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Topological Insulators and Topological Semimetals

Topological Insulators /
Dirac Fermions

Topological Semimetals / 
Weyl, Dirac and “beyond” Fermions

(3fold, 6fold and 8fold crossings)
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FIG. 4. Tight binding surface states for SG 214, showing
the surface density of states for a surface in the 1̄11 direction.
The x and y axes correspond to multiples of the reciprocal lat-
tice vectors g2 = 2⇡(1, 0, 1) and g3 = 2⇡(1, 1, 0) respectively.
There are Fermi arcs emanating from the points ±(0.25, 0.25)
which correspond to the surface projection of the P and �P
points. Inset shows the atoms in 9 unit cells of our tight-
binding model, with lines to indicate the nonzero hopping
amplitudes. Only p orbitals with intersite spin-orbit coupling
are included.

in the family of Ni3(BiS)2[38]. Fig. 5a shows the band
crossing is only .1eV above the Fermi level; its position
could be further tuned by doping. The analogous crossing
in SG 214 can be found in the family of La3PbI3[39];
Fig. 5b shows that the Fermi level is almost exactly at
the band crossing.

Space groups 220 and 230 can host 3-band and 8-band
crossings at the P and H points, respectively. In space
group 220, we find both of these fermions near the Fermi
energy in the systems A4Pn3 and R4Pn3 for A = Ca,
Sr, Ba, Eu; R = rare-earth element (i.g. La, Ce); Pn
(pnictogen) = As, Sb, Bi. Fig. 6 shows these crossings
in Ba4Bi3[40] and La4Bi3[41]. In space group 230, we
can see both of these fermions above the Fermi level in
SiO2[42], also shown in Fig. 6c.

The 6-band fermions in SG 198 can be found in the
families of PdAsS[43] and K3BiTe3[44], as shown in
Figs 7a and 7b. These band crossings are further from
the Fermi level, but can be moved closer by doping. Sim-
ilar fermions can be found closer to the Fermi level in the
compounds Li2Pd3B[45] (SG 212) and Re2W3C[46] (SG
213), shown in Figs 7c and 7d.

The quadratic 6-band fermions in SGs 205 can be
found in PdSb2[47], as shown in Fig. 7e, as well as in
the similar compounds FeS2 and PtP2. In SG 206, we
see a 6-band crossing in the family of KBiF6, as shown
in Fig. 7f, although it is .5 eV above the Fermi level.

The 8-band fermions required to exist in SG 130 are

exhibited in PdBi2O4[48] and WO3[49], above and below
the Fermi level, respectively, as shown in Figs 8a and 8b
respectively. The fourfold Dirac line nodes can clearly be
seen on the line joining the A and M points.

The 8-band fermions predicted to occur in SG 218 exist
in CsSn[50] and CsSi[51]; the band structure of CsSn
shows its unique splitting into four two-fold degenerate
bands in the k

x

= k
z

direction away from the R point
(Figs 8c and 8d). There is a similar 8-band fermion at
the H point in SG 220, which is shown in Fig. 6 for
Ba4Bi3[40] and La4Bi3[41].

The 8-band fermions predicted to occur in SG 223 are
exhibited in the candidates X3Y, where X is either Nb or
Ta and Y is any group A-IV or A-V element in the beta-
tungsten structure A15, as well as in the family MPd3S4,
where M is any rare-earth metal. The band structures
for Ta3Sb[52] and LaPd3S4[53] show the 8-band crossing
near the Fermi level, as shown in Figs 8e and 8f.

Outlook In this letter we have analyzed all possible
exotic fermion types that can occur in spin-orbit coupled
crystals with time reversal symmetry, going beyond the
Majorana-Weyl-Dirac classification. By virtue of their
band topology, these fermions can play host to novel
surface states, magnetotransport properties, and ARPES
signatures. Growth of many of the material candidates
mentioned above, including AsPdS, La3PbI3, La4Bi3,
LaPd3S4 and Ta3Sb is currently underway, and should
yield fruitful results.

On the theoretical side, there are several directions
which deserve future attention. First, gapping these de-
generacies by breaking the symmetries that protect them
can lead to novel symmetry-protected topological phases,
with new classes of 2d gapless surface modes. Further-
more, our symmetry analysis can be extended to crys-
tals with magnetic order. This requires an investigation
of representations of the 1191 remaining magnetic space
groups, which we are currently undertaking[54].
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Topological protection from time reversal or some crystal symmetry



NonSymmorphic Symmetries Bring In New Phenomena

Surface States in KHgSb
One glide plane allows for the presence of 

Hourglass-like fermions on the surface
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FIG. 3. The crystal and electronic structures of Sr2Pb3 in
SG 127 (P4/mbm). (a) The unit cell of Sr2Pb3. (b) The
bulk Brillouin zone (BZ) and the (001)-surface BZ (wallpaper
group p4g). (c) The electronic bands obtained using DFT;
the Fermi level is set to 0 eV. There is a consistent, direct
band gap near the Fermi energy, indicated by the dashed red
line; insets show magnified images of the boxed regions. (d)
The (001)-directed Wilson bands; red (blue) points indicate
Wilson bands with positive (negative) surface glide eigenval-

ues �+(�)
x/y

. By counting the Wilson bands within each glide
sector that cross the dashed green line, we find that Sr2Pb3

has the bulk topology of a (2, 2) topological Dirac insulator.

the hourglass insulating phase10 is present on the sur-
face. For example, when (�x,�y) = (0, 2), either time-
reversed partners of twofold-degenerate free fermions live
along �̄X̄ or both twofold-degenerate fermions live along
�̄Ȳ and a fourfold-degenerate Dirac fermion exists at M̄ .

Finally, for �x = �y = 2, we find that the system exists
in a previously uncharacterized “topological Dirac insu-
lating” phase, capable of hosting just a single fourfold-
degenerate Dirac surface fermion at M̄ .

III. MATERIALS REALIZATIONS

We apply DFT to predict the presence of topologi-
cal phases stabilized by wallpaper groups pgg and p4g
in known materials. The details of these calculations
are provided in SM F. We find double-glide topologi-
cal phases on the (001)-surface (wallpaper group p4g)
of three previously synthesized members of the SG
127 (P4/mbm) A

2

B
3

family of materials: Sr
2

Pb
3

37,38,
Au

2

Y
3

39, and Hg
2

Sr
3

40,41. Shown in Fig. 3, we find
that Sr

2

Pb
3

has a consistent, direct gap at the Fermi
energy, in spite of the presence of electron and hole
pockets. A Wilson loop calculation of the bands up to
this gap (Fig. 3(d)) indicates that this material possesses
the bulk topology of a (2, 2) topological Dirac insulator
(SM F2). Calculating the surface spectrum through sur-
face Green’s functions (Fig. 4), we find that the (001)-
surface of Sr

2

Pb
3

, while displaying an overall metallic

FIG. 4. The (001)-surface band structure of Sr2Pb3 (wallpa-
per group p4g). The Fermi level is set to zero. The fourfold
surface Dirac fermion appears at M̄ in the region indicated
by the red rectangle, and is shown in more detail in the inset
rectangle. The dotted red lines draw attention to the four
bands linearly dispersing from the Dirac point.

character, develops gap of 45 meV at the Fermi energy
at M̄ . Inside this gap, we find that there is a single,
well-isolated, fourfold-degenerate surface Dirac fermion.
Unlike Sr

2

Pb
3

, Au
2

Y
3

and Hg
2

Sr
3

in SG 127 are gap-
less, with bulk C

4z-protected Dirac nodes42 present near
the Fermi energy. In SM F2 we show that under weak
(100)-strain, these Dirac nodes can be gapped to induce
the (0, 2) topological hourglass phase in these two mate-
rials.
We additionally find that the (001)-surface (wallpaper

group pgg) of the narrow-gap insulator Ba
5

In
2

Sb
6

in SG
55 (Pbam)43 hosts a double-glide topological hourglass
fermion. Shown in Fig. 5, we find that Ba

5

In
2

Sb
6

de-
velops an indirect band gap of 5 meV (direct band gap:
17 meV). The Wilson loop spectrum obtained from the
occupied bands, shown in (Fig. 5(d)), demonstrates that
this material is a (2, 0) double-glide topological hourglass
insulator (SM F1). We find that the (001)-surface of
Ba

5

In
2

Sb
6

has a projected insulating bulk gap which is
spanned along Ȳ �̄ by two bands of a topological surface
hourglass fermion (Fig. 6).

IV. DISCUSSION

We have demonstrated the existence of a topological
Dirac insulator – a topological crystalline material with
a single fourfold-degenerate surface Dirac point stabilized
by two perpendicular glides. This is one of eight topo-
logically distinct phases that can exist in insulating or-
thorhombic crystals with surfaces that preserve two per-
pendicular glides; we have classified all eight phases by
topological indices (�x,�y) that characterize the connec-
tivity of the z-projection Wilson loop spectrum. After
an exhaustive study of the 17 wallpaper groups, these
phases are revealed to be the final theoretically undis-

Surface States in Sr2Pb3, a Dirac 
Nonsymmorphic insulator

4-fold degeneracy surface state at the M 
point with Two glide planes
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lustrated in Fig. 2: Hg andX ions form honeycomb layers
with AB stacking along ~z; between each AB bilayer sits
a triangular lattice of K ions. The spatial symmetries
include: (i) an inversion (I) centered around a K ion,
which we choose as our spatial origin, (ii) the screw ro-
tation C̄6z is a six-fold rotation about ~z followed by a
fractional lattice translation (t(c~z/2)). Here and hence-
forth, for any transformation g, we denote ḡ=t(c~z/2) g
as a product of g with this fractional translation. (iii)
Finally, we have the reflections M

y

: (x, y, z)!(x,�y, z),
M̄

z

=t(c~z/2)M
z

and M̄
x

=t(c~z/2)M
x

. Among these only
M̄

x

is a glide reflection, for which the fractional transla-
tion is unremovable by a di↵erent choice of origin. Al-
together, these symmetries generate the nonsymmorphic
space group D4

6h(P63/mmc).[13]

Each topological feature of KHgX may be attributed
to a smaller subset of the group – on surfaces where cer-
tain bulk symmetries are lost, their associated topology
is not manifest, e.g., the 100-surface symmetry is a sym-
morphic subgroup ofD4

6h, leading to a strikingly di↵erent
bandstructure than that of the nonsymmorphic 010 sur-
face. Our strategy is to deduce the possible topologies of
the surface bands purely from representations of the sur-
face symmetry. We then more carefully account for the
bulk symmetries and their representations, as well as in-
troduce a non-Abelian polarization to diagnose nontrivial
topology in the bulk wavefunctions.
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FIG. 2: Crystal structure and Brillouin zone of KHgX. (a)
3D view of atomic structure. The Hg (red) and X (blue)
ions form a honeycomb layers with AB stacking. The K ion
(cyan) is located at an inversion center, which we also choose
to be our spatial origin. (b) Top-down view of a truncated
lattice with two surfaces labelled 010 and 100, also known
respectively as (12̄10) and (101̄0) in the Miller notation. (c)
Center: bulk Brillouin zone (BZ) of KHgX, with two mirror
planes of M̄

z

colored red and blue. Top: 100-surface BZ.
Right: 010-surface BZ.

Surface analysis Let us first discuss the 010 surface,
whose group (Pma2) is generated by glideless M̄

z

and
glide M̄

x

. To explain the robust surface bands in Fig.
1, we consider each high-symmetry line in turn: (i)
At any wavevector (k0) along Z̃Ũ (k

z

=⇡/c), all bands
are doubly-degenerate. Indeed, the group[14] of k0 in-

FIG. 3: The 010-surface bandstructure. The 010-surface
bands of KHgSb for an ideal surface termination in (a), and
with a modified surface potential in (b). (c-d) Possible surface
topologies along Z̃�̃Z̃. Solid and dashed distinguish between
two eigenvalue branches of M̄

x

: ±iexp(�ik
z

c/2).

cludes the antiunitary element TM̄
x

(time reversal with
a glide) which results in a Kramers-like degeneracy at
each k0. This follows from (TM̄

x

)2=T 2M̄2
x

=t(c~z), where
the lattice translation is represented by Bloch waves as
t(c~z)=exp(�ik

z

/c)=�I along Z̃Ũ .

(ii) Along both glide-invariant lines (�̃Z̃ (k
x

=0) and
X̃Ũ (k

x

=⇡/
p
3a)), bands split into quadruplets which

each exhibits an internal partner-switching in the interval
k
z

2[0,⇡/c]. To explain, M̄2
x

=t(c~z) Ē, with Ē a 2⇡-spin
rotation, implies two branches for the mirror eigenval-
ues: ±iexp(�ik

z

c/2). The role of time-reversal symme-
try is to enforce degeneracies between complex-conjugate
representations at both Kramers points, i.e., the M̄

x

eigenvalues are paired as {+i,�i} at k
z

=0, and either
{+1,+1} or {�1,�1} at k

z

=⇡/c. These constraints im-
ply two topologically distinct connectivities for the sur-
face bands. In the first (Fig. 3(c)), surface bands zigzag
across the conduction gap and each cusp is a Kramers
doublet – this will be elaborated as a glide-symmetric
analog of the 2D QSHE[15]. The second connectivity
in Fig. 3(d) applies to our material class: an internal
partner-switching occurs within each quadruplet, result-
ing in an hourglass-shaped dispersion. The center of each
hourglass is a robust crossing between orthogonal mirror
branches, i.e., a movable but unremovable Dirac fermion
in the interval k

z

2[0,⇡/c], as exemplified by KHgSb in
Fig. 1(d).

Piecing together (i) and (ii) along the bent line X̃Ũ Z̃�̃,
we show how a robust interpolation across the energy
gap may arise. At Z̃ and Ũ , there are two ways to con-
nect hourglasses to degenerate doublets: an ‘hourglass
flow’ describes the spectral connection of all hourglasses
by zigzag-connecting doublets, as drawn in the X̃Ũ Z̃�̃
section of Fig. 1(a), and further exemplified by KHgSb
(in Fig. 3(a)) with an ideal surface termination. To
demonstrate that the surface-localized bands of KHgSb
also connect with the surface-resonant bulk bands in this
hourglass-flow topology, we modified the surface poten-
tial of KHgSb to push the hourglass (along �̃Z̃) down into
the valence band; due to the proposed hourglass flow, a
di↵erent hourglass is pulled down from the conduction
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FIG. 3: (Color online) (a) Band structure with SOC included. (b) Enlarged band structure

along M-K-� and (c) �-A in (a). (d) The k
y

evaluation of Berry phases of occupied bands

in k
x

periodicity in k
z

=0 and (ed) k
z

=⇡ (lower) plane for ZrTe. Both planes have

nontrivial Z2 number of 1.

each other indicated with bigger circles labeled as W2. Others are W1. When they are

projected onto (010) surface, the Weyl nodes with opposite chirality are superposed as

shown in Fig. 4(c), which is similar for the (001) surface. The Dirac cone like band structures

passing through one of the Weyl node is plotted along �-K and z-axis in Fig. 4(d) and (e),

respectively. The Weyl node is located at 50 meV above the Fermi level.

Surface states of ZrTe. The (100) surface states are shown in Fig. 5 with the surface band

structure and Fig. 6 with the Fermi surface at di↵erent chemical potentials, namely 0.0, 10.0
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3,6,8-degeneracies (3 can also be realized 
with symmorphic), nodal chains, etc



200000 materials in ICSD database: 
100 time reversal topological insulators

10 mirror Chern insulators
15 Weyl semimetals 
15 Dirac semimetals

3 Non-Symmorphic topological insulators

Non-predictive classification of Topological Bands

1. How do we know the classification is complete?

2. How can we find topological materials?

Set of measure zero… 
Are topological materials that esoteric?

We propose a classification that captures all 
crystal symmetries and has predictive power

Open questions:

?

Chemistry

Group 
theory

Graph 
theory

?

Given an orbital content on a material on a lattice, what are the topological phases? 

⎬



Recall: a space group is a set of symmetries that defines a 
crystal structure in 3D

Ingredients:
• unit lattice translations (𝚭3)

• point group operations (rotations, reflections)
• non-symmorphic (screw, glide)
• orbitals
• atoms in some lattice positions

Image: 1605.06824 Ma et al

How do we go from real space orbitals sitting on lattice sites to 
electronic bands (without a Hamiltonian)?

