Odd-frequency superconductivity in Sr₂RuO₄ measured by Kerr effect

Annica Black-Schaffer

UPPSALA UNIVERSITET

NQS2017 workshop Kyoto, November 6th 2017

Outline

- Introduction to odd-frequency (ω) superconductivity
 SF, SN junctions
- Odd- ω bulk superconductivity in multiband systems
 - Simple two-band superconductors
- Odd- ω superconductivity and Kerr effect in Sr₂RuO₄

Different Phases of Matter

Ordered states \rightarrow symmetry of order parameter, Δ

Superconductivity: $\Delta \sim F = \langle \psi_{\alpha} \psi_{\beta} \rangle$

Different Phases of Matter

Ordered states \rightarrow symmetry of order parameter, Δ

Superconductivity: $\Delta \sim F = \langle \psi_lpha(t)\psi_eta(0)
angle$ ($t\leftrightarrow\omega$, frequency)

$\textbf{Odd-}\boldsymbol{\omega} \text{ Pairing}$

UPPSALA UNIVERSITET

BCS order parameter:
$$F(\mathbf{r}, t; \mathbf{r}', t' \rightarrow t) = \langle \psi(\mathbf{r}, t)\psi(\mathbf{r}', t' \rightarrow t) \rangle$$

vanishes for odd- ω pairing

Spin-singlet *s*-wave SC \rightarrow odd- ω spin-triplet *s*-wave pairing

- Long-range superconducting proximity effect in F
- *s*-wave = disorder robust

[1]: Eschrig, Phys. Today 64, 43 (2011)

Spin-singlet *s*-wave SC \rightarrow odd- ω spin-singlet *p*-wave pairing

- Only high-transparency junctions
- *p*-wave = only ballistic systems

[1]: Tanaka et al, PRL 99, 037005 (2007)

Odd-ω Bulk Superconductivity in Multiband Systems

- A clue from Bi₂Se₃
- Simple two-band superconductors

Superconducting Symmetries in Bi₂Se₃

UPPSALA UNIVERSITET

Singlet/triplet, spatial (s/p/d), even/odd- ω , even/odd orbital

	Superconductor		Even	-frequency	Odd-frequency		
Г	Basis function	J_z	Even-orbital	Odd-orbital	Even-orbital	Odd-orbital	
A_{1g}	$\psi = 1$	0	A_{1g} singlet,	-	-	A_{1g} singlet,	
			A_{2u} triplet (m _s = ±1)			A_{2u} triplet (m _s = ±1)	
B_{1g}	$\psi = k_x^2 - k_y^2$	± 2	B_{1g} singlet,	-	-	B_{1g} singlet,	
			B_{2u} triplet (m _s = ±1)			B_{2u} triplet (m _s = ±1)	
B_{2g}	$\psi = 2k_xk_y$	± 2	B_{2g} singlet,	-	-	B_{2g} singlet,	
			B_{1u} triplet (m _s = ±1)			B_{1u} triplet (m _s = ±1)	
A_{1u}	$\mathbf{d} = (k_x, k_y, 0)$	0	A_{1u} triplet (m _s = ±1)	A_{1g} triplet (m _s = 0)	A_{1g} triplet (m _s = 0)	A _{1u} triplet (m _s = ± 1)	
A_{2u}	$\mathbf{d} = (k_y, -k_x, 0)$	0	A_{2u} triplet (m _s = ±1),	-	-	A _{2u} triplet (m _s = ± 1),	
			A_{1g} singlet			A_{1g} singlet	
B_{1u}	$\mathbf{d} = (k_x, -k_y, 0)$	± 2	B_{1u} triplet (m _s = ±1),	${ m B_{1g}} { m triplet} ({ m m}_s=0)$	B_{1g} triplet (m _s = 0)	B_{1u} triplet (m _s = ±1),	
			B_{2g} singlet			B_{2g} singlet	
B_{2u}	$\mathbf{d} = (k_y, k_x, 0)$	± 2	B_{2u} triplet (m _s = ±1),	B_{2g} triplet (m _s = 0)	B_{2g} triplet (m _s = 0)	B_{2u} triplet (m _s = ±1),	
			B_{1g} singlet			B_{1g} singlet	
E_{2u}^+	$\mathbf{d} = (0, 0, k_x + ik_y)$	1	E_{2u}^+ triplet (m _s = 0)	A_{1g} triplet (m _s = 1),	A_{1g} triplet (m _s = 1),	E_{2u}^+ triplet (m _s = 0)	
				$B_{1g}+iB_{2g}$ triplet (m _s = -1)	$B_{1g}+iB_{2g}$ triplet (m _s = -1)		
E_{2u}^-	$\mathbf{d} = (0, 0, \overline{k_x - ik_y})$	-1	E_{2u}^{-} triplet (m _s = 0)	A_{1g} triplet (m _s = -1),	A_{1g} triplet (m _s = -1),	E_{2u}^{-} triplet (m _s = 0)	
				$B_{1g} - iB_{2g}$ triplet (m _s = 1)	$B_{1g} - iB_{2g}$ triplet (m _s = 1)		

