131 2d 2 8 I'f 1 1 2 1 ece
2 la 1 2 T 1 1 1 1 ee |[1312d 2 8 Iy 1 1 2 1 ee
2  la 1 2 Iy 1 1 1 1 e e ||131 2d 2 8 Iy 1 1 2 1 ece
2  la 1 2 TI's 1 2 2 2 e e |[[131 2d 2 8 I'; 1 1 2 1 ece
2  la 1 2 Iy 1 2 2 2 e e |[[131 2d 2 8 Is 2 1 4 1 ece
2 1b 1 2 Iy 1 1 1 1 e e [|131 2d 2 8 Is¢ 2 1 4 1 ece
2 1b 1 2 I'y 1 1 1 1 e e |[131 2e 2 14 Iy 1 1 2 1 ece
2 1b 1 2 TI's 1 2 2 2 e e |[|131 2e 2 14 T'y 1 1 2 1 ece

Classification: 2 indices (m,n)

* Type(1,1): Fermi at single EBR = Gap = Tl

 Type(1,2): EBR at Fermi & Gap = 2 PEBRs = Tls

e Type(2,2): More than one EBR at Fermi = Gap closes and reopens = 2 PEBRs
e Semimetals: electron number is a fraction of the EBR connectivity



Type(1,1):

Disconnected EBRs

SG WP Irrep
224 2a -GM8

224 4b -GM5-GM4
224 4b -GM7-GMo
224 4b -GM8

224 4b -GM9

224 4c -GM5-GM4
224 4c -GM7-GMo
224 4c -GM8

224 4c -GM9

224 6d GM5

224 6d -GMo

224 6d -GM7

224 12f -GM5

Pbin 4c

Energy(eV)

Energy(eV)

Pb20O in Pn3m (224)

=4

I

X M r




1 EBR without SOC

Type(1 ,2) : 2 pEBR with SOC

Pnma (62)

- Without SOC these materials are filling enforced semimetals
0--9-9--0 - It splits into a topologically disconnected band representations when SOC is turned on

0 _O 2
Iy L WV
% N %-1_ >s V— F
olooio | IR
O ] (I LR
Wyl
5;1 \—Z :213 XKS/\Y Iz ;fT _Z
© O r (b)
Sb2 >-€

We found 58 new candidates: SrZnSbo (a), LaSbTe (b), AAgX2 (A: rare earth metal, X: P, As, Sb Bi)

45



Outlook

Predictive theory of topological bands that makes the link between real
space orbitals and momentum space topology

Gives a prescription on how to built topological bands from orbitals
Finds a large amount of materials

Magnetic symmetry groups are next
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