ELEMENTARY BAND REPRESENATIONS

Zak PRB 26 (1982)

{230
Space-Groups
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Elementary Band Representations
(building blocks)

Band Representation (BR): set of bands linked to a localized orbital respecting all the crystal 
symmetries. They relate electrons on site to momentum space description.

Elementary BR: smallest set of bands cannot be decomposed in elementary bands
Physical Elementary R: when EBR also respects TR symmetry 
Composite BR: A BR which is not elementary is a “composite” 

Zak PRB 26 (1982)

(P)EBRs are connected along the BZ



q

pz

Lattice vectors: 

Induction of a (P)EBR: Example of the honeycomb lattice

Lets consider the generators of 2D P6mm: {C2,C3,m11}
3

organize the discussion to show how a local description
(or, mathematically, a site-symmetry group representa-
tion) of atomic orbitals induces a global description of the
band structure that determines a local k · p description
at every point in momentum space.

A. Wycko↵ positions and stabilizer groups

A crystal structure consists of an arrangement of atoms
that is described by a Bravais lattice and which is invari-
ant under a group of symmetry operations, the space
group (SG), G, of the crystal. We denote an element
g 2 G that acts in real space by r ! Rr + v by {R|v};
the Bravais lattice translations are denoted {E|t}.

We use q to denote a position in the unit cell, whether
occupied by an atom or not. A crystal with an atom at
q must also have an atom at each site in the orbit of q,
{gq|g 2 G}.
Definition 1. The set of symmetry operations, g 2 G,
that leave the site q fixed is called the stabilizer group

or site-symmetry group of q, and is denoted Gq ⌘
{g|gq = q} ⇢ G.

The site-symmetry group, Gq, can include elements
{R|v} with v 6= 0. Nonetheless, a site-symmetry group
is, by its definition, always isomorphic to a crystallo-
graphic point group.

As an often-used example, we consider the two-
dimensional plane group p6mm, which is generated by
{C3|0}, {C2|0}, {m11̄|0} and translations, and which de-
scribes the honeycomb lattice, are shown in Fig 1b. Now
consider the site q = (e1 � e2)/2. The mirror op-
eration {m11|0}, which is a reflection across the line
perpendicular to the e1 + e2 axis, (i.e., {m11|0} sends
e1 + e2 ! �(e1 + e2)) leaves q invariant, as does a ⇡
rotation about the origin followed by a translation by
e1�e2. Hence, Gq is generated by {m11|0} and {C2|11̄}
and is isomorphic to the point group C2v.

The site-symmetry groups of any two points in the
orbit of q are conjugate to each other and are hence iso-
morphic. More generally,

Definition 2. Any two sites whose site-symmetry groups
are conjugate are said to lie in the same Wycko↵ posi-

tion. Given a site in the Wycko↵ position, the number
of sites in its orbit that lie in a single unit cell defines
the multiplicity of the position.

We always define the lattice translations relative to the
primitive (not conventional) unit cell. The Wycko↵ po-
sitions of p6mm are shown in Fig 1.

Given a site, q, that is part a Wycko↵ position of mul-
tiplicity n, we label the points in the orbit of q that lie
in the same unit cell as q by q↵, where ↵ = 1, . . . , n
and q1 ⌘ q. For each ↵ > 1 there exists an element
g↵ /2 Gq, which is not a pure lattice translation, such
that g↵q = q↵. The stabilizer group of q↵ is given by

Gq↵ ⌘ {g↵hg�1
↵ |h 2 Gq} (1)

e1

e2

(a)

1a
2b 2b

3c

3c 3c

(b)

FIG. 1. Lattice basis vectors (a) and Wycko↵ positions (b)
of the hexagonal lattice. The (maximal) 1a, 2b and 3c Wyck-
o↵ positions are indicated by a black dot, blue squares, and
red stars, respectively. The non-maximal 6d and 6e positions
are indicated by purple crosses and green squares, respec-
tively. The multiplicity is determined by the index of the sta-
bilizer group with respect to the point group C6v (6mm). The
general position 12f , corresponding to the orbit of a generic
point, is not explicitly indicated.

The g↵ furnish the following coset decomposition of G:

G =
n[

↵=1

g↵(Gq n Z3), (2)

where Z3 is the group of Bravais lattice translations and
g1 is the identity element. The n denotes the semidirect
product: Gq n Z3 is the symmorphic space group which
contains the elements of Gq and which has the same Bra-
vais lattice as G.

We again consider p6mm and use the site q = (e1 �
e2)/2 as an example. Since {C6|0} /2 Gq

⇠= C2v, the
other two sites in the orbit of q in the unit cell are given
by q2 ⌘ {C6|0}q and q3 ⌘ {C6|0}�1

q; the red stars
in Fig 1b indicate the three sites. All other symmetry
operations in p6mm acting on q take it to a position that
di↵ers from one of these sites by a pure lattice translation.

It will be important in what follows to understand how
each site symmetry group, Gq, fits into the space group,
G. To this end, we define:

Definition 3. A site-symmetry group is non-maximal

if there exists a finite group H 6= Gq, such that Gq ⇢
H ⇢ G. A site-symmetry group that is not non-maximal
is maximal. A Wycko↵ position containing q is maxi-
mal if the stabilizer group Gq is maximal.

A word of caution: if Gq
⇠= P and Gq0 ⇠= P 0, where P

and P 0 are abstract point groups, it is possible for P ⇢ P 0

even though Gq 6⇢ Gq0 . For example, in P6mm, taking
q = (e1 � e2)/2, Gq

⇠= C2v, while G0
⇠= C6v. Even

though Gq 6⇢ G0 (because, for example, {C2|11̄} 2 Gq

and {C2|11̄} 62 G0), C2v ⇢ C6v.
We can quickly find the maximal Wycko↵ positions of

p6mm by using a su�cient, although not necessary, con-
dition for a site-symmetry group, Gq, to be maximal.
The condition is the following: if q is the unique point
which is fixed by each operation in Gq, i.e., there does
not exist a second point, q0 6= q, which is also fixed by
each element of Gq, then Gq is maximal (we derive this

Lattice site: Wyckoff 2b, spinfull pz

e1=√3/2x+1/2y

e2=√3/2x-1/2y

Site-symmetry group, Gq, leaves q invariant

｛

G = ∪(g  ) (Gq⋉𝚭3)
𝛂=1 𝛂 
n

g   ∉ Gq𝛂 ,

Cosset decomposition of a Space Group : 



Orbitals at q transform under a rep, 𝝆, of Gq

q

pz

Induction of a (P)EBR: Example of the honeycomb lattice

G = ∪(g  ) (Gq⋉𝚭3)
𝛂 𝛂 

Site-symmetry group, Gq, leaves q invariant {C3|01}, {m11|00}

(1)(2)

(1) ≈ C3v
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organize the discussion to show how a local description
(or, mathematically, a site-symmetry group representa-
tion) of atomic orbitals induces a global description of the
band structure that determines a local k · p description
at every point in momentum space.

A. Wycko↵ positions and stabilizer groups

A crystal structure consists of an arrangement of atoms
that is described by a Bravais lattice and which is invari-
ant under a group of symmetry operations, the space
group (SG), G, of the crystal. We denote an element
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{gq|g 2 G}.
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that leave the site q fixed is called the stabilizer group

or site-symmetry group of q, and is denoted Gq ⌘
{g|gq = q} ⇢ G.

The site-symmetry group, Gq, can include elements
{R|v} with v 6= 0. Nonetheless, a site-symmetry group
is, by its definition, always isomorphic to a crystallo-
graphic point group.

As an often-used example, we consider the two-
dimensional plane group p6mm, which is generated by
{C3|0}, {C2|0}, {m11̄|0} and translations, and which de-
scribes the honeycomb lattice, are shown in Fig 1b. Now
consider the site q = (e1 � e2)/2. The mirror op-
eration {m11|0}, which is a reflection across the line
perpendicular to the e1 + e2 axis, (i.e., {m11|0} sends
e1 + e2 ! �(e1 + e2)) leaves q invariant, as does a ⇡
rotation about the origin followed by a translation by
e1�e2. Hence, Gq is generated by {m11|0} and {C2|11̄}
and is isomorphic to the point group C2v.

The site-symmetry groups of any two points in the
orbit of q are conjugate to each other and are hence iso-
morphic. More generally,

Definition 2. Any two sites whose site-symmetry groups
are conjugate are said to lie in the same Wycko↵ posi-

tion. Given a site in the Wycko↵ position, the number
of sites in its orbit that lie in a single unit cell defines
the multiplicity of the position.

We always define the lattice translations relative to the
primitive (not conventional) unit cell. The Wycko↵ po-
sitions of p6mm are shown in Fig 1.

Given a site, q, that is part a Wycko↵ position of mul-
tiplicity n, we label the points in the orbit of q that lie
in the same unit cell as q by q↵, where ↵ = 1, . . . , n
and q1 ⌘ q. For each ↵ > 1 there exists an element
g↵ /2 Gq, which is not a pure lattice translation, such
that g↵q = q↵. The stabilizer group of q↵ is given by

Gq↵ ⌘ {g↵hg�1
↵ |h 2 Gq} (1)
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FIG. 1. Lattice basis vectors (a) and Wycko↵ positions (b)
of the hexagonal lattice. The (maximal) 1a, 2b and 3c Wyck-
o↵ positions are indicated by a black dot, blue squares, and
red stars, respectively. The non-maximal 6d and 6e positions
are indicated by purple crosses and green squares, respec-
tively. The multiplicity is determined by the index of the sta-
bilizer group with respect to the point group C6v (6mm). The
general position 12f , corresponding to the orbit of a generic
point, is not explicitly indicated.

The g↵ furnish the following coset decomposition of G:

G =
n[

↵=1

g↵(Gq n Z3), (2)

where Z3 is the group of Bravais lattice translations and
g1 is the identity element. The n denotes the semidirect
product: Gq n Z3 is the symmorphic space group which
contains the elements of Gq and which has the same Bra-
vais lattice as G.

We again consider p6mm and use the site q = (e1 �
e2)/2 as an example. Since {C6|0} /2 Gq

⇠= C2v, the
other two sites in the orbit of q in the unit cell are given
by q2 ⌘ {C6|0}q and q3 ⌘ {C6|0}�1

q; the red stars
in Fig 1b indicate the three sites. All other symmetry
operations in p6mm acting on q take it to a position that
di↵ers from one of these sites by a pure lattice translation.

It will be important in what follows to understand how
each site symmetry group, Gq, fits into the space group,
G. To this end, we define:

Definition 3. A site-symmetry group is non-maximal

if there exists a finite group H 6= Gq, such that Gq ⇢
H ⇢ G. A site-symmetry group that is not non-maximal
is maximal. A Wycko↵ position containing q is maxi-
mal if the stabilizer group Gq is maximal.

A word of caution: if Gq
⇠= P and Gq0 ⇠= P 0, where P

and P 0 are abstract point groups, it is possible for P ⇢ P 0

even though Gq 6⇢ Gq0 . For example, in P6mm, taking
q = (e1 � e2)/2, Gq

⇠= C2v, while G0
⇠= C6v. Even

though Gq 6⇢ G0 (because, for example, {C2|11̄} 2 Gq

and {C2|11̄} 62 G0), C2v ⇢ C6v.
We can quickly find the maximal Wycko↵ positions of

p6mm by using a su�cient, although not necessary, con-
dition for a site-symmetry group, Gq, to be maximal.
The condition is the following: if q is the unique point
which is fixed by each operation in Gq, i.e., there does
not exist a second point, q0 6= q, which is also fixed by
each element of Gq, then Gq is maximal (we derive this
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point, is not explicitly indicated.
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where Z3 is the group of Bravais lattice translations and
g1 is the identity element. The n denotes the semidirect
product: Gq n Z3 is the symmorphic space group which
contains the elements of Gq and which has the same Bra-
vais lattice as G.

We again consider p6mm and use the site q = (e1 �
e2)/2 as an example. Since {C6|0} /2 Gq

⇠= C2v, the
other two sites in the orbit of q in the unit cell are given
by q2 ⌘ {C6|0}q and q3 ⌘ {C6|0}�1

q; the red stars
in Fig 1b indicate the three sites. All other symmetry
operations in p6mm acting on q take it to a position that
di↵ers from one of these sites by a pure lattice translation.

It will be important in what follows to understand how
each site symmetry group, Gq, fits into the space group,
G. To this end, we define:

Definition 3. A site-symmetry group is non-maximal

if there exists a finite group H 6= Gq, such that Gq ⇢
H ⇢ G. A site-symmetry group that is not non-maximal
is maximal. A Wycko↵ position containing q is maxi-
mal if the stabilizer group Gq is maximal.

A word of caution: if Gq
⇠= P and Gq0 ⇠= P 0, where P

and P 0 are abstract point groups, it is possible for P ⇢ P 0

even though Gq 6⇢ Gq0 . For example, in P6mm, taking
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⇠= C2v, while G0
⇠= C6v. Even

though Gq 6⇢ G0 (because, for example, {C2|11̄} 2 Gq

and {C2|11̄} 62 G0), C2v ⇢ C6v.
We can quickly find the maximal Wycko↵ positions of

p6mm by using a su�cient, although not necessary, con-
dition for a site-symmetry group, Gq, to be maximal.
The condition is the following: if q is the unique point
which is fixed by each operation in Gq, i.e., there does
not exist a second point, q0 6= q, which is also fixed by
each element of Gq, then Gq is maximal (we derive this
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Induction of a (P)EBR: Example of the honeycomb lattice

Γ6 induced in C6v

𝝆G =𝝆 ↑ G 

Cosset representative g: h ∈ G, generators of 
honeycomb lattice: C2,C3,σ

𝝆i𝜶,j𝜷(h)=𝝆ij(g𝜶𝜷)
g𝜶𝜷 = g𝜶{E|t𝜶𝜷}hg𝜷 
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dimension of this band representations = connectivity in the Brillouin zone



Subduction in k space: IRREPS at points, lines

Restricting to the little group at k to find irreps at 
each k point (subduction) -> all bands connected

All 10403 decompositions now tabulated on the    
Bilbao Crystallographic Server

By construction, a band representation has an atomic limit, and all atomic 
limits yield a band representation

30

(a) (b)

FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A
2

has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄
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also results in a valid disconnected energy graph
as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b
sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄2b

6

" G representation of the space group. In particular, let si be a vector of
Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb

1

,qb
2

} space. To construct
the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C

2z acts as a rotation,
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Recall: Topological bands  CANNOT Have Maximally Localized Wannier 
Functions…



1) Bands in ρG are connected (this phase can always realized) in the 
Brillouin zone
2) Bands in ρG are not connected: at least one topological band

Disconnected (P)EBR = set of disconnected bands that 
connected form an (P)EBR

Why are Elementary Band Representations 
Important?

is invariant, even though the j ~c nki resulting from Eq. (8) are
no longer generally eigenstates ofH, and n is no longer a band
index in the usual sense.

Our goal is again to construct WFs out of these trans-
formed Bloch functions using Eq. (3). Figures 2(a) and 2(b)
show, for example, what the result might eventually look like
for the case of the four occupied valence bands of Si or GaAs,
respectively. From these four bands, one obtains four equiva-
lent WFs per unit cell, each localized on one of the four
nearest-neighbor Si-Si or Ga-As bonds. The presence of a
bond-centered inversion symmetry for Si, but not GaAs, is
clearly reflected in the shapes of the WFs.

Again, we emphasize that the gauge freedom expressed in
Eq. (8) implies that the WFs are strongly nonunique. This is
illustrated in Fig. 3, which shows an alternative construction
of WFs for GaAs. The WF on the left was constructed from
the lowest valence band n ¼ 1, while the one on the right is
one of three constructed from bands n ¼ 2–4. The former
has primarily As s character and the latter has primarily
As p character, although both (and especially the latter)
contain some Ga s and p character as well. The WFs of
Figs. 2(b) and 3 are related to each other by a certain manifold

of 4" 4 unitary matrices UðkÞ
nm relating their Bloch transforms

in the manner of Eq. (8).
However, before we can arrive at well-localized WFs such

as those shown in Figs. 2 and 3, we again have to address
questions of smoothness of the gauge choice expressed in
Eq. (8). This issue is even more profound in the present
multiband case, since this smoothness criterion is generally
incompatible with the usual construction of Bloch functions.
That is, if we simply insert the usual Bloch functions jc nki,
defined to be eigenstates of H, into the right-hand side of
Eq. (3), it is generally not possible to produce well-localized
WFs. The problem arises when there are degeneracies among
the bands in question at certain locations in the Brillouin

zone. Consider, for example, what happens if we try to
construct a single WF from the highest occupied band
n ¼ 4 in GaAs. This would be doomed to failure, since this
band becomes degenerate with bands two and three at the
zone center ! as shown in Fig. 3. As a result, band four is
nonanalytic in k in the vicinity of !. The Fourier transform of
Eq. (3) would then result in a poorly localized object having
power-law tails in real space.