ABS and Balatsky, PRB 87, 220506(R) (2013)

Frequency and Orbital

UNIVERSITET

Complete reciprocity in oddness in frequency and orbital index

Superconductor			Ever	n-frequency	Odd-frequency		
Г	Basis function	J_z	Even-orbital	Odd-orbital	Even-orbital	Odd-orbital	
A _{1g}	$\psi = 1$	0	A_{1g} singlet,	-	-	A_{1g} singlet,	
			A_{2u} triplet (m _s = ±1)			A_{2u} triplet (m _s = ±1)	
B_{1g}	$\psi = k_x^2 - k_y^2$	± 2	B_{1g} singlet,	-	-	B_{1g} singlet,	
	Jan		B_{2u} triplet (m _s = ±1)			B_{2u} triplet (m _s = ±1)	
B _{2g}	$\psi=2k_xk_y$	± 2	B_{2g} singlet,	-	-	B_{2g} singlet,	
			B_{1u} triplet (m _s = ±1)			B_{1u} triplet (m _s = ±1)	
A_{1u}	$\mathbf{d}=(k_x,k_y,0)$	0	A _{1u} triplet (m _s = ± 1)	A_{1g} triplet (m _s = 0)	A_{1g} triplet (m _s = 0)	A_{1u} triplet (m _s = ±1)	
A_{2u}	$\mathbf{d} = (k_y, -k_x, 0)$	0	A_{2u} triplet (m _s = ±1).	-	-	A_{2u} triplet (m _s = ±1),	
			A_{1g} singlet			A_{1g} singlet	
B_{1u}	$\mathbf{d} = (k_x, -k_y, 0)$	± 2	B_{1u} triplet (m _s = ±1),	B_{1g} triplet (m _s = 0)	B_{1g} triplet (m _s = 0)	B_{1u} triplet (m _s = ±1),	
			B_{2g} singlet			B_{2g} singlet	
B_{2u}	$\mathbf{d}=(k_y,k_x,0)$	± 2	B_{2u} triplet (m _s = ±1),	B_{2g} triplet (m _s = 0)	B_{2g} triplet (m _s = 0)	B_{2u} triplet (m _s = ±1),	
			B_{1g} singlet			B_{1g} singlet	
E_{2u}^{+}	$\mathbf{d} = (0, 0, k_x + ik_y)$	1	E_{2u}^+ triplet (m _s = 0)	A_{1g} triplet (m _s = 1),	A_{1g} triplet (m _s = 1),	E_{2u}^+ triplet (m _s = 0)	
				$B_{1g} + i B_{2g}$ triplet (m _s = -1)	$B_{1g} + i B_{2g}$ triplet (m _s = -1)		
E_{2u}^{-}	$\mathbf{d} = (0, 0, k_x - ik_y)$	-1	E_{2u}^- triplet (m _s = 0)	A _{1g} triplet $(m_s = -1)$,	A _{1g} triplet $(m_s = -1)$,	E_{2u}^{-} triplet (m _s = 0)	
				$B_{1g} - iB_{2g}$ triplet (m _s = 1)	$B_{1g} - iB_{2g}$ triplet (m _s = 1)		

ABS and Balatsky, PRB 87, 220506(R) (2013)

Multiband Superconductors

- S: Spin (even: spin-triplet; odd: spin-singlet)
- P: Spatial parity (even: *s,d*-wave; odd: *p,f*-wave)
- O: Orbital or band parity (even; odd orbital)
- T: Time (even; odd-frequency)