In such cases, therefore, the extra unitary mixing expressed
in Eq. (8) is mandatory, even if it may be optional in the case
of a set of discrete bands that do not touch anywhere in the
BZ. So, generally speaking, our procedure must be that we
start from a set of Hamiltonian eigenstates jc nki that are not
per se smooth in k, and introduce unitary rotations UðkÞ

mn that
‘‘cancel out’’ the discontinuities in such a way that smooth-
ness is restored, i.e., that the resulting j ~c nki of Eq. (8) obey
the smoothness condition that rkj ~c nki remains regular at all
k. Then, when these j ~c nki are inserted into Eq. (3) in place of
the jc nki, well-localized WFs should result. Explicitly, this
results in WFs constructed according to

jRni ¼ V

ð2!Þ3
Z
BZ

dke%ik&R XJ

m¼1

UðkÞ
mnjc mki: (10)

The question remains how to choose the unitary rotations

UðkÞ
mn so as to accomplish this task. We will see that one way to

do this is to use a projection technique, as outlined in Sec. II.A.3.
Ideally, however, we want the construction to result in WFs
that are ‘‘maximally localized’’ according to some criterion.
Methods for accomplishing this are discussed in Sec. II.C

3. Normalization conventions

In the above equations, formulated for continuous k, we
adopted the convention that Bloch functions are normalized
to one unit cell

R
V drjc nkðrÞj2 ¼ 1, even though they extend

over the entire crystal. We also define hfjgi as the integral of
f'g over all space. With this notation, hc nkjc nki is not unity;
instead, it diverges according to the rule

hc nkjc mk0 i ¼ ð2!Þ3
V

"nm"
3ðk% k0Þ: (11)

With these conventions it is easy to check that the WFs in
Eqs. (3) and (4) are properly normalized, i.e., hRnjR0mi ¼
"RR0"nm.

It is often more convenient to work on a discrete uniform k
mesh instead of continuous k space.2 Letting N be the
number of unit cells in the periodic supercell, or, equivalently,
the number of mesh points in the BZ, it is possible to keep the
conventions close to the continuous case by defining the
Fourier transform pair as

(a) (b)

FIG. 2 (color online). Maximally localized Wannier functions
(MLWFs) constructed from the four valence bands of Si (a) and
GaAs [(b); Ga at upper right, As at lower left], displaying the
character of #-bonded combinations of sp3 hybrids. Isosurfaces of
different shades of gray correspond to two opposite values for the
amplitudes of the real-valued MLWFs.

FIG. 3 (color online). MLWFs constructed from the s band (left)
or from the three p bands (right) of GaAs.

2The discretization of k space amounts to imposing periodic
boundary conditions on the Bloch wave functions over a supercell in
real space. Thus, it should be kept in mind that the WFs given by
Eqs. (12) and (14) are not truly localized, as they also display the
supercell periodicity (and are normalized to a supercell volume).
Under these circumstances the notion of ‘‘Wannier localization’’
refers to localization within one supercell, which is meaningful for
supercells chosen large enough to ensure negligible overlap between
a WF and its periodic images.

Marzari et al.: Maximally localized Wannier functions: Theory . . . 1423
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Obstructed atomic limit

Orbital hybridization
BR are induced from localized molecular orbitals, away from the atoms

In terms of EBRs?

EBR2

EBR1

⎬Composite BR

1st limit CBR: 𝝈v ↑ Ga ⊕ 𝝈c ↑ Ga

2 nd limit CBR: 𝝆v ↑ Gm ⊕ 𝝆c ↑ Gm

1st limit: orbitals lie in the atomic sites
2 nd limit: orbitals do not coincide with the atoms 



Obstructed atomic limit

Orbital hybridization
BR are induced from localized molecular orbitals, away from the atoms

In terms of EBRs?

EBR2

EBR1

⎬Composite BR

1st limit CBR: 𝝈v ↑ Ga ⊕ 𝝈c ↑ Ga

2 nd limit CBR: 𝝆v ↑ Gm ⊕ 𝝆c ↑ Gm

N. Read Phys.Rev. B (2017), W. A. Benalcazar Science (2017)

𝜂 ↑ Ga  ≈ 𝝈v  ⊕ 𝝈c 

𝜂 ↑ Gm  ≈ 𝝆v  ⊕ 𝝆c 

1st limit: orbitals lie in the atomic sites
2 nd limit: orbitals do not coincide with the atoms 

This is a “chemical bonding” transition (ex: from week to a strong covalent bonding) 



TQC statement

Zak PRB 26 (1982)

All sets of bands induced from symmetric, localized
orbitals, are topologically trivial by design. 



TQC statement
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Elementary Band Representations
(reciprocal space)

Zak PRB 26 (1982)

Global information about band structure: enumerate all EBRs

1. Maximal k-vectors and path
2. Compatibility relations
3. Graph theory: identification of disconnected bands



1. Maximal k-vectors and paths
For all the 203 SG:

maximal k-vectors + minimal set non-redundant connections

k vector in a manifold is maximal if its little co-group
it’s not a subgroup of another manifold of vectors k’
(in general coincides with high-symmetry k-vector)

GRAPH THEORY DATA FOR TOPOLOGICAL QUANTUM . . . PHYSICAL REVIEW E 00, 003300 (2017)

TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx,ky,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx,ky,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx,ky,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx,ky,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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maximal k-vectors + minimal set non-redundant connections

k vector in a manifold is maximal if its little co-group
it’s not a subgroup of another manifold of vectors k’
(in general coincides with high-symmetry k-vector)
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx,ky,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx,ky,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx,ky,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx,ky,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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All possible connection between maximal and non-maximal k-vectors

2 manifolds are connected if:

ki (u1)=k1
ki (u2)=k2

for each max. k in *k and ki non-maximal
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx,ky,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx,ky,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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TABLE II. List of k-vectors (second column) connected to each
maximal k-vector (first column) in the P 4/ncc (130) (ordinary, or
double) space group. The third column gives the specific values
taken by the continuous parameters in the coordinate triplets of the
nonmaximal k-vecs in column two. The last column indicates how
many vectors in the star of the nonmaximal k-vectors of the second
column are connected to the maximal k-vector. For example, the !

point is connected to the four vectors of the star of k = (0,v,0) ∈ ":
∗k = {(0,v,0), (0,−v,0), (v,0,0),(−v,0,0)|v ∈ [0, 1

2 ]}, as v → 0.

Maximal Connected Specific Connections
k-vec k-vecs coordinates with the star

!: (0,0,0) #: (0,0,w) w = 0 2
": (0,v,0) v = 0 4
$: (u,u,0) u = 0 4
B: (0,v,w) v = w = 0 8
C: (u,u,w) u = w = 0 8
D: (u,v,0) u = v = 0 8

Z: (0,0,1/2) #: (0,0,w) w = 1/2 2
S: (u,u,1/2) u = 0 4
U : (0,v,1/2) v = 0 4
B: (0,v,w) v = 0,w = 1/2 8
C: (u,u,w) u = 0,w = 1/2 8
E: (u,v,1/2) u = v = 0 8

M: (1/2,1/2,0) V : (1/2,1/2,w) w = 0 2
$: (u,u,0) u = 1/2 4
Y : (u,1/2,0) u = 1/2 4
C: (u,u,w) u = 1/2,w = 0 8
D: (u,v,0) u = v = 1/2 8
F : (u,1/2,w) u = 1/2,w = 0 8

A: (1/2,1/2,1/2) V : (1/2,1/2,w) w = 1/2 2
T : (u,1/2,1/2) u = 1/2 4
S: (u,u,1/2) u = 1/2 4
C: (u,u,w) u = w = 1/2 8
E: (u,v,1/2) u = v = 1/2 8
F : (u,1/2,w) u = w = 1/2 8

R: (0,1/2,1/2) T : (u,1/2,1/2) u = 0 2
U : (0,v,1/2) v = 1/2 2
W : (0,1/2,w) w = 1/2 2
B: (0,v,w) v = w = 1/2 4
F : (u,1/2,w) u = 0,w = 1/2 4
E: (u,v,1/2) u = 0,v = 1/2 8

X: (0,1/2,0) ": (0,v,0) v = 1/2 2
W : (0,1/2,w) w = 0 2
Y : (u,1/2,0) u = 0 2
B: (0,v,w) v = 1/2,w = 0 4
F : (u,1/2,w) u = w = 0 4
D: (u,v,0) u = 0,v = 1/2 8

Continuing with our example, in Table II we show all the236

connections between the kM -vectors and the k-vectors of237

nonmaximal symmetry in the space group P 4/ncc (130).238

The first column shows the list of maximal vectors kM , the239

second gives the nonmaximal k-manifolds (lines or planes)240

connected to each kM , the third column shows the specific241

values of the continuous parameters for which the points242

are connected, and the last column indicates the number243

of vectors ∗k connected to each kM , equal to the quotient244

|∗k|/|∗kM | (where | · | denotes the number of elements in a 245

set). For instance, the four vectors of the star k = (0,v,0) ∈ " 246

are ∗k = {(0,v,0),(0,−v,0),(v,0,0),(−v,0,0)}, and they are 247

connected to ! : (0,0,0) for v → 0. We have suppressed the 248

trivial connections between the kM -vectors and the general 249

position GP = {(u,v,w)}. 250

Let us define the set of direct paths that join two maximal 251

k-vectors kM
1 and kM

2 as the intersection of the sets of 252

nonmaximal ki connected to kM
1 and kM

2 . Using the list of 253
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 Both high symmetry points are connected through ∆  (kt) with C4v

3

group of both Gk1 and Gk2 . Thus, an irrep, ⇢, of Gk1

at k1 will split (subduce, or restrict) along the line to a
(direct) sum of irreps

L
i ⌧i of Gkt ; symbolically11

⇢ # Gkt ⇡
M

i

⌧i. (1)

These restrictions are referred to as compatibility rela-

tions. Heuristically, they are found by taking the rep-
resentation ⇢ and “forgetting” about the symmetry ele-
ments of Gk1 which are not in Gkt . As energy bands in a
crystal do not discontinuously end, the representations,
�, of Gk2 at k2 must also satisfy

� # Gkt ⇡
M

i

⌧i. (2)

Each representation, ⌧i, corresponds to a (group of)
band(s) along the line kt; bands coming from k1 in each
irrep ⌧i must join with a group of bands transforming in
the same irrep coming from k2. We refer to each set of
such pairings as a solution to the compatibility relations.

Compatibility relations apply to each and every con-
nection line/plane between each pair of k points in the
Brillouin zone, leading to strong but factorially redun-
dant restrictions on how bands may connect in a crystal.
To construct the nonredundant solutions to the compat-
ibility relations, we map the question to a problem in
graph theory. Each irrep at the di↵erent symmetry dis-
tinct k vectors labels a node in a graph. In our previous
example, the nodes would be labelled by ⇢,�, {⌧1, ⌧2, . . . }
for the k1, k2, and kt high symmetry points and line,
respectively. We draw the edges of the graph by the fol-
lowing rules: 1. Irreps at the same k vector can never
be connected by edges – our graph is multi-partite. 2.

Nodes corresponding to irreps at ka and kb can be con-
nected only if Gka ✓ Gkb or Gkb ✓ Gka (i.e. k-vectors
are compatible). 3. Edges must be consistent with the
compatibility relations. For instance, Eq. (1) corresponds
to an edge from the node labelled by ⇢ to each node la-
belled by ⌧i. We refer to such a graph as a connectivity

graph.
We developed an algorithm12 that outputs all distinct

connectivity graphs for all SGs– a gargantuan task. The
factorial complexity is handled by several subroutines,
which ensure that the minimal set of paths in momen-
tum space is considered. Additional filters remove re-
dundant or isomorphic solutions to the compatibility re-
lations. The tools of graph theory then allow us to par-
tition the nodes of the graph (the little-group irreps)
into distinct connected components (subgraphs). Each
component corresponds to a connected, isolated group of
bands that can describe a set of valence bands in some

insulating system or protected semimetal, depending on
the filling. In particular, such a list consists of all (both
topologically trivial and nontrivial) valence band groups.
The familiar example of graphene with SOC is given in
Fig. 1 and Ref. 12. We now define and classify topo-
logically nontrival bands in terms of localized Wannier
functions.

III. TOPOLOGICALLY (NON)TRIVIAL BANDS

Consider a group of connected bands in the spectrum
of a crystal Hamiltonian separated by a gap from all
others. Using existing machinery, to determine whether
this group is topologically nontrivial requires discover-
ing topological invariants (indices or Wilson loops) from
the analytic structure of the Bloch eigenfunctions. We
now prove that the algebraic global structure of the en-
ergy spectrum itself (including connectivities) contains a
complete classification of topological materials. We de-
fine:

Definition 1. An insulator (filled group of bands) is

topologically nontrivial if it cannot be continued to

any atomic limit without either closing a gap or break-

ing a symmetry.

To every isolated group of energy bands, we associate
a set of Wannier functions – orbitals obtained by Fourier
transforming linear combinations of the Bloch wavefunc-
tions. In an atomic limit, the Wannier functions are
exponentially localized, respect the symmetries of the
crystal (and possibly TR) and coincide in most cases
(however, see Section V) with the exponentially localized
atomic orbitals at infinite (atomic limit) separation. Un-
der the action of the crystal symmetries, di↵erent atomic
sites are distributed into orbits, belonging to Wycko↵ Po-
sitions (WPs); we denote the points in a Wycko↵ orbit in
a unit cell as {qi}. In analogy with the symmetry group
of a k-vector, to each site qi there is a finite subgroup,
Gqi , of the full SG, G, which leaves qi invariant, called
the site-symmetry group. For example, the A, B sites in
graphene belong to WP 2b (the multiplicity 2 refers to
the number of symmetry-related sites in the unit cell); its
site-symmetry group is isomorphic to C3v. Wannier func-
tions at each site qi transform under some rep, ⇢i, of Gqi .
Crucially, through the mathematical procedure of induc-
tion, the real-space transformation properties of these lo-
calized Wannier functions determine the little group reps
of the bands at every point in the BZ: the action of the
SG on the full lattice (rather than just the unit cell) of
Wannier functions gives an infinite-dimensional rep. Its
Fourier transform gives the k dependent matrix rep of
all symmetry elements. This restricts to reps of the little
group of each k-vector. Following Zak3, we refer to this
as a band representation (BR), ⇢iG, induced13,14 in the
space-group G by the rep ⇢i of Gqi :

⇢iG = ⇢i " G. (3)

The above is true with or without TR symmetry. BRs
which also respect time-reversal symmetry in real space
are physical band representations (PBRs).

By inducing BRs, we enumerate all groups of bands
with exponentially localized and symmetric Wannier
functions. Each such group forms a BR, and every band
representation is a sum of EBRs. We have identified the
10300 EBRs:
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A
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has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄
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also results in a valid disconnected energy graph
as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b
sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄2b

6

" G representation of the space group. In particular, let si be a vector of
Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb

1

,qb
2

} space. To construct
the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C

2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites q

b
1

and q

b
2

; thus C
2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little

group representation at the � point is given by �
�

= �̄
8
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9

from Table VIII and takes the form,
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where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C
3z) = ei⇡

3 s
z ⌦ e�i 2⇡

3 �
z (103)

�K(C
2zm

1

¯

1

) = isy ⌦ �x, (104)

where the extra phases relative to �
�

come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d
0

(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx,ky,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx,ky,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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2. Compatibility Relations

Symmetry operation of group O

Let’s consider 2 high symmetry points of the SG 130 : Γ and X

       1. symmetry operations point group Γ (k1) are the ones of Oh

           2. symmetry operations point group X (k2) are the ones of D4h

 

 Both high symmetry points are connected through ∆  (kt) with C4v

3

group of both Gk1 and Gk2 . Thus, an irrep, ⇢, of Gk1

at k1 will split (subduce, or restrict) along the line to a
(direct) sum of irreps

L
i ⌧i of Gkt ; symbolically11

⇢ # Gkt ⇡
M

i

⌧i. (1)

These restrictions are referred to as compatibility rela-

tions. Heuristically, they are found by taking the rep-
resentation ⇢ and “forgetting” about the symmetry ele-
ments of Gk1 which are not in Gkt . As energy bands in a
crystal do not discontinuously end, the representations,
�, of Gk2 at k2 must also satisfy

� # Gkt ⇡
M

i

⌧i. (2)

Each representation, ⌧i, corresponds to a (group of)
band(s) along the line kt; bands coming from k1 in each
irrep ⌧i must join with a group of bands transforming in
the same irrep coming from k2. We refer to each set of
such pairings as a solution to the compatibility relations.

Compatibility relations apply to each and every con-
nection line/plane between each pair of k points in the
Brillouin zone, leading to strong but factorially redun-
dant restrictions on how bands may connect in a crystal.
To construct the nonredundant solutions to the compat-
ibility relations, we map the question to a problem in
graph theory. Each irrep at the di↵erent symmetry dis-
tinct k vectors labels a node in a graph. In our previous
example, the nodes would be labelled by ⇢,�, {⌧1, ⌧2, . . . }
for the k1, k2, and kt high symmetry points and line,
respectively. We draw the edges of the graph by the fol-
lowing rules: 1. Irreps at the same k vector can never
be connected by edges – our graph is multi-partite. 2.

Nodes corresponding to irreps at ka and kb can be con-
nected only if Gka ✓ Gkb or Gkb ✓ Gka (i.e. k-vectors
are compatible). 3. Edges must be consistent with the
compatibility relations. For instance, Eq. (1) corresponds
to an edge from the node labelled by ⇢ to each node la-
belled by ⌧i. We refer to such a graph as a connectivity

graph.
We developed an algorithm12 that outputs all distinct

connectivity graphs for all SGs– a gargantuan task. The
factorial complexity is handled by several subroutines,
which ensure that the minimal set of paths in momen-
tum space is considered. Additional filters remove re-
dundant or isomorphic solutions to the compatibility re-
lations. The tools of graph theory then allow us to par-
tition the nodes of the graph (the little-group irreps)
into distinct connected components (subgraphs). Each
component corresponds to a connected, isolated group of
bands that can describe a set of valence bands in some

insulating system or protected semimetal, depending on
the filling. In particular, such a list consists of all (both
topologically trivial and nontrivial) valence band groups.
The familiar example of graphene with SOC is given in
Fig. 1 and Ref. 12. We now define and classify topo-
logically nontrival bands in terms of localized Wannier
functions.

III. TOPOLOGICALLY (NON)TRIVIAL BANDS

Consider a group of connected bands in the spectrum
of a crystal Hamiltonian separated by a gap from all
others. Using existing machinery, to determine whether
this group is topologically nontrivial requires discover-
ing topological invariants (indices or Wilson loops) from
the analytic structure of the Bloch eigenfunctions. We
now prove that the algebraic global structure of the en-
ergy spectrum itself (including connectivities) contains a
complete classification of topological materials. We de-
fine:

Definition 1. An insulator (filled group of bands) is

topologically nontrivial if it cannot be continued to

any atomic limit without either closing a gap or break-

ing a symmetry.

To every isolated group of energy bands, we associate
a set of Wannier functions – orbitals obtained by Fourier
transforming linear combinations of the Bloch wavefunc-
tions. In an atomic limit, the Wannier functions are
exponentially localized, respect the symmetries of the
crystal (and possibly TR) and coincide in most cases
(however, see Section V) with the exponentially localized
atomic orbitals at infinite (atomic limit) separation. Un-
der the action of the crystal symmetries, di↵erent atomic
sites are distributed into orbits, belonging to Wycko↵ Po-
sitions (WPs); we denote the points in a Wycko↵ orbit in
a unit cell as {qi}. In analogy with the symmetry group
of a k-vector, to each site qi there is a finite subgroup,
Gqi , of the full SG, G, which leaves qi invariant, called
the site-symmetry group. For example, the A, B sites in
graphene belong to WP 2b (the multiplicity 2 refers to
the number of symmetry-related sites in the unit cell); its
site-symmetry group is isomorphic to C3v. Wannier func-
tions at each site qi transform under some rep, ⇢i, of Gqi .
Crucially, through the mathematical procedure of induc-
tion, the real-space transformation properties of these lo-
calized Wannier functions determine the little group reps
of the bands at every point in the BZ: the action of the
SG on the full lattice (rather than just the unit cell) of
Wannier functions gives an infinite-dimensional rep. Its
Fourier transform gives the k dependent matrix rep of
all symmetry elements. This restricts to reps of the little
group of each k-vector. Following Zak3, we refer to this
as a band representation (BR), ⇢iG, induced13,14 in the
space-group G by the rep ⇢i of Gqi :

⇢iG = ⇢i " G. (3)

The above is true with or without TR symmetry. BRs
which also respect time-reversal symmetry in real space
are physical band representations (PBRs).

By inducing BRs, we enumerate all groups of bands
with exponentially localized and symmetric Wannier
functions. Each such group forms a BR, and every band
representation is a sum of EBRs. We have identified the
10300 EBRs:
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A
2

has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄
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also results in a valid disconnected energy graph
as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b
sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄2b

6

" G representation of the space group. In particular, let si be a vector of
Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb

1

,qb
2

} space. To construct
the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C

2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites q

b
1

and q

b
2

; thus C
2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little

group representation at the � point is given by �
�

= �̄
8

� �̄
9

from Table VIII and takes the form,
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(C
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(T ) = isy ⌦ �
0

K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C
3z) = ei⇡

3 s
z ⌦ e�i 2⇡

3 �
z (103)

�K(C
2zm

1

¯

1

) = isy ⌦ �x, (104)

where the extra phases relative to �
�

come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d
0

(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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the induced representation in a basis that is more convenient for our purposes. For instance, C
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b
1

and q
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; thus C
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where the extra phases relative to �
�

come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx,ky,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx,ky,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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 Both high symmetry points are connected through ∆  (kt) with C4v

3

group of both Gk1 and Gk2 . Thus, an irrep, ⇢, of Gk1

at k1 will split (subduce, or restrict) along the line to a
(direct) sum of irreps

L
i ⌧i of Gkt ; symbolically11

⇢ # Gkt ⇡
M

i

⌧i. (1)

These restrictions are referred to as compatibility rela-

tions. Heuristically, they are found by taking the rep-
resentation ⇢ and “forgetting” about the symmetry ele-
ments of Gk1 which are not in Gkt . As energy bands in a
crystal do not discontinuously end, the representations,
�, of Gk2 at k2 must also satisfy

� # Gkt ⇡
M

i

⌧i. (2)

Each representation, ⌧i, corresponds to a (group of)
band(s) along the line kt; bands coming from k1 in each
irrep ⌧i must join with a group of bands transforming in
the same irrep coming from k2. We refer to each set of
such pairings as a solution to the compatibility relations.

Compatibility relations apply to each and every con-
nection line/plane between each pair of k points in the
Brillouin zone, leading to strong but factorially redun-
dant restrictions on how bands may connect in a crystal.
To construct the nonredundant solutions to the compat-
ibility relations, we map the question to a problem in
graph theory. Each irrep at the di↵erent symmetry dis-
tinct k vectors labels a node in a graph. In our previous
example, the nodes would be labelled by ⇢,�, {⌧1, ⌧2, . . . }
for the k1, k2, and kt high symmetry points and line,
respectively. We draw the edges of the graph by the fol-
lowing rules: 1. Irreps at the same k vector can never
be connected by edges – our graph is multi-partite. 2.

Nodes corresponding to irreps at ka and kb can be con-
nected only if Gka ✓ Gkb or Gkb ✓ Gka (i.e. k-vectors
are compatible). 3. Edges must be consistent with the
compatibility relations. For instance, Eq. (1) corresponds
to an edge from the node labelled by ⇢ to each node la-
belled by ⌧i. We refer to such a graph as a connectivity

graph.
We developed an algorithm12 that outputs all distinct

connectivity graphs for all SGs– a gargantuan task. The
factorial complexity is handled by several subroutines,
which ensure that the minimal set of paths in momen-
tum space is considered. Additional filters remove re-
dundant or isomorphic solutions to the compatibility re-
lations. The tools of graph theory then allow us to par-
tition the nodes of the graph (the little-group irreps)
into distinct connected components (subgraphs). Each
component corresponds to a connected, isolated group of
bands that can describe a set of valence bands in some

insulating system or protected semimetal, depending on
the filling. In particular, such a list consists of all (both
topologically trivial and nontrivial) valence band groups.
The familiar example of graphene with SOC is given in
Fig. 1 and Ref. 12. We now define and classify topo-
logically nontrival bands in terms of localized Wannier
functions.

III. TOPOLOGICALLY (NON)TRIVIAL BANDS

Consider a group of connected bands in the spectrum
of a crystal Hamiltonian separated by a gap from all
others. Using existing machinery, to determine whether
this group is topologically nontrivial requires discover-
ing topological invariants (indices or Wilson loops) from
the analytic structure of the Bloch eigenfunctions. We
now prove that the algebraic global structure of the en-
ergy spectrum itself (including connectivities) contains a
complete classification of topological materials. We de-
fine:

Definition 1. An insulator (filled group of bands) is

topologically nontrivial if it cannot be continued to

any atomic limit without either closing a gap or break-

ing a symmetry.

To every isolated group of energy bands, we associate
a set of Wannier functions – orbitals obtained by Fourier
transforming linear combinations of the Bloch wavefunc-
tions. In an atomic limit, the Wannier functions are
exponentially localized, respect the symmetries of the
crystal (and possibly TR) and coincide in most cases
(however, see Section V) with the exponentially localized
atomic orbitals at infinite (atomic limit) separation. Un-
der the action of the crystal symmetries, di↵erent atomic
sites are distributed into orbits, belonging to Wycko↵ Po-
sitions (WPs); we denote the points in a Wycko↵ orbit in
a unit cell as {qi}. In analogy with the symmetry group
of a k-vector, to each site qi there is a finite subgroup,
Gqi , of the full SG, G, which leaves qi invariant, called
the site-symmetry group. For example, the A, B sites in
graphene belong to WP 2b (the multiplicity 2 refers to
the number of symmetry-related sites in the unit cell); its
site-symmetry group is isomorphic to C3v. Wannier func-
tions at each site qi transform under some rep, ⇢i, of Gqi .
Crucially, through the mathematical procedure of induc-
tion, the real-space transformation properties of these lo-
calized Wannier functions determine the little group reps
of the bands at every point in the BZ: the action of the
SG on the full lattice (rather than just the unit cell) of
Wannier functions gives an infinite-dimensional rep. Its
Fourier transform gives the k dependent matrix rep of
all symmetry elements. This restricts to reps of the little
group of each k-vector. Following Zak3, we refer to this
as a band representation (BR), ⇢iG, induced13,14 in the
space-group G by the rep ⇢i of Gqi :

⇢iG = ⇢i " G. (3)

The above is true with or without TR symmetry. BRs
which also respect time-reversal symmetry in real space
are physical band representations (PBRs).

By inducing BRs, we enumerate all groups of bands
with exponentially localized and symmetric Wannier
functions. Each such group forms a BR, and every band
representation is a sum of EBRs. We have identified the
10300 EBRs:
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A
2

has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄
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also results in a valid disconnected energy graph
as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b
sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄2b

6

" G representation of the space group. In particular, let si be a vector of
Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb

1

,qb
2

} space. To construct
the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C

2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites q

b
1

and q

b
2

; thus C
2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little

group representation at the � point is given by �
�

= �̄
8
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9

from Table VIII and takes the form,
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K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C
3z) = ei⇡

3 s
z ⌦ e�i 2⇡

3 �
z (103)

�K(C
2zm

1

¯

1

) = isy ⌦ �x, (104)

where the extra phases relative to �
�

come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d
0

(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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also results in a valid disconnected energy graph
as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b
sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄2b
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Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
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the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
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; thus C
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where the extra phases relative to �
�

come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d
0

(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx,ky,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx,ky,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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2. Compatibility Relations
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 Both high symmetry points are connected through ∆  (kt) with C4v

3

group of both Gk1 and Gk2 . Thus, an irrep, ⇢, of Gk1

at k1 will split (subduce, or restrict) along the line to a
(direct) sum of irreps

L
i ⌧i of Gkt ; symbolically11

⇢ # Gkt ⇡
M

i

⌧i. (1)

These restrictions are referred to as compatibility rela-

tions. Heuristically, they are found by taking the rep-
resentation ⇢ and “forgetting” about the symmetry ele-
ments of Gk1 which are not in Gkt . As energy bands in a
crystal do not discontinuously end, the representations,
�, of Gk2 at k2 must also satisfy

� # Gkt ⇡
M

i

⌧i. (2)

Each representation, ⌧i, corresponds to a (group of)
band(s) along the line kt; bands coming from k1 in each
irrep ⌧i must join with a group of bands transforming in
the same irrep coming from k2. We refer to each set of
such pairings as a solution to the compatibility relations.

Compatibility relations apply to each and every con-
nection line/plane between each pair of k points in the
Brillouin zone, leading to strong but factorially redun-
dant restrictions on how bands may connect in a crystal.
To construct the nonredundant solutions to the compat-
ibility relations, we map the question to a problem in
graph theory. Each irrep at the di↵erent symmetry dis-
tinct k vectors labels a node in a graph. In our previous
example, the nodes would be labelled by ⇢,�, {⌧1, ⌧2, . . . }
for the k1, k2, and kt high symmetry points and line,
respectively. We draw the edges of the graph by the fol-
lowing rules: 1. Irreps at the same k vector can never
be connected by edges – our graph is multi-partite. 2.

Nodes corresponding to irreps at ka and kb can be con-
nected only if Gka ✓ Gkb or Gkb ✓ Gka (i.e. k-vectors
are compatible). 3. Edges must be consistent with the
compatibility relations. For instance, Eq. (1) corresponds
to an edge from the node labelled by ⇢ to each node la-
belled by ⌧i. We refer to such a graph as a connectivity

graph.
We developed an algorithm12 that outputs all distinct

connectivity graphs for all SGs– a gargantuan task. The
factorial complexity is handled by several subroutines,
which ensure that the minimal set of paths in momen-
tum space is considered. Additional filters remove re-
dundant or isomorphic solutions to the compatibility re-
lations. The tools of graph theory then allow us to par-
tition the nodes of the graph (the little-group irreps)
into distinct connected components (subgraphs). Each
component corresponds to a connected, isolated group of
bands that can describe a set of valence bands in some

insulating system or protected semimetal, depending on
the filling. In particular, such a list consists of all (both
topologically trivial and nontrivial) valence band groups.
The familiar example of graphene with SOC is given in
Fig. 1 and Ref. 12. We now define and classify topo-
logically nontrival bands in terms of localized Wannier
functions.

III. TOPOLOGICALLY (NON)TRIVIAL BANDS

Consider a group of connected bands in the spectrum
of a crystal Hamiltonian separated by a gap from all
others. Using existing machinery, to determine whether
this group is topologically nontrivial requires discover-
ing topological invariants (indices or Wilson loops) from
the analytic structure of the Bloch eigenfunctions. We
now prove that the algebraic global structure of the en-
ergy spectrum itself (including connectivities) contains a
complete classification of topological materials. We de-
fine:

Definition 1. An insulator (filled group of bands) is

topologically nontrivial if it cannot be continued to

any atomic limit without either closing a gap or break-

ing a symmetry.