S = 0	P	Т	Ο	S = 1	P	Т	0
even- ω	+	H	A	even- ω			Ð
even- ω	—	+	_	even- ω	+	+	—
odd- ω	+		$\overline{\bigcirc}$	odd- ω	+	—	+
odd- ω			+	odd- ω			$ \rightarrow $

ABS and Balatsky, PRB 88, 104514 (2013)

Simple Two-Band Superconductor

$$H_{ab} = \sum_{k\sigma} \varepsilon_{a}(k)a_{k\sigma}^{\dagger}a_{k\sigma} + \varepsilon_{b}(k)b_{k\sigma}^{\dagger}b_{k\sigma}$$

$$+ \sum_{k} \Delta_{a}(k)a_{k\uparrow}^{\dagger}a_{-k\downarrow}^{\dagger} + \Delta_{b}(k)b_{k\uparrow}^{\dagger}b_{-k\downarrow}^{\dagger} + \text{H.c.} \qquad \text{Interband}$$

$$H_{cd} = \sum_{k\sigma} \varepsilon_{c}(k)c_{k\sigma}^{\dagger}c_{k\sigma} + \varepsilon_{d}(k)d_{k\sigma}^{\dagger}d_{k\sigma} \quad \text{Diagonal bands}$$

$$+ \sum_{k} \Delta_{c}(k)c_{k\uparrow}^{\dagger}c_{-k\downarrow}^{\dagger} + \Delta_{d}(k)d_{k\uparrow}^{\dagger}d_{-k\downarrow}^{\dagger} + \text{H.c.} \quad \text{Intraband pairing}$$

$$+ \sum_{k} \Delta_{cd}(k)[c_{k\uparrow}^{\dagger}d_{-k\downarrow}^{\dagger} + d_{k\uparrow}^{\dagger}c_{-k\downarrow}^{\dagger}] + \text{H.c.} \quad \text{Interband pairing}$$

$$\Delta_{cd} = \frac{(\Delta_{b} - \Delta_{a})|\Gamma|}{\sqrt{(\varepsilon_{a} - \varepsilon_{b})^{2} + 4|\Gamma|^{2}}}$$
ABS and Balatsky, PRB 88, 104514 (2013)

Time-Dependent Pairing

Time-ordered s-wave interband pairing:

$$F^{\pm}(\tau) = \frac{1}{2N_{\mathbf{k}}} \sum_{\mathbf{k}} \mathcal{T}_{\tau} \langle c_{-\mathbf{k}\downarrow}(\tau) d_{\mathbf{k}\uparrow}(0) \pm d_{-\mathbf{k}\downarrow}(\tau) c_{\mathbf{k}\uparrow}(0) \rangle$$

 $F^e = F^+(\tau
ightarrow 0^+)$ Even- ω , even-interband pairing

ABS and Balatsky, PRB 88, 104514 (2013)

Komendova, Balatsky, and ABS, PRB 92, 04517 (2015)

Interband Pairing

Perturbation theory to infinite order in Γ

Odd-interband:
$$F_{12}^{\text{odd}}(k, i\omega) = \frac{F_{12} - F_{21}}{2} = i\omega \Gamma(\Delta_1 - \Delta_2)/D$$

Even-interband: $F_{12}^{\text{even}}(k, i\omega) = \frac{F_{12} + F_{21}}{2} = \Gamma(\Delta_1 \varepsilon_2 - \Delta_2 \varepsilon_1)/D$
 $\begin{pmatrix} D = (\omega^2 + E_1^2)(\omega^2 + E_2^2) - \Gamma^2[2(\varepsilon_1 \varepsilon_2 - \omega^2) - \Delta_2^* \Delta_1 - \Delta_1^* \Delta_2] + \Gamma^4 \\ E_j^2 = \varepsilon_j^2 + |\Delta_j|^2 \end{pmatrix}$

Odd-frequency pairing: $\Gamma \neq 0$, $\Delta_1 \neq \Delta_2$

Komendova, Balatsky, and ABS, PRB 92, 04517 (2015)

Odd-frequency pairing: $\Gamma \neq 0$, $\Delta_1 \neq \Delta_2$

Komendova, Balatsky, and ABS, PRB 92, 04517 (2015)

Odd- ω **Superconductivity in Sr**₂**RuO**₄

- Superconductivity in Sr₂RuO₄
- Two- and three-orbital models
- Odd- ω pairing measured by Kerr effect