To every isolated group of energy bands, we associate
a set of Wannier functions – orbitals obtained by Fourier
transforming linear combinations of the Bloch wavefunc-
tions. In an atomic limit, the Wannier functions are
exponentially localized, respect the symmetries of the
crystal (and possibly TR) and coincide in most cases
(however, see Section V) with the exponentially localized
atomic orbitals at infinite (atomic limit) separation. Un-
der the action of the crystal symmetries, di↵erent atomic
sites are distributed into orbits, belonging to Wycko↵ Po-
sitions (WPs); we denote the points in a Wycko↵ orbit in
a unit cell as {qi}. In analogy with the symmetry group
of a k-vector, to each site qi there is a finite subgroup,
Gqi , of the full SG, G, which leaves qi invariant, called
the site-symmetry group. For example, the A, B sites in
graphene belong to WP 2b (the multiplicity 2 refers to
the number of symmetry-related sites in the unit cell); its
site-symmetry group is isomorphic to C3v. Wannier func-
tions at each site qi transform under some rep, ⇢i, of Gqi .
Crucially, through the mathematical procedure of induc-
tion, the real-space transformation properties of these lo-
calized Wannier functions determine the little group reps
of the bands at every point in the BZ: the action of the
SG on the full lattice (rather than just the unit cell) of
Wannier functions gives an infinite-dimensional rep. Its
Fourier transform gives the k dependent matrix rep of
all symmetry elements. This restricts to reps of the little
group of each k-vector. Following Zak3, we refer to this
as a band representation (BR), ⇢iG, induced13,14 in the
space-group G by the rep ⇢i of Gqi :

⇢iG = ⇢i " G. (3)

The above is true with or without TR symmetry. BRs
which also respect time-reversal symmetry in real space
are physical band representations (PBRs).

By inducing BRs, we enumerate all groups of bands
with exponentially localized and symmetric Wannier
functions. Each such group forms a BR, and every band
representation is a sum of EBRs. We have identified the
10300 EBRs:

In general

3

group of both Gk1 and Gk2 . Thus, an irrep, ⇢, of Gk1

at k1 will split (subduce, or restrict) along the line to a
(direct) sum of irreps

L
i ⌧i of Gkt ; symbolically11

⇢ # Gkt ⇡
M

i

⌧i. (1)

These restrictions are referred to as compatibility rela-

tions. Heuristically, they are found by taking the rep-
resentation ⇢ and “forgetting” about the symmetry ele-
ments of Gk1 which are not in Gkt . As energy bands in a
crystal do not discontinuously end, the representations,
�, of Gk2 at k2 must also satisfy

� # Gkt ⇡
M

i

⌧i. (2)

Each representation, ⌧i, corresponds to a (group of)
band(s) along the line kt; bands coming from k1 in each
irrep ⌧i must join with a group of bands transforming in
the same irrep coming from k2. We refer to each set of
such pairings as a solution to the compatibility relations.

Compatibility relations apply to each and every con-
nection line/plane between each pair of k points in the
Brillouin zone, leading to strong but factorially redun-
dant restrictions on how bands may connect in a crystal.
To construct the nonredundant solutions to the compat-
ibility relations, we map the question to a problem in
graph theory. Each irrep at the di↵erent symmetry dis-
tinct k vectors labels a node in a graph. In our previous
example, the nodes would be labelled by ⇢,�, {⌧1, ⌧2, . . . }
for the k1, k2, and kt high symmetry points and line,
respectively. We draw the edges of the graph by the fol-
lowing rules: 1. Irreps at the same k vector can never
be connected by edges – our graph is multi-partite. 2.

Nodes corresponding to irreps at ka and kb can be con-
nected only if Gka ✓ Gkb or Gkb ✓ Gka (i.e. k-vectors
are compatible). 3. Edges must be consistent with the
compatibility relations. For instance, Eq. (1) corresponds
to an edge from the node labelled by ⇢ to each node la-
belled by ⌧i. We refer to such a graph as a connectivity

graph.
We developed an algorithm12 that outputs all distinct

connectivity graphs for all SGs– a gargantuan task. The
factorial complexity is handled by several subroutines,
which ensure that the minimal set of paths in momen-
tum space is considered. Additional filters remove re-
dundant or isomorphic solutions to the compatibility re-
lations. The tools of graph theory then allow us to par-
tition the nodes of the graph (the little-group irreps)
into distinct connected components (subgraphs). Each
component corresponds to a connected, isolated group of
bands that can describe a set of valence bands in some

insulating system or protected semimetal, depending on
the filling. In particular, such a list consists of all (both
topologically trivial and nontrivial) valence band groups.
The familiar example of graphene with SOC is given in
Fig. 1 and Ref. 12. We now define and classify topo-
logically nontrival bands in terms of localized Wannier
functions.

III. TOPOLOGICALLY (NON)TRIVIAL BANDS

Consider a group of connected bands in the spectrum
of a crystal Hamiltonian separated by a gap from all
others. Using existing machinery, to determine whether
this group is topologically nontrivial requires discover-
ing topological invariants (indices or Wilson loops) from
the analytic structure of the Bloch eigenfunctions. We
now prove that the algebraic global structure of the en-
ergy spectrum itself (including connectivities) contains a
complete classification of topological materials. We de-
fine:

Definition 1. An insulator (filled group of bands) is

topologically nontrivial if it cannot be continued to

any atomic limit without either closing a gap or break-

ing a symmetry.

To every isolated group of energy bands, we associate
a set of Wannier functions – orbitals obtained by Fourier
transforming linear combinations of the Bloch wavefunc-
tions. In an atomic limit, the Wannier functions are
exponentially localized, respect the symmetries of the
crystal (and possibly TR) and coincide in most cases
(however, see Section V) with the exponentially localized
atomic orbitals at infinite (atomic limit) separation. Un-
der the action of the crystal symmetries, di↵erent atomic
sites are distributed into orbits, belonging to Wycko↵ Po-
sitions (WPs); we denote the points in a Wycko↵ orbit in
a unit cell as {qi}. In analogy with the symmetry group
of a k-vector, to each site qi there is a finite subgroup,
Gqi , of the full SG, G, which leaves qi invariant, called
the site-symmetry group. For example, the A, B sites in
graphene belong to WP 2b (the multiplicity 2 refers to
the number of symmetry-related sites in the unit cell); its
site-symmetry group is isomorphic to C3v. Wannier func-
tions at each site qi transform under some rep, ⇢i, of Gqi .
Crucially, through the mathematical procedure of induc-
tion, the real-space transformation properties of these lo-
calized Wannier functions determine the little group reps
of the bands at every point in the BZ: the action of the
SG on the full lattice (rather than just the unit cell) of
Wannier functions gives an infinite-dimensional rep. Its
Fourier transform gives the k dependent matrix rep of
all symmetry elements. This restricts to reps of the little
group of each k-vector. Following Zak3, we refer to this
as a band representation (BR), ⇢iG, induced13,14 in the
space-group G by the rep ⇢i of Gqi :

⇢iG = ⇢i " G. (3)

The above is true with or without TR symmetry. BRs
which also respect time-reversal symmetry in real space
are physical band representations (PBRs).

By inducing BRs, we enumerate all groups of bands
with exponentially localized and symmetric Wannier
functions. Each such group forms a BR, and every band
representation is a sum of EBRs. We have identified the
10300 EBRs:

(Γ (k1)):  (X (k2)):and

Example: 

Γ+
5 of Oh is a reducible representation of C4v 

Reduction of Γ+
5 into irreducible representations 

of C4v yields the compatibility relation 
Γ+

5

 
→

 
∆1 +∆2

 

30

(a) (b)

FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A
2

has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄

8

, ⌃̄1

3

, ⌃̄1

4

, ⇤̄1

3

, ⇤̄1

4

, K̄
4

, K̄
5

, T̄ 1

3

, T̄ 1

4

and M̄2

5

, while the other connected component contains the remainder
�̄

9

, ⌃̄2

3

, ⌃̄2

4

, ⇤̄2

3

, ⇤̄2

4

, K̄
6

, T̄ 2

3

, T̄ 2

4

and M̄1

5

. (Interchanging �̄
8

and �̄
9

also results in a valid disconnected energy graph
as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b
sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄2b

6

" G representation of the space group. In particular, let si be a vector of
Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb

1

,qb
2

} space. To construct
the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C

2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites q

b
1

and q

b
2

; thus C
2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
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where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as
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where the extra phases relative to �
�

come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d
0

(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
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where the extra phases relative to �
�

come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d
0

(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx,ky,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx,ky,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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2. Compatibility Relations
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Let’s consider 2 high symmetry points of the SG 130 : Γ and X

       1. symmetry operations point group Γ (k1) are the ones of Oh

           2. symmetry operations point group X (k2) are the ones of D4h

 

 Both high symmetry points are connected through ∆  (kt) with C4v

3

group of both Gk1 and Gk2 . Thus, an irrep, ⇢, of Gk1

at k1 will split (subduce, or restrict) along the line to a
(direct) sum of irreps

L
i ⌧i of Gkt ; symbolically11

⇢ # Gkt ⇡
M

i

⌧i. (1)

These restrictions are referred to as compatibility rela-

tions. Heuristically, they are found by taking the rep-
resentation ⇢ and “forgetting” about the symmetry ele-
ments of Gk1 which are not in Gkt . As energy bands in a
crystal do not discontinuously end, the representations,
�, of Gk2 at k2 must also satisfy

� # Gkt ⇡
M

i

⌧i. (2)

Each representation, ⌧i, corresponds to a (group of)
band(s) along the line kt; bands coming from k1 in each
irrep ⌧i must join with a group of bands transforming in
the same irrep coming from k2. We refer to each set of
such pairings as a solution to the compatibility relations.

Compatibility relations apply to each and every con-
nection line/plane between each pair of k points in the
Brillouin zone, leading to strong but factorially redun-
dant restrictions on how bands may connect in a crystal.
To construct the nonredundant solutions to the compat-
ibility relations, we map the question to a problem in
graph theory. Each irrep at the di↵erent symmetry dis-
tinct k vectors labels a node in a graph. In our previous
example, the nodes would be labelled by ⇢,�, {⌧1, ⌧2, . . . }
for the k1, k2, and kt high symmetry points and line,
respectively. We draw the edges of the graph by the fol-
lowing rules: 1. Irreps at the same k vector can never
be connected by edges – our graph is multi-partite. 2.

Nodes corresponding to irreps at ka and kb can be con-
nected only if Gka ✓ Gkb or Gkb ✓ Gka (i.e. k-vectors
are compatible). 3. Edges must be consistent with the
compatibility relations. For instance, Eq. (1) corresponds
to an edge from the node labelled by ⇢ to each node la-
belled by ⌧i. We refer to such a graph as a connectivity

graph.
We developed an algorithm12 that outputs all distinct

connectivity graphs for all SGs– a gargantuan task. The
factorial complexity is handled by several subroutines,
which ensure that the minimal set of paths in momen-
tum space is considered. Additional filters remove re-
dundant or isomorphic solutions to the compatibility re-
lations. The tools of graph theory then allow us to par-
tition the nodes of the graph (the little-group irreps)
into distinct connected components (subgraphs). Each
component corresponds to a connected, isolated group of
bands that can describe a set of valence bands in some

insulating system or protected semimetal, depending on
the filling. In particular, such a list consists of all (both
topologically trivial and nontrivial) valence band groups.
The familiar example of graphene with SOC is given in
Fig. 1 and Ref. 12. We now define and classify topo-
logically nontrival bands in terms of localized Wannier
functions.

III. TOPOLOGICALLY (NON)TRIVIAL BANDS

Consider a group of connected bands in the spectrum
of a crystal Hamiltonian separated by a gap from all
others. Using existing machinery, to determine whether
this group is topologically nontrivial requires discover-
ing topological invariants (indices or Wilson loops) from
the analytic structure of the Bloch eigenfunctions. We
now prove that the algebraic global structure of the en-
ergy spectrum itself (including connectivities) contains a
complete classification of topological materials. We de-
fine:

Definition 1. An insulator (filled group of bands) is

topologically nontrivial if it cannot be continued to

any atomic limit without either closing a gap or break-

ing a symmetry.

To every isolated group of energy bands, we associate
a set of Wannier functions – orbitals obtained by Fourier
transforming linear combinations of the Bloch wavefunc-
tions. In an atomic limit, the Wannier functions are
exponentially localized, respect the symmetries of the
crystal (and possibly TR) and coincide in most cases
(however, see Section V) with the exponentially localized
atomic orbitals at infinite (atomic limit) separation. Un-
der the action of the crystal symmetries, di↵erent atomic
sites are distributed into orbits, belonging to Wycko↵ Po-
sitions (WPs); we denote the points in a Wycko↵ orbit in
a unit cell as {qi}. In analogy with the symmetry group
of a k-vector, to each site qi there is a finite subgroup,
Gqi , of the full SG, G, which leaves qi invariant, called
the site-symmetry group. For example, the A, B sites in
graphene belong to WP 2b (the multiplicity 2 refers to
the number of symmetry-related sites in the unit cell); its
site-symmetry group is isomorphic to C3v. Wannier func-
tions at each site qi transform under some rep, ⇢i, of Gqi .
Crucially, through the mathematical procedure of induc-
tion, the real-space transformation properties of these lo-
calized Wannier functions determine the little group reps
of the bands at every point in the BZ: the action of the
SG on the full lattice (rather than just the unit cell) of
Wannier functions gives an infinite-dimensional rep. Its
Fourier transform gives the k dependent matrix rep of
all symmetry elements. This restricts to reps of the little
group of each k-vector. Following Zak3, we refer to this
as a band representation (BR), ⇢iG, induced13,14 in the
space-group G by the rep ⇢i of Gqi :

⇢iG = ⇢i " G. (3)

The above is true with or without TR symmetry. BRs
which also respect time-reversal symmetry in real space
are physical band representations (PBRs).

By inducing BRs, we enumerate all groups of bands
with exponentially localized and symmetric Wannier
functions. Each such group forms a BR, and every band
representation is a sum of EBRs. We have identified the
10300 EBRs:
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A
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also results in a valid disconnected energy graph
as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b
sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄2b
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the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C

2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites q

b
1

and q

b
2

; thus C
2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little

group representation at the � point is given by �
�

= �̄
8

� �̄
9

from Table VIII and takes the form,

�
�

(C
3z) = ei⇡

3 s
z ⌦ �

0

(99)

�
�

(C
2z) = isz ⌦ �x (100)

�
�

(m
1

¯

1

) = �isx (101)

�
�

(T ) = isy ⌦ �
0

K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C
3z) = ei⇡

3 s
z ⌦ e�i 2⇡

3 �
z (103)

�K(C
2zm

1

¯

1

) = isy ⌦ �x, (104)

where the extra phases relative to �
�

come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
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where the extra phases relative to �
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come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
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HHSOC(k) = d
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx,ky,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx,ky,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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(ii) Paths related by symmetry operations 
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(iii) Paths that are combinations of other paths 

* additional restrictions in non-symmorphic groups (monodromy) 
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.
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2. Compatibility Relations



3. Connectivity graphs
(honeycomb lattice)

We must ensure compatibility relations are 
satisfied along the lines and planes joining 
little groups

There will be many ways to form energy 
bands, consisten with compatibility relations

Goal: classify the valid band structures

We can accomplish this introducing a graph-
theory picture
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FIG. S1. Subgraph of a connectivity graph corresponding to the compatibility relations along � and ⇤ for P 4̄3m (215) as
discussed in Sec. II A. There are two partitions in the graph labelled by � and ⇤. In the � partition there are two nodes
indicated by black circles, labelled �̄1

8 and �̄2
8, each corresponding to a copy of the �̄8 little group representation. Similarly,

in the ⇤ partition, there are two nodes corresponding to copies of the ⇤̄4 little group representation and indicated by red
circles; two nodes corresponding to the ⇤̄5 representation and indicated by blue circles; and two nodes corresponding to the ⇤̄6

representation and indicated by green circles. The nodes are connected by edges (represented by black lines) consistent with
the compatibility relation Eq. (S9). Because there are only two partitions in this subgraph, P� = P⇤ = 1 (c. f. Def. 8) for all
nodes. The degree of each node in the � partition is 4 = P · dim(�̄8). Similarly, since dim(⇤̄6)=2, the degree of the nodes ⇤̄1

6

and ⇤̄2
6 is 2. The remaining nodes in the ⇤ partition have degree 1, since they correspond to 1D representations. Note, for

example, that if the ⇤ line was also connected to another high symmetry k-point (labelled L, for instance), then P⇤ = 2, and
the degree of each node in the ⇤ partition would double.

C. Connectivity Graphs

We apply this graph-theoretic machinery to the connectivity graphs (defined in Sec. II of the main text) associated
to elementary band representations. We start with all the little group representations at high-symmetry points and
lines contained in a given EBR. Because the representation is elementary, we know that the connectivity graphs will
have either one connected component, or will decompose into a set of topological band groups, as explained in the
main text. All connectivity graphs with more than one connected component, if they exist, will then correspond to
topological phases.