Strontium Ruthenate, Sr₂RuO₄

Superconductivity in a layered perovskite without copper

- Y. Maeno^{*}, H. Hashimoto^{*}, K. Yoshida^{*}, S. Nishizaki^{*}, T. Fujita^{*}, J. G. Bednorz[†] & F. Lichtenberg[†][‡] Nature 372, 532 (1994)
- T_c = 1.5K
- Non-s-wave (disorder sensitive)
- Spin-triplet (neutron scattering, Knight shift)
- Breaks time-reversal symmetry (Kerr effect)

→ Spin-triplet chiral p_x +i p_y -wave symmetry

Properties of Sr₂RuO₄

Three Fermi surfaces (FSs)

Three Ru 4d orbitals:

- $xy \rightarrow \gamma$ (electron-like)
- *xz*, *yz* $\rightarrow \beta$ (electron-like) and α (hole-like)

[1]: Damascelli et al, PRL 85, 5194 (2000), [2]: Phys. Today 54 (2001), [3]: Mackenzie and Maeno, RMP 75, 657 (2003)

Superconducting state

 $\begin{pmatrix} \Delta_{\uparrow\uparrow}(\mathbf{k}) & \Delta_{\uparrow\downarrow}(\mathbf{k}) \\ \Delta_{\downarrow\uparrow}(\mathbf{k}) & \Delta_{\downarrow\downarrow}(\mathbf{k}) \end{pmatrix} = \begin{pmatrix} -d_x(\mathbf{k}) + id_y(\mathbf{k}) & \psi(\mathbf{k}) + d_z(\mathbf{k}) \\ -\psi(\mathbf{k}) + d_z(\mathbf{k}) & d_x(\mathbf{k}) + id_y(\mathbf{k}) \end{pmatrix}$

Triplet **d**-vector for chiral state

 $\mathbf{d}(\mathbf{k}) = (0, 0, k_x \pm ik_y)$

Kerr Effect in Sr₂RuO₄

Reflected light has a slightly rotated plane of polarization if material breaks time-reversal symmetry (TRS)

UPPSALA UNIVERSITET

SC state in Sr₂RuO₄ breaks TRS But ...

Clean single-band chiral SC has zero Kerr effect

→ Interband pairing with relative superconducting phases [2]

Electric-field driven interband transitions with relative SC phases \rightarrow finite transverse Hall current response \rightarrow finite Kerr effect

[1]: Xia et al, PRL 97, 167002 (2006), [2]: Taylor and Kallin, PRL 108, 157001 (2012); Wysokinski et al, PRL 108, 077004 (2012)

Two-Orbital Model for Sr₂RuO₄

Hamiltonian $\sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} \hat{H}_{\mathbf{k}} \Psi_{\mathbf{k}}$ with $\hat{H}_{\mathbf{k}} = \begin{pmatrix} \hat{H}_{0}(\mathbf{k}) & \dot{\Delta}(\mathbf{k}) \\ \dot{\Delta}^{\dagger}(\mathbf{k}) & -\hat{H}_{0}(-\mathbf{k}) \end{pmatrix}$

 $\mathbf{h} \quad H_{\mathbf{k}} = \begin{pmatrix} \Pi_0(\mathbf{k}) & \Delta(\mathbf{k}) \\ \check{\Delta}^{\dagger}(\mathbf{k}) & -\hat{H}_0(-\mathbf{k}) \end{pmatrix}$ $\Psi_{\mathbf{k}}^{\dagger} = (c_{\mathbf{k}\uparrow 1}^{\dagger} c_{\mathbf{k}\uparrow 2}^{\dagger} c_{-\mathbf{k}\downarrow 1} c_{-\mathbf{k}\downarrow 2})$

• Spin-triplet $\mathbf{d} \parallel \hat{\mathbf{z}}$

 $\rightarrow \alpha, \beta$ bands

•

xz (1),*yz* (2) orbitals

Odd- ω **Pairing and Kerr Effect**

Odd- ω , odd-interorbital pairing:

$$F_{12} - F_{21} = i\omega [(\Delta_2 - \Delta_1)\epsilon_{12} + \Delta_{12}(\xi_1 - \xi_2)]/D \qquad (D \sim \omega^2)$$