In order to construct the Laplacian matrix, we separate the task into two steps. We first construct all possible
adjacency matrices, and then we subtract the degree matrix from each of them. Since the adjacency matrices have a
block structure, with nonzero blocks determined by the compatibility relations, we first build each block submatrix
separately. We start by identifying the maximal k-vectors in the BZ. In analogy to maximal Wycko↵ positions,
these are the k vectors whose little co-groups are maximal subgroups of the point group of the space group. A valid
submatrix will then be created based on our derived compatibility and site-symmetry tables15.The rows represent the
maximal k-vectors and the columns represent the connecting (non-maximal) lines and/or planes. The entries in the
submatrix fulfill the following rules: we can only allow one nonzero entry per column, and the sum of the entries in
each row equals the dimension of the corresponding little-group representation. Given a single valid submatrix, all
others can be obtained by permuting the columns.

With these submatrices, we build up the full adjacency matrix row by row. In doing so, we must ensure that
we account for all possible connections along non-maximal lines and planes. Additionally, we would like to avoid
overcounting configurations that di↵er only by a relabelling of representations along non-maximal k-vectors. We have
developed two main tools to do this. First, although Def. 8 for the connectivity graphs makes use of all high-symmetry
manifolds in the BZ, many of them provide redundant information. We thus consider for each space group only the
minimal set of paths in k-space necessary. We derived these for each space group by searching first for the paths in
the BZ connecting all maximal k-vectors along the highest symmetry surfaces possible, and then pruning connections
which add no additional symmetry constraints. For non-symmorphic space groups, it is also necessary to consider

Partition: High symmetry point
Nodes: irreps of the little group

Graph connectivity: Band connectivity problem



3. Connectivity graphs
Adjacency matrix: m x m matrix, where the (ij)’th entry is the number of edge connection i to j
Degree matrix: diagonal matrix is whose (ii)’th entry is the degree of the node i
Laplacian matrix:   L= A-D 

12

then that the only nonzero blocks are the � � ⌃, � � ⇤, K � ⇤, K � T , M � T , and M � ⌃ blocks. Furthermore,
up to relabellings of identical representations, i.e. M̄1

5 $ M̄2
5 , ⇤̄

1
3 $ ⇤̄2

3, etc., there are only four distinct adjacency
matrices (we elaborate on these details in Ref. 18). These fall into two groups which di↵er by the exchange �̄8 $ �̄9,
since �̄8 and �̄9 have identical compatibility relations along both ⌃ and ⇤. For brevity, we write here only the two
independent matrices from which the remaining two can be obtained by the exchange �̄8 $ �̄9. They are

A1 =
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3 ⌃̄2
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(S35)

These matrices di↵er only in their K�⇤ and K�T blocks. As a consistency check, we verify that the sum of elements
in the row or column labelled by � is equal to d(�) from Table S5; thus, the degree matrix D satisfies Dij = �ij

P
` Ai`.

We show each of these graphs pictorially in Figure S4. Although the graph method does not impose any constraints
on the energies of the irreducible representations, we are free to interpret and visualize the vertical positioning of the
nodes of the graph as the energy of the respective energy bands. Doing so gives Fig. S4 the alternative interpretation
as a plot of the band structure!

We can now construct the Laplacian matrices L1 = D � A1 and L2 = D � A2 associated to these two graphs. To
save space we will not write these out explicitly. We find that the null space of the matrix L1 is spanned by the

For each connected component of a graph, there is a 0 eigenvector of the Laplacian
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2
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also results in a valid disconnected energy graph
as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b
sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄2b

6

" G representation of the space group. In particular, let si be a vector of
Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb

1

,qb
2

} space. To construct
the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C

2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites q

b
1

and q

b
2

; thus C
2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little

group representation at the � point is given by �
�

= �̄
8

� �̄
9

from Table VIII and takes the form,

�
�

(C
3z) = ei⇡

3 s
z ⌦ �

0

(99)

�
�

(C
2z) = isz ⌦ �x (100)

�
�

(m
1

¯

1

) = �isx (101)

�
�

(T ) = isy ⌦ �
0

K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C
3z) = ei⇡

3 s
z ⌦ e�i 2⇡

3 �
z (103)

�K(C
2zm

1

¯

1

) = isy ⌦ �x, (104)

where the extra phases relative to �
�

come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d
0

(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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FIG. 2. Reciprocal lattice vectors and high symmetry points of the hexagonal lattice.

In Figure 1b we show pictorially the location of these Wycko↵ positions within the standard hexagonal lattice.
Before moving on to construct the elementary band representations induced from these Wycko↵ positions, we must

also establish a convention for the Brillouin zone. We take as our reciprocal lattice vectors

g

1

= 2⇡

 p
3

3
x̂ + ŷ

!
(42)

g

2

= 2⇡

 p
3

3
x̂ � ŷ

!
, (43)

which are shown in Fig 2. We will be primarily interested in the little group representations at three high symmetry
points in the Brillouin zone. The first is the � point, with coordinates (00). The little group G

�

is, as always, the
full point group C

6v. Next, there are the three time-reversal invariant M points, which we denote M , M 0 and M 00.
These have coordinates ( 1

2

0), ( 1

2

1

2

) and (0 1

2

) respectively. For the remainder of this appendix we need only concern
ourselves with the first of these, and so we will refer to it unambiguously as “the” M point; the others are related to
it by C

3z symmetry. It has little group GM , which is isomorphic to C
2v and generated by C

2z and C
3zm

1

¯

1

. Finally,
there are the K and K 0 points – the focus of most topological investigations in graphene. We will focus here primarily
on the K point which has coordinates ( 1

3

2

3

); the K 0 point can be obtained by a ⇡/3 rotation). The little group GK is
isomorphic to C

3v and is generated by C
3z and C

2zm
1

¯

1

. The high symmetry points are shown in Fig 2.

B. Elementary band representations

We are now in a position to compute the elementary band representations induced from the maximal Wycko↵
positions in the honeycomb lattice. We will consider each Wycko↵ position in turn, starting with the 1a position.
To aid in this task, we reproduce character tables for the single and double-valued representations of C

6v, C
3v and

C
2v in Tables IV, V and VI, respectively. We label site-symmetry group representations by their Wycko↵ position

label. We denote that a representation is a double-valued representations by an overbar. Finally, we label little group
representations by their k-point label. For symmorphic groups, such as SG 183, the little group, Gk, of each k point
is isomorphic to one of the site-symmetry groups. Because of this, we will indicate whether a given representation
refers to a site-symmetry or little group by the choice of symbol, however we will label the representations for all
isomorphic groups in the same order.

1. Wycko↵ position 1a

The stabilizer group of Wycko↵ position 1a is Gqa

1
⌘ C

6v, whose irreps are shown in Table IV. The induction
procedure is quite simple: given an irrep ⇢ of C

6v with character �⇢, the characters �k
G in the induced representation

⇢ " G are given simply by

�k
G(h) = �⇢(h) (44)

- Single connected component
   Fully connected and protected semi-metallic phase

- Splitting of EBR
   Topological bands

2 independent Adjacency matrices:

Vanderbilt, Soluyanov PRB 83, 035108 (2011)

Results: Graphene



Symmetry	enforced	semi-metal	 Topological	insulator	

Local	descrip.on:	
Wannier	func.ons	≈	

atomic	orbitals	

All	four	bands	come	from	a	single	set	of	localized	orbitals	(pz,	spin	up/down)	

What	makes	the	disconnected	bands	topological?	

Cannot	be	described	by	localized	Wannier	
func.ons	while	preserving	symmetries	

(Soluyanov	and	Vanderbilt	2011)		

Disconnected	bands	are	topological	because	they	lack	
localized	Wannier	func.ons	that	obey	TR	

Results: Graphene

Kane, Mele Phys. Rev. Lett (2005)
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Ē (!̄3) representation1189

of the site-symmetry group of the 12b Wyckoff position,1190

which is isomorphic to the point group C2. For this band1191

representation—and more generally for any band representa-1192

tion with disconnected connectivity graphs—the entry in the1193

“Decomposable\Indecomposable” row is a clickable button.1194

The output of clicking this button is a list of all possible1195

ways of partitioning connectivity graphs into disconnected1196

components. These data are given in the format of Sec. II F and1197

Table XVI; each row corresponds to a different disconnected1198

solution to the compatibility relations, and each column gives1199

the little group representations subduced at each maximal1200

k-vector in each branch (disconnected component). Figure 71201

shows this output for the decomposable band representation1202

2
Ē ↑ G induced from the 12b position in SG I213 (199). We 1203

see that there are three possible disconnected connectivity 1204

graphs, each with two disconnected components. 1205

To obtain the analogous information for the physically 1206

elementary band representations with TR symmetry, we can 1207

click instead the “Elementary TR” button on the main input 1208

screen. This output for space group I213 (199) is shown in 1209

Fig. 8. We see that with TR symmetry, there are now two 1210

decomposable physically elementary band representations. 1211

The first is induced from the physically irreducible ĒĒ (!̄4!̄4) 1212
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12b Wyckoff position, which is isomorphic to the point group 1217
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this case there is only one allowed disconnected connectivity 1220
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In addition to the connectivity graphs, we also give, for each 1222

space group, the minimal list of paths through the BZ and the 1223

associated compatibility relations needed to construct the full 1224

connectivity graphs from the little group representations at 1225

the maximal k-vectors. From the table of band representations 1226

accessed from either the “Elementary” or “Elementary TR” 1227

FIG. 6. Output of BANDREP for the elementary band representations in SG I213 (199) without TR. There is one decomposable elementary
band representation. It is induced from the two-dimensional 2

Ē representation of the site-symmetry group of the 12b Wyckoff position.
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Ē ↑ G induced from the 12b position in SG I213 (199). We 1203

see that there are three possible disconnected connectivity 1204

graphs, each with two disconnected components. 1205

To obtain the analogous information for the physically 1206

elementary band representations with TR symmetry, we can 1207

click instead the “Elementary TR” button on the main input 1208

screen. This output for space group I213 (199) is shown in 1209

Fig. 8. We see that with TR symmetry, there are now two 1210

decomposable physically elementary band representations. 1211

The first is induced from the physically irreducible ĒĒ (!̄4!̄4) 1212
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FIG. 7. Possible decompositions of the elementary band repre-
sentation in SG I213 (199) induced from the 2

Ē representation of the
site-symmetry group of the 12b maximal Wyckoff position.

function, these data can be accessed by clicking the button1228

labeled “Minimal set of paths and compatibility relations to1229

analyze the connectivity.” The location of this button above the1230

table of band representations can be seen in Figs. 6 and 8. The1231

output of this application gives two tables. The first table lists1232

the minimal set of connections between maximal k-vectors,1233

given in the format of Table III. It has three columns: each1234

row gives two maximal k-vectors in the first and third column,1235

which are connected by the nonmaximal k-vector in the second1236

column.1237

Directly below the table of k-vectors, we display the1238

compatibility relations along each of the listed connections.1239

This table has five columns. The first, third, and fifth columns1240

correspond to the first maximal, intermediate, and second max-1241

imal k-vector columns given in the table of connections, while1242

the second and fourth columns give the compatibility relations1243

along each connection. For each little group representation of1244

the maximal k-vectors, the compatibility relations are given in1245

the format of Eq. (13). For those nonsymmorphic groups that1246

require two different sets of compatibility relations related by1247

monodromy, the second set is given immediately next to the1248

first.1249

As an example, we show in Fig. 10 the set of paths 1250

and compatibility relations for SG I213 (199) without TR 1251

symmetry, obtained by clicking the “Minimal set of paths and 1252

compatibility relations to analyze the connectivity” button in 1253

Fig. 6. We see that there are only three maximal k-vectors 1254

that determine the connectivity: !, H , and P . There are three 1255

essential connections, 1256

! ↔ " ↔ H, (32)

! ↔ # ↔ H, (33)

! ↔ # ↔ P. (34)

Although this group is nonsymmorphic, we see from the 1257

compatibility table that only one set of compatibility relations 1258

is needed along each connection. This is due to the additional 1259

constraints imposed by the cubic threefold rotation. 1260

Clicking on the analogous button in the output of Fig. 8 1261

gives the minimal paths and compatibility relations for this 1262

same space group once time-reversal symmetry is included. 1263

We show these in Fig. 11. We see immediately that TR singles 1264

out an additional (TR-invariant) maximal k-vector, labeled N . 1265

In addition to the connections in Eq. (32), we see that with TR 1266

we must also consider compatibility along the connection 1267

N ↔ D ↔ P. (35)

Once again, we see from the compatibility table that only one 1268

set of compatibility relations is needed for every connection 1269

in this space group with TR symmetry. 1270

IV. TECHNICAL VALIDATION 1271

Now that we have produced the data and the applications 1272

with which to access them, we will show here an example of 1273

how they may be used. We examine the case of graphene on 1274

a graphite (or another symmetry-preserving, lattice-matched 1275

FIG. 8. Output of BANDREP for the physically elementary band representations in SG I213 (199). There are two decomposable physically
elementary band representations, induced from the 8a and 12b maximal Wyckoff position
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FIG. 5. Main input screen for the BANDREP program.

representations in the given space group, respectively. Band1178

representations are listed according to Wyckoff position, and1179

the irreducible representation of the site-symmetry group1180

from which they are induced. In addition to the little group1181

representations subduced at each maximal k-vector, for each1182

band representation the output table contains a row labeled1183

“Decomposable\Indecomposable,” which indicates whether1184

or not a disconnected connectivity graph exists for the1185

given band representation. In Fig. 6, we show the output1186

of selecting “Elementary” for the space group I213 (199).1187

In particular, there is one decomposable elementary band1188

representation. It is induced from the 2
Ē (!̄3) representation1189

of the site-symmetry group of the 12b Wyckoff position,1190

which is isomorphic to the point group C2. For this band1191

representation—and more generally for any band representa-1192

tion with disconnected connectivity graphs—the entry in the1193

“Decomposable\Indecomposable” row is a clickable button.1194

The output of clicking this button is a list of all possible1195

ways of partitioning connectivity graphs into disconnected1196

components. These data are given in the format of Sec. II F and1197

Table XVI; each row corresponds to a different disconnected1198

solution to the compatibility relations, and each column gives1199

the little group representations subduced at each maximal1200

k-vector in each branch (disconnected component). Figure 71201

shows this output for the decomposable band representation1202

2
Ē ↑ G induced from the 12b position in SG I213 (199). We 1203

see that there are three possible disconnected connectivity 1204

graphs, each with two disconnected components. 1205

To obtain the analogous information for the physically 1206

elementary band representations with TR symmetry, we can 1207

click instead the “Elementary TR” button on the main input 1208

screen. This output for space group I213 (199) is shown in 1209

Fig. 8. We see that with TR symmetry, there are now two 1210

decomposable physically elementary band representations. 1211

The first is induced from the physically irreducible ĒĒ (!̄4!̄4) 1212

representation of the site-symmetry group of the 8a position, 1213

isomorphic to the point group C3. The second decomposable 1214

physically elementary band representation is induced from the 1215

1
Ē

2
Ē (!̄3!̄4) representation of the site-symmetry group of the 1216

12b Wyckoff position, which is isomorphic to the point group 1217

C2. In Fig. 9 we show the possible disconnected connectivity 1218

graphs for this latter band representation. It turns out that in 1219

this case there is only one allowed disconnected connectivity 1220

graph, with two branches. 1221

In addition to the connectivity graphs, we also give, for each 1222

space group, the minimal list of paths through the BZ and the 1223

associated compatibility relations needed to construct the full 1224

connectivity graphs from the little group representations at 1225

the maximal k-vectors. From the table of band representations 1226

accessed from either the “Elementary” or “Elementary TR” 1227

FIG. 6. Output of BANDREP for the elementary band representations in SG I213 (199) without TR. There is one decomposable elementary
band representation. It is induced from the two-dimensional 2

Ē representation of the site-symmetry group of the 12b Wyckoff position.
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representation. It is induced from the 2
Ē (!̄3) representation1189

of the site-symmetry group of the 12b Wyckoff position,1190

which is isomorphic to the point group C2. For this band1191

representation—and more generally for any band representa-1192

tion with disconnected connectivity graphs—the entry in the1193

“Decomposable\Indecomposable” row is a clickable button.1194

The output of clicking this button is a list of all possible1195

ways of partitioning connectivity graphs into disconnected1196

components. These data are given in the format of Sec. II F and1197

Table XVI; each row corresponds to a different disconnected1198

solution to the compatibility relations, and each column gives1199

the little group representations subduced at each maximal1200

k-vector in each branch (disconnected component). Figure 71201

shows this output for the decomposable band representation1202

2
Ē ↑ G induced from the 12b position in SG I213 (199). We 1203

see that there are three possible disconnected connectivity 1204

graphs, each with two disconnected components. 1205

To obtain the analogous information for the physically 1206

elementary band representations with TR symmetry, we can 1207

click instead the “Elementary TR” button on the main input 1208

screen. This output for space group I213 (199) is shown in 1209

Fig. 8. We see that with TR symmetry, there are now two 1210

decomposable physically elementary band representations. 1211

The first is induced from the physically irreducible ĒĒ (!̄4!̄4) 1212

representation of the site-symmetry group of the 8a position, 1213

isomorphic to the point group C3. The second decomposable 1214

physically elementary band representation is induced from the 1215

1
Ē

2
Ē (!̄3!̄4) representation of the site-symmetry group of the 1216

12b Wyckoff position, which is isomorphic to the point group 1217

C2. In Fig. 9 we show the possible disconnected connectivity 1218

graphs for this latter band representation. It turns out that in 1219

this case there is only one allowed disconnected connectivity 1220

graph, with two branches. 1221

In addition to the connectivity graphs, we also give, for each 1222

space group, the minimal list of paths through the BZ and the 1223

associated compatibility relations needed to construct the full 1224

connectivity graphs from the little group representations at 1225

the maximal k-vectors. From the table of band representations 1226

accessed from either the “Elementary” or “Elementary TR” 1227

FIG. 6. Output of BANDREP for the elementary band representations in SG I213 (199) without TR. There is one decomposable elementary
band representation. It is induced from the two-dimensional 2

Ē representation of the site-symmetry group of the 12b Wyckoff position.
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FIG. 9. Decomposition of the elementary band representation in SG I213 (199) induced from the 1
Ē

2
Ē physically irreducible representation

of the site-symmetry group of the 12b maximal Wyckoff position.

substrate that breaks only inversion symmetry), corresponding1276

to the Kane-Mele model with inversion-symmetry breaking.1277

This is described by the three-dimensional space group P 6mm1278

(183). We will see how we can recover the full topological1279

phase diagram using the graph output files, and in so doing1280

give a consistency check on our data.1281

The relation between the topological phases of graphene1282

and the connectivity of elementary band representations was1283

computed first in Refs. [16,40]. Here we will show how to1284

recover these computations using the applications we have 1285

produced. The carbon atoms in graphene sit at the 2b Wyckoff 1286

position of space group P 6mm (183). The site-symmetry 1287

group of this position is isomorphic to the point group C3v 1288

(3m), generated by a threefold rotation C3z about the z-axis 1289

(normal to the plane) and the vertical mirror my . By consulting 1290

the data presented in Refs. [16,19], we can see that spinful pz 1291

orbitals transform in the two-dimensional !̄6 representation 1292

of this group. Next, we consult the BANDREP program for 1293

FIG. 10. Minimal path and associated compatibility tables for SG I213 (199) without TR symmetry.
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Materials? 
We tabulated all the different EBRs (10403) of all the 230 SG. 

31

SG Mat. SG Mat. SG Mat. SG Mat. SG Mat.

2 P 1̄ IrTe2 92 P41212 La5Si4 146 R3 SnAu5 178 P6122 Ir3Zr5 221 Pm3̄m LaIn3

4 P21 Ge2LaPt2 100 P4bm La5S7 147 P 3̄ NW2 180 P6222 Ge2Ta 223 Pm3̄n IrTi3
13 P2/c AuCrTe4 103 P4cc TaTe4 148 R3̄ Ir3Te8 182 P6322 Ni3N 224 Pn3̄n AgO2

14 P21/c AgF4Na2 109 I41md LaPtSi 149 P312 TiO3 185 P63cm IrMg3 225 Fm3̄m BiLa
26 Pmc21 In4LaPd2 113 P 4̄21m Na5Sn 150 P321 Li7Pb2 186 P63mc Au3Sr7 226 Fm3̄c NaZn13
34 Pnn2 CoTe2 120 I 4̄c2 K(SnAu2)2 152 P3121 Ga3Ni13Ge6 187 P 6̄m2 LiZnGe 227 Fd3̄m RbBi2
36 Cmc21 AsNi 122 I 4̄d FeAgS2 155 R32 Ni3S2 188 P 6̄c2 LiScI3 230 Ia3̄d Ga4Ni3
39 Aem2 LaS 123 P4/mmm InSePd5 157 P31m AuCd 189 P 6̄2m GaAg2
43 Fdd2 Ge5Y3 128 P4/mnc CSc3 159 P31c IrLi2Si3 190 P 6̄2c HfSnRh
52 Pnna Bi3Sr2 129 P4/nmm LaTe2 160 R3m As3Sn4 191 P6/mmm Ga2La
55 Pbam Al3Pt5 130 P4/ncc Ge3La5 161 R3c Li2ReO3 193 P63̄/mcm Sr5Sb3

58 Pnnm AlAu2 131 P42/mmc La(BC)2 162 P 3̄1m Ag5(PbO3)2 194 P63̄/mmc Ge3Li2Zn
59 Pnmm Ag3Sn 136 P42/mnm ReO2 164 P 3̄m1 Ag2F 198 P213 NiAsS
61 Pbca AgF2 138 P42/mcm Ge7La11Mg2 165 P 3̄c1 Ca5CuPb3 200 Pm3̄ Au6In5Na2
62 Pnma AgSr 139 I4/mmm LiTlPd2 166 R3̄m Zr2Te2P 205 Pa3̄ PdN2

63 Cmcm BiZr 140 I4/mcm Te3Tl5 167 R3̄c Ir3Mg13 206 Ia3̄ Mg3Bi2
64 Cmce Al3Ge4La2 141 I41/amd NiTi2 173 P63 AlCaSi 212 P4332 BaSi2
65 Cmce Al3Ge4La2 142 I41/acd IrSn4 174 P 6̄ Li2Ni12P7 213 P4232 Ni2W3N
74 Imma La3Pd4Si 143 P3 TiNi 175 P6/m Rb4SnTe4 214 P4232 La3SbI3
84 P42/m AlNi4Zr5 144 P31 IrGe4 176 P63/m V3S4 215 P 4̄3m Li8Al3Si5

TABLE S15. Excerpt of semimetal candidates, with electron filling smaller than the number of bands in the smallest PEBR.
This criteria ensures that all materials shown are partially filled (semi-)metals with SOC. A complete list will be presented in
a future work.

VII. TABLE OF EBRS AND PEBRS

Here we give the table of elementary and physically elementary band representations induced from the maximal
Wyko↵ positions in all 230 space groups in a condensed form. The column labeled “SG” gives the space group number.
“MWP” gives the standard name of the maximal Wycko↵ position, and “WM” gives its multiplicity in the primitive
cell. “PG” is the point group number of for the site symmetry group, and “Irrep” gives the name of the site-symmetry
group representation from which each band representation is induced. The reperesentations are labelled using the
notation of Stokes, Cordes, and Campbell51. The column “Dim” denotes the dimension of the point stabilizer group
irrep. The column “KR” denotes whether the band representation is also a physical band representation. Those
with a “1” in this column are PEBRs as is, Those with a “2” join with copies of themselves when TR symmetry is
included. Finally, EBRs labelled by “f” (for first) pair with their conjugate BR labelled by “s” (and listed directly
below) when TR symmetry is added. The column labelled “Bands” gives the total number of bands in the physical
band representation (to obtain the number of bands in the EBR without TR, divide this number by 1 if the entry
in KR is 1, and 2 otherwise). The column “Re” indicates whether the given band representation can be made time-
reversal invariant in momentum space: a 1 in this column indicates that TR symmetry is satisfied at each k point,
while a 2 indicates that the given band representation must be connected in momentum space with its TR conjugate.
In particular, those band representations induced from 1d site-symmetry representations and with a 1 in the “Re”
column are prime candidates for topological insulators, as discussed in Section IV. A of the main text. Finally, the
columns “E” and “PE” indicate whether the given band representation is an exception (in the language of Sec. I and
Tables S10, S11, and S12), with and without TR symmetry respectively. An “e” in either of these columns indicates
elementary, while a “c” indicates composite. This full set of data can be accessed in uncondensed form through the
BANDREP program on the Bilbao Crystallographic Server17.

SG MWP WM PG Irrep Dim KR Bands Re E PE SG MWP WM PG Irrep Dim KR Bands Re E PE

1 1a 1 1 �1 1 1 1 1 e e 131 2d 2 8 ��
2 1 1 2 1 e e

1 1a 1 1 �̄2 1 2 2 2 e e 131 2d 2 8 �+
4 1 1 2 1 e e

2 1a 1 2 �+
1 1 1 1 1 e e 131 2d 2 8 ��

4 1 1 2 1 e e
2 1a 1 2 ��

1 1 1 1 1 e e 131 2d 2 8 �+
3 1 1 2 1 e e

2 1a 1 2 �̄3 1 2 2 2 e e 131 2d 2 8 ��
3 1 1 2 1 e e

2 1a 1 2 �̄2 1 2 2 2 e e 131 2d 2 8 �̄5 2 1 4 1 e e
2 1b 1 2 �+

1 1 1 1 1 e e 131 2d 2 8 �̄6 2 1 4 1 e e
2 1b 1 2 ��

1 1 1 1 1 e e 131 2e 2 14 �1 1 1 2 1 e e
2 1b 1 2 �̄3 1 2 2 2 e e 131 2e 2 14 �4 1 1 2 1 e e

SG: Space Group 
MWP: Maximal Wyckoff Position 
WM: Wyckoff multiplicity in the primitive cell 
PG: Point group number of the site-symmetry 
Irrep: Name of the Irrep of the site-symmetry for each BR 

KR: 1 for PEBR, 2 for EBR (f and s) 
Bands: Total number of bands 
Re: 1 for TRS at each k, 2 for connection with its conjugate 
E: e for elementary, c for composite 
PE: e for elementary, c for composite 
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Materials? 
We tabulated all the different EBRs (10403) of all the 230 SG. 
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SG Mat. SG Mat. SG Mat. SG Mat. SG Mat.

2 P 1̄ IrTe2 92 P41212 La5Si4 146 R3 SnAu5 178 P6122 Ir3Zr5 221 Pm3̄m LaIn3

4 P21 Ge2LaPt2 100 P4bm La5S7 147 P 3̄ NW2 180 P6222 Ge2Ta 223 Pm3̄n IrTi3
13 P2/c AuCrTe4 103 P4cc TaTe4 148 R3̄ Ir3Te8 182 P6322 Ni3N 224 Pn3̄n AgO2

14 P21/c AgF4Na2 109 I41md LaPtSi 149 P312 TiO3 185 P63cm IrMg3 225 Fm3̄m BiLa
26 Pmc21 In4LaPd2 113 P 4̄21m Na5Sn 150 P321 Li7Pb2 186 P63mc Au3Sr7 226 Fm3̄c NaZn13
34 Pnn2 CoTe2 120 I 4̄c2 K(SnAu2)2 152 P3121 Ga3Ni13Ge6 187 P 6̄m2 LiZnGe 227 Fd3̄m RbBi2
36 Cmc21 AsNi 122 I 4̄d FeAgS2 155 R32 Ni3S2 188 P 6̄c2 LiScI3 230 Ia3̄d Ga4Ni3
39 Aem2 LaS 123 P4/mmm InSePd5 157 P31m AuCd 189 P 6̄2m GaAg2
43 Fdd2 Ge5Y3 128 P4/mnc CSc3 159 P31c IrLi2Si3 190 P 6̄2c HfSnRh
52 Pnna Bi3Sr2 129 P4/nmm LaTe2 160 R3m As3Sn4 191 P6/mmm Ga2La
55 Pbam Al3Pt5 130 P4/ncc Ge3La5 161 R3c Li2ReO3 193 P63̄/mcm Sr5Sb3

58 Pnnm AlAu2 131 P42/mmc La(BC)2 162 P 3̄1m Ag5(PbO3)2 194 P63̄/mmc Ge3Li2Zn
59 Pnmm Ag3Sn 136 P42/mnm ReO2 164 P 3̄m1 Ag2F 198 P213 NiAsS
61 Pbca AgF2 138 P42/mcm Ge7La11Mg2 165 P 3̄c1 Ca5CuPb3 200 Pm3̄ Au6In5Na2
62 Pnma AgSr 139 I4/mmm LiTlPd2 166 R3̄m Zr2Te2P 205 Pa3̄ PdN2

63 Cmcm BiZr 140 I4/mcm Te3Tl5 167 R3̄c Ir3Mg13 206 Ia3̄ Mg3Bi2
64 Cmce Al3Ge4La2 141 I41/amd NiTi2 173 P63 AlCaSi 212 P4332 BaSi2
65 Cmce Al3Ge4La2 142 I41/acd IrSn4 174 P 6̄ Li2Ni12P7 213 P4232 Ni2W3N
74 Imma La3Pd4Si 143 P3 TiNi 175 P6/m Rb4SnTe4 214 P4232 La3SbI3
84 P42/m AlNi4Zr5 144 P31 IrGe4 176 P63/m V3S4 215 P 4̄3m Li8Al3Si5

TABLE S15. Excerpt of semimetal candidates, with electron filling smaller than the number of bands in the smallest PEBR.
This criteria ensures that all materials shown are partially filled (semi-)metals with SOC. A complete list will be presented in
a future work.

VII. TABLE OF EBRS AND PEBRS

Here we give the table of elementary and physically elementary band representations induced from the maximal
Wyko↵ positions in all 230 space groups in a condensed form. The column labeled “SG” gives the space group number.
“MWP” gives the standard name of the maximal Wycko↵ position, and “WM” gives its multiplicity in the primitive
cell. “PG” is the point group number of for the site symmetry group, and “Irrep” gives the name of the site-symmetry
group representation from which each band representation is induced. The reperesentations are labelled using the
notation of Stokes, Cordes, and Campbell51. The column “Dim” denotes the dimension of the point stabilizer group
irrep. The column “KR” denotes whether the band representation is also a physical band representation. Those
with a “1” in this column are PEBRs as is, Those with a “2” join with copies of themselves when TR symmetry is
included. Finally, EBRs labelled by “f” (for first) pair with their conjugate BR labelled by “s” (and listed directly
below) when TR symmetry is added. The column labelled “Bands” gives the total number of bands in the physical
band representation (to obtain the number of bands in the EBR without TR, divide this number by 1 if the entry
in KR is 1, and 2 otherwise). The column “Re” indicates whether the given band representation can be made time-
reversal invariant in momentum space: a 1 in this column indicates that TR symmetry is satisfied at each k point,
while a 2 indicates that the given band representation must be connected in momentum space with its TR conjugate.
In particular, those band representations induced from 1d site-symmetry representations and with a 1 in the “Re”
column are prime candidates for topological insulators, as discussed in Section IV. A of the main text. Finally, the
columns “E” and “PE” indicate whether the given band representation is an exception (in the language of Sec. I and
Tables S10, S11, and S12), with and without TR symmetry respectively. An “e” in either of these columns indicates
elementary, while a “c” indicates composite. This full set of data can be accessed in uncondensed form through the
BANDREP program on the Bilbao Crystallographic Server17.