Interorbital hybridization + gap asymmetry

Interorbital pairing + dispersion asymmetry

Kerr effect: [1]

$$\sigma_H \propto \epsilon_{12} \operatorname{Im}(\Delta_1^* \Delta_2) + \xi_1 \operatorname{Im}(\Delta_2^* \Delta_{12}) - \xi_2 \operatorname{Im}(\Delta_1^* \Delta_{12})$$

Interorbital hybridization + gap asymmetry

Interorbital pairing + dispersion asymmetry

\rightarrow Intrinsic Kerr effect evidence of odd- ω superconductivity

Komendova and ABS, PRL 119, 087001 (2017), [1]: Taylor and Kallin, PRL 108, 157001 (2012)

Generic Three-Orbital Model

$$\hat{H}_{0}(\mathbf{k}) = \begin{pmatrix} \xi_{1} & \epsilon_{12} & \epsilon_{13} \\ \epsilon_{12} & \xi_{2} & \epsilon_{23} \\ \epsilon_{13} & \epsilon_{23} & \xi_{3} \end{pmatrix}, \quad \check{\Delta}(\mathbf{k}) = \begin{pmatrix} \Delta_{1} & \Delta_{12} & \Delta_{13} \\ \Delta_{12} & \Delta_{2} & \Delta_{23} \\ \Delta_{13} & \Delta_{23} & \Delta_{3} \end{pmatrix}$$

xy (1), *xz* (2),*yz* (3) orbitals \rightarrow γ , α , β bands

General interorbital pairing:

 $F_{AS} = \sum_{i,j,k=1,\dots,N} \epsilon_{ijk} F_{ij}$ $F_{AS}(-\omega) = -F_{AS}(\omega)$

odd- ω , odd-interorbital

Komendova and ABS, PRL 119, 087001 (2017)

$$F_S = \sum_{i \neq j=1,\dots,N} F_{ij}$$

$$F_S(-\omega) = F_S(\omega)$$

even- ω , even-interorbital

Examples Odd-ω Pairing

• No interorbital pairing and $\epsilon_{ij} = \Gamma$:

 $F_{\text{odd}} = 2\Gamma i\omega [\Delta_1(\epsilon_2 - \epsilon_3)(\epsilon_2 + \epsilon_3 + \Gamma) + |\Delta_1|^2 (\Delta_3 - \Delta_2) + \text{two cyclic permutations}]/D_3$

- Only $\epsilon_{23} \neq 0, \Delta_{23} \neq 0$ (xz, yz $\Rightarrow \alpha, \beta$ bands with hybridization, xy $\Rightarrow \gamma$ band) $F_{\text{odd}} = 2i\omega[\Delta_{23}(\epsilon_3 - \epsilon_2) + \epsilon_{23}(\Delta_3 - \Delta_2)]/D'_3$
- → Odd-ω pairing requires only limited interorbital processes, exactly same as finite Kerr rotation [1]

Komendova and ABS, PRL 119, 087001 (2017), [1]: Gradhand et al, PRB 88, 094504 (2013)

Pair Amplitudes in Sr₂RuO₄

Odd- ω Pairing in k-Space

- Chiral *p*-wave symmetry
- Peaked at α , β hybridization
- Nodal structure dependent on exact parameters

Komendova and ABS, PRL 119, 087001 (2017)

Summary

- Bulk odd- ω superconductivity in multiband systems
 - Finite interband/orbital pairing or hybridization
- Odd- ω pairing in Sr₂RuO₄ measured by Kerr effect
- Future directions:
 - Other odd- ω bulk superconductors (UPt₃, ...)
 - Consequences of odd- ω pairing?
 - Band/orbital \rightarrow layer, wires, ...

Acknowledgements

In Uppsala:

Lucia Komendova (UU → Belgium)

Christopher Triola

Dushko Kuzmanovski

Fariborz Parhizgar

Collaborators:

Alexander Balatsky (Nordita/UConn) Jacob Linder (NTNU)

Financial support:

WALLENBERG ACADEMY FELLOWS

Vetenskapsrådet

Swedish Foundation for Strategic Research

Summary

- Bulk odd- ω superconductivity in multiband systems
 - Finite interband/orbital pairing or hybridization
- Odd- ω pairing in Sr₂RuO₄ measured by Kerr effect
- Future directions:
 - Other odd- ω bulk superconductors (UPt₃, ...)
 - Consequences of odd- ω pairing?
 - Band/orbital \rightarrow layer, wires, ...