SG MWP WM PG Irrep Dim KR Bands Re E PE SG MWP WM PG Irrep Dim KR Bands Re E PE

1 1a 1 1 �1 1 1 1 1 e e 131 2d 2 8 ��
2 1 1 2 1 e e

1 1a 1 1 �̄2 1 2 2 2 e e 131 2d 2 8 �+
4 1 1 2 1 e e

2 1a 1 2 �+
1 1 1 1 1 e e 131 2d 2 8 ��

4 1 1 2 1 e e
2 1a 1 2 ��

1 1 1 1 1 e e 131 2d 2 8 �+
3 1 1 2 1 e e

2 1a 1 2 �̄3 1 2 2 2 e e 131 2d 2 8 ��
3 1 1 2 1 e e

2 1a 1 2 �̄2 1 2 2 2 e e 131 2d 2 8 �̄5 2 1 4 1 e e
2 1b 1 2 �+

1 1 1 1 1 e e 131 2d 2 8 �̄6 2 1 4 1 e e
2 1b 1 2 ��

1 1 1 1 1 e e 131 2e 2 14 �1 1 1 2 1 e e
2 1b 1 2 �̄3 1 2 2 2 e e 131 2e 2 14 �4 1 1 2 1 e e

Classification: 2 indices (m,n)
• Type(1,1): Fermi at single EBR ➔ Gap ➔ TI 
• Type(1,2): EBR at Fermi ➔ Gap ➔ 2 PEBRs ➔ TIs 
• Type(2,2): More than one EBR at Fermi ➔ Gap closes and reopens ➔ 2 PEBRs  
• Semimetals: electron number is a fraction of the EBR connectivity
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FIG. S7. Band structures for new topological insulators and semimetals. (a) shows the band structure for IrTe2 in P 3̄m1 (164).
The red circle highlights the type-II Dirac point near the Fermi level. (b) Shows the band structure for the narrow-gap weak
topological insulator CNb2 in the same space group, with the topologically nontrivial valence bands shown in red. (c) gives the
band structure for unstrained Pb2O in Pn3̄m (224). The isolated group of bands near �3.5eV shown in red does not form a
BR, and hence are topological. (d) gives the band structure of Pb2O under uniaxial strain, which opens a topological gap near
the Fermi level. Finally, (e) gives the band structure for Cu3TeO6 in Ia3̄ (206). The twenty-four bands at the Fermi level in
this material are half filled, and form the highest-dimensional PEBR allowed for any of the 230 space groups.

allow us to identify 58 new topological insulator candidates in the distorted Pnma (62): LaSbTe31, SrZnSb2, and
AAgX2 with A a rare earth metal and X=P,As,Sb,Bi.

In Subsection VC we present realizations of sixteen-fold connected metals, where crystal symmetries force sixteen
bands to be connected throughout the BZ. These metals can realize exotic filling fractions (7/8 in our example) which
may allow for interesting phenomena when interactions are included.

Using our method, we were also able to identify several other interesting classes of compounds, a detailed analysis
of which we defer to Ref. 32 so as not to overburden the reader. First, we have identified three new Dirac semimetals
IrTe233, NiTe2, and HfTe2 in P 3̄m1 (164), the symmetry group of buckled graphene). While Dirac semimetals similar
material families have been analyzed recently by others34, here we have used our powerful connectivity theory to
find candidate materials with Dirac points at or very near the Fermi level, as shown in Fig. S7a. Also in this space
group, we identify CNb235 as a promising topological insulator candidate. We show its band structure in Fig. S7b.
Additionally, we have identified topological bands below the Fermi level in Pb2O36 in Pn3̄m (224), shown in Fig. S7c.
Furthermore, we predict that under uniaxial strain in the z-direction, the strucure distorts to P42/nnm (134), and
a topological gap opens near the Fermi level. This is shown in Fig. S7d. Lastly, we find a candidate for a 24-fold

connected symmetry protected semimetal, Cu3TeO6
37, in Ia3̄ (206). In this material, a twenty-four band EBR is half-

filled at the Fermi level, realizing the most interconnected EBR allowed by symmetry. We show the band structure
in Fig. S7e. Additional candidates for exotic metals can be found in Table S16.

A. Cu2ABX4

The Cu2ABX4 materials all belong to the symmorphic tetragonal space group I4̄2m (121). This group is body-
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FIG. S7. Band structures for new topological insulators and semimetals. (a) shows the band structure for IrTe2 in P 3̄m1 (164).
The red circle highlights the type-II Dirac point near the Fermi level. (b) Shows the band structure for the narrow-gap weak
topological insulator CNb2 in the same space group, with the topologically nontrivial valence bands shown in red. (c) gives the
band structure for unstrained Pb2O in Pn3̄m (224). The isolated group of bands near �3.5eV shown in red does not form a
BR, and hence are topological. (d) gives the band structure of Pb2O under uniaxial strain, which opens a topological gap near
the Fermi level. Finally, (e) gives the band structure for Cu3TeO6 in Ia3̄ (206). The twenty-four bands at the Fermi level in
this material are half filled, and form the highest-dimensional PEBR allowed for any of the 230 space groups.

allow us to identify 58 new topological insulator candidates in the distorted Pnma (62): LaSbTe31, SrZnSb2, and
AAgX2 with A a rare earth metal and X=P,As,Sb,Bi.

In Subsection VC we present realizations of sixteen-fold connected metals, where crystal symmetries force sixteen
bands to be connected throughout the BZ. These metals can realize exotic filling fractions (7/8 in our example) which
may allow for interesting phenomena when interactions are included.

Using our method, we were also able to identify several other interesting classes of compounds, a detailed analysis
of which we defer to Ref. 32 so as not to overburden the reader. First, we have identified three new Dirac semimetals
IrTe233, NiTe2, and HfTe2 in P 3̄m1 (164), the symmetry group of buckled graphene). While Dirac semimetals similar
material families have been analyzed recently by others34, here we have used our powerful connectivity theory to
find candidate materials with Dirac points at or very near the Fermi level, as shown in Fig. S7a. Also in this space
group, we identify CNb235 as a promising topological insulator candidate. We show its band structure in Fig. S7b.
Additionally, we have identified topological bands below the Fermi level in Pb2O36 in Pn3̄m (224), shown in Fig. S7c.
Furthermore, we predict that under uniaxial strain in the z-direction, the strucure distorts to P42/nnm (134), and
a topological gap opens near the Fermi level. This is shown in Fig. S7d. Lastly, we find a candidate for a 24-fold

connected symmetry protected semimetal, Cu3TeO6
37, in Ia3̄ (206). In this material, a twenty-four band EBR is half-
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FIG. S7. Band structures for new topological insulators and semimetals. (a) shows the band structure for IrTe2 in P 3̄m1 (164).
The red circle highlights the type-II Dirac point near the Fermi level. (b) Shows the band structure for the narrow-gap weak
topological insulator CNb2 in the same space group, with the topologically nontrivial valence bands shown in red. (c) gives the
band structure for unstrained Pb2O in Pn3̄m (224). The isolated group of bands near �3.5eV shown in red does not form a
BR, and hence are topological. (d) gives the band structure of Pb2O under uniaxial strain, which opens a topological gap near
the Fermi level. Finally, (e) gives the band structure for Cu3TeO6 in Ia3̄ (206). The twenty-four bands at the Fermi level in
this material are half filled, and form the highest-dimensional PEBR allowed for any of the 230 space groups.

allow us to identify 58 new topological insulator candidates in the distorted Pnma (62): LaSbTe31, SrZnSb2, and
AAgX2 with A a rare earth metal and X=P,As,Sb,Bi.

In Subsection VC we present realizations of sixteen-fold connected metals, where crystal symmetries force sixteen
bands to be connected throughout the BZ. These metals can realize exotic filling fractions (7/8 in our example) which
may allow for interesting phenomena when interactions are included.

Using our method, we were also able to identify several other interesting classes of compounds, a detailed analysis
of which we defer to Ref. 32 so as not to overburden the reader. First, we have identified three new Dirac semimetals
IrTe233, NiTe2, and HfTe2 in P 3̄m1 (164), the symmetry group of buckled graphene). While Dirac semimetals similar
material families have been analyzed recently by others34, here we have used our powerful connectivity theory to
find candidate materials with Dirac points at or very near the Fermi level, as shown in Fig. S7a. Also in this space
group, we identify CNb235 as a promising topological insulator candidate. We show its band structure in Fig. S7b.
Additionally, we have identified topological bands below the Fermi level in Pb2O36 in Pn3̄m (224), shown in Fig. S7c.
Furthermore, we predict that under uniaxial strain in the z-direction, the strucure distorts to P42/nnm (134), and
a topological gap opens near the Fermi level. This is shown in Fig. S7d. Lastly, we find a candidate for a 24-fold

connected symmetry protected semimetal, Cu3TeO6
37, in Ia3̄ (206). In this material, a twenty-four band EBR is half-

filled at the Fermi level, realizing the most interconnected EBR allowed by symmetry. We show the band structure
in Fig. S7e. Additional candidates for exotic metals can be found in Table S16.
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(�ax̂+ aŷ + cẑ), e2 =

1

2
(ax̂� aŷ + cẑ), e3 =

1

2
(ax̂+ aŷ � cẑ). (S53)
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FIG. S7. Band structures for new topological insulators and semimetals. (a) shows the band structure for IrTe2 in P 3̄m1 (164).
The red circle highlights the type-II Dirac point near the Fermi level. (b) Shows the band structure for the narrow-gap weak
topological insulator CNb2 in the same space group, with the topologically nontrivial valence bands shown in red. (c) gives the
band structure for unstrained Pb2O in Pn3̄m (224). The isolated group of bands near �3.5eV shown in red does not form a
BR, and hence are topological. (d) gives the band structure of Pb2O under uniaxial strain, which opens a topological gap near
the Fermi level. Finally, (e) gives the band structure for Cu3TeO6 in Ia3̄ (206). The twenty-four bands at the Fermi level in
this material are half filled, and form the highest-dimensional PEBR allowed for any of the 230 space groups.

allow us to identify 58 new topological insulator candidates in the distorted Pnma (62): LaSbTe31, SrZnSb2, and
AAgX2 with A a rare earth metal and X=P,As,Sb,Bi.

In Subsection VC we present realizations of sixteen-fold connected metals, where crystal symmetries force sixteen
bands to be connected throughout the BZ. These metals can realize exotic filling fractions (7/8 in our example) which
may allow for interesting phenomena when interactions are included.

Using our method, we were also able to identify several other interesting classes of compounds, a detailed analysis
of which we defer to Ref. 32 so as not to overburden the reader. First, we have identified three new Dirac semimetals
IrTe233, NiTe2, and HfTe2 in P 3̄m1 (164), the symmetry group of buckled graphene). While Dirac semimetals similar
material families have been analyzed recently by others34, here we have used our powerful connectivity theory to
find candidate materials with Dirac points at or very near the Fermi level, as shown in Fig. S7a. Also in this space
group, we identify CNb235 as a promising topological insulator candidate. We show its band structure in Fig. S7b.
Additionally, we have identified topological bands below the Fermi level in Pb2O36 in Pn3̄m (224), shown in Fig. S7c.
Furthermore, we predict that under uniaxial strain in the z-direction, the strucure distorts to P42/nnm (134), and
a topological gap opens near the Fermi level. This is shown in Fig. S7d. Lastly, we find a candidate for a 24-fold

connected symmetry protected semimetal, Cu3TeO6
37, in Ia3̄ (206). In this material, a twenty-four band EBR is half-

filled at the Fermi level, realizing the most interconnected EBR allowed by symmetry. We show the band structure
in Fig. S7e. Additional candidates for exotic metals can be found in Table S16.

A. Cu2ABX4

The Cu2ABX4 materials all belong to the symmorphic tetragonal space group I4̄2m (121). This group is body-
centered, and so we take for a basis of lattice vectors

e1 =
1

2
(�ax̂+ aŷ + cẑ), e2 =
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Pnma (62)

22

e1

e2

FIG. S12. Maximal Wycko↵ positions in the square net. The blue star indicates the a position at the 2D lattice sites, the red
diamond indicates the b position at the center of the square cell, and the black circles denote the c Wycko↵ position at the
middle of the edges.

B. Square net topological insulators

Next, we look at topological insulators of the type (1, 2) as defined in the main text. These materials are enforced
semimetals with a single partially filled elementary band representation without SOC, which then splits into a topo-
logically disconnected composite band representation when spin-orbit coupling is included. We consider square nets
of As, Sb, Sn, and Bi which form layered compounds in P4/nmm (129) and Pnma (62) (upon small distortion of the
squares). We find approximately 400 candidate materials of these types, discovered by targeting our method towards
the specific cases of orbitals which can create topological bands. In each of these classes, the relevant states near the
Fermi level come from the p-orbitals of the square-net atoms. The maximal positions within the square net layer are
still those shown in Fig. S12. Representative crystal structures for these compounds are shown in Figure S13.

a = b→ I4 /mmm a = b→ P4 / nmm
a ≠ b→ Pmmn

a ≠ b→ Pnma

CaMnBi2SrMnBi2 ZrSnTe SrZnSb2

Bi2

Sr

Bi1
Mn

Bi2

Ca

Mn
Bi1

Sn

Te

Zr
Sr

Zn
Sb1

Sb2

FIG. S13. Crystal structures for the Bi-square net class of topological insulators. The first and second structures show CaMnBi2
and ZrSnTe in space group P4/nmm (129). In CaMnBi2 the Bi2 atoms form the square net, while in ZrSnTe it is the Sn atoms.
The third structure shows SrZnSb2 in Pnma (62). Here it is the atoms labelled Sb2 which make up the slightly distorted square
net.

To analyze these materials, we first begin without SOC. Viewing the square net in isolation, we find that the Fermi
level sits between the pz orbital bonding and anti-bonding states, as shown for Bi in Figure S14. However, charge
transfer of two electrons per unit cell from the adjacent non-square net layers shown in Fig. S13 for each of these
materials fill the pz antibonding states, putting them below the Fermi level; at the Fermi level, the {px, py} bonding
states are filled, while the antibonding states are empty. However, in these materials, the {px, py} bonding and
antibonding states form a single, connected four (per-spin) band PEBR. Thus, the band structure of each quasi-2D
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(a) (b)

FIG. S15. Representative band structure for the bands in the Bi square net induced from {p
x

, p
y

} orbitals. (a) shows the
band structure without SOC, showing band crossings at the Fermi level. These gap with infinitesimal SOC into a topologically
nontrivial insulator, as shown in (b)
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FIG. S16. Representative band structures for new topologically nontrivial insulators in the distorted Bi- square net structure
group. (a) shows the band structure of the 3D weak topological insulator SrZnSb2, while (b) shows the band structure of the
3D weak topological insulator LaSbTe.

the same analysis holds whenever there is one occupied and one unoccupied little group representation at � without
SOC; this is generically true at half-filling. We thus deduce that for small spin-orbit coupling, these materials are
topological insulators.

The ubiquity of the square net structure in nature allows us to identify hundreds of topological insulators in
this class. In space group P4/nmm (129) we find materials in the class of ABX2, with A a rare earth metal,
B=Cu,Ag and X=Bi,As,Sb,P, for a total of 48 candidate materials. Furthermore, the recently discovered topological
phase in tetragonal bismuth falls into this class of square-net topological insulators39 [albeit in I4/mmm (139)].
Additionally, in P4/nmm (129) we find square-net compounds of the type ABX with A=Ti,Zr,Hf, or another rare
earth, B=Si,Ge,Sn,Pb, and X=Os,S,Se,Te. In total, this yields 328 candidate materials in this space group.

1. Distored Square Nets

Although our analysis has focused primarily on the idealized square net, we can show that topological behavior is
insensitive to lattice distortions. We can see this most clearly by examining crystal structures with distorted square
nets. In particular, we focus on Pnma (62), which is obtained from the idealized square net in P4/nmm (129)
after an in-plane C4 symmetry-breaking distortion, shown schematically in Fig. S13. We find the 58 new candidate
topological insulators LaSbTe, SrZnSb2, and AAgX2, for A a rare-earth metal and X=P,As,Sb,Bi. Representative band
structures are shown in Fig S16, where the topological gap can be clearly seen. We expect all these materials to share
a qualitatively similar topological band structure. We note empirically that the magnitude of this distortion appears
to be inversely correlated with the strength of spin-orbit-coupling of the atoms in the square net. We conjecture that
this is due to the fact that SOC alone lifts the electronic degeneracy that causes the distortion through the Jahn-Teller

- Without SOC these materials are filling enforced semimetals
- It splits into a topologically disconnected band representations when SOC is turned on

We found 58 new candidates: SrZnSb2 (a), LaSbTe (b), AAgX2 (A: rare earth metal, X: P, As, Sb Bi)

1 EBR without SOC
2 pEBR with SOC
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Outlook
• Predictive theory of topological bands that makes the link between real 

space orbitals and momentum space topology

• Gives a prescription on how to built topological bands from orbitals

• Finds a large amount of materials

• Magnetic symmetry groups are next
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