Novel Quantum States in Condensed Matter at Yukawa Institute of Theoretical Physics 16 November, 2017,

Flat-band Andreev bound states and Odd-frequency pairs

Yasu Asano (Hokkaido Univ.)

MEXT of Japan

Core-to-core by JSPS

Outline

Flat-band Andreev bound states in a nodal SC

Conductance in a NS hybrid Paramagnetic response of a superconducting disk Relation to Majorana physics Tunable φ -junction with a QAHI

Summary

Unconventional Superconductors

Sign change is necessary to be nontrivial Nodal! (out of the ten-fold symmetry classes)

Andreev bound states with flat dispersion at a clean surface x=0

Topological characterization

Dimensional reduction

M. Sato. et. al, PRB(2011)

Fix ky and consider 1D BZ

$$s_{\pm} = \frac{\Delta(\pm k_x, k_y)}{|\Delta(\pm k_x, k_y)|}$$

$$H = \begin{bmatrix} \xi & \Delta(\mathbf{k}) \\ \Delta(\mathbf{k}) & -\xi \end{bmatrix} = \Delta(\mathbf{k})\tau_1 + \xi\tau_3$$

 $w_{1D}(k_y) = \frac{i}{2\pi} \int_{-\pi}^{\pi} dk_x \operatorname{Tr}[\tau_2 H(k_x)^{-1} \partial_{k_x} H(k_x)] = \frac{1 - s_+ s_-}{2} s_+$

$$w_{1D} = 1 \text{ or } -1$$

Experiment Theory Clean (Translational symmetry)

Potential disorder

High degeneracy — High symmetry

What happen on the flat ZESs under the potential disorder? How the flat ZESs affect observable values?

Zero-bias conductance in a NS junction

$$\begin{split} \hat{H}_{\text{BdG}} &= \begin{bmatrix} \xi_{r} + V(r) & \Delta(r) \\ \Delta(r) & -\xi_{r} - V(r) \end{bmatrix}, \\ \xi_{r} &= -\frac{\hbar^{2}\nabla^{2}}{2m} - \mu_{F}, \\ V(r) &= V_{\text{imp}}(r)\Theta(-x)\Theta(x+L) + v_{0}\delta(x), \\ \Delta(r) &= \begin{cases} \Delta, & s \\ -2\Delta\partial_{x}\partial_{y}/k_{F}^{2}, & d_{xy} \\ -i\Delta\partial_{x}/k_{F} & p_{x} \\ -i\Delta\partial_{x}(k_{F}^{2} + 2\partial_{y}^{2})/k_{F}^{3}, & f, \end{cases} \end{split}$$

Classical Ohm's law

 $G_{\rm NS}^{-1} = R_{\rm NS} = R_B + R_N$

 $\lim_{R_N \to \infty} G_{\rm NS} = 0$
would be expected

Quasiclassical Usadel equation in N

$$\hbar D \frac{\partial^2 \theta(x,\epsilon)}{\partial x^2} + 2i \epsilon \sin \theta(x,\epsilon) = 0$$

Quantum Ohm's law

Tanaka et. al. PRB (2004)

$$R_{\rm NS} = \frac{1}{G_Q I_B} + \frac{R_{\rm N}}{L} \int_{-L}^0 \frac{dx}{\cosh^2\left(\mathrm{Im}(\theta(x,\epsilon))\right)}$$

$$G_Q = \frac{2e^2}{h}$$

 $\lim G_{\rm NS} = 0$

 $R_N \rightarrow \infty$

 $\lim_{R_N \to \infty} G_{\rm NS} = \frac{4e^2}{h} |N_{\rm ZES}|$

with $\epsilon = 0$

In a singlet superconductor

$$\operatorname{Im}(\theta) = 0$$

In a triplet superconductor $\theta = i(x/L+1) \beta_0$ $\beta_0 = 2G_Q R_N N_{ZES}$

Flat surface Andreev bound states

Topological classification of nodal SC Dimensional reduction

 $w_{1D} = 1 \text{ or } -1$

 $N_{\rm ZES} = \sum_{k_y} w_{\rm 1D}(k_y)$ topological invariant Chiral symmetry of Hamiltonian $\begin{aligned} H_{\rm BdG} &= (\xi + V)\hat{\tau}_3 + \Delta\hat{\tau}_1 \\ \{H_{\rm BdG}, -\hat{\tau}_2\}_+ = 0 \end{aligned}$ eigenvalue of $-\hat{\tau}_2 \quad \lambda = 1 \text{ or } -1$ $N_{\rm ZES} = N_+ - N_$ an invariant in differential equation In mathematics, Atiyah-Singer Index theorem connects topology and analysis

$$N_{\text{ZES}} = \sum_{k_y} w_{1\text{D}} = N_+ - N_-$$

The number of ZES
topological invariant
belong to $\lambda = +1$

 $\begin{aligned} & \{\hat{H}_{\rm BdG}, -\hat{\tau}_2\}_+ = 0 \end{aligned} \begin{array}{l} {\rm Sato\ et.al.,\ PRB\ (2011)} \\ & {\rm kegaya,\ YA,\ PRB\ (2015)} \\ & {\rm eigenvalue\ of\ } -\hat{\tau}_2 \ \ \lambda = 1\ {\rm or\ } -1 \\ & {\rm chirality} \end{aligned}$

(1) ZES: eigenstate of $-\hat{\tau}_2$

(2) non ZES: linear combination of $\lambda = 1$ and $\lambda = -1$

 $\chi_{E \neq 0} = a_+ \chi_+ + a_- \chi_-,$ $|a_+| = |a_-|$ one-by-one

ZESs at a clean surface

translational sym. λ: 1 –1

dxy px f

In physics, $N_{\rm ZES} = \sum w_{\rm 1D} = N_+ - N_-$ Atiyah-Singer index describes the number of zero-energy states that penetrate into dirty normal metal and form resonant transmission channels 10 p_x 8 $\lim_{h \to \infty} G_{\rm NS} = \frac{4e^2}{h} |N_{\rm ZES}|$ $G_{\rm NS}~[4e^{2/h}]$ 6 $R_N \rightarrow \infty$ Quantization of Conductance minimum (b) 8 0

 $\begin{array}{cccc} 2 & 4 & 6 \\ G_{\rm N} = R_{\rm N}^{-1} & [2e^2/h] \end{array}$

	Classification Schnyder et.al. (2008)	Real SC
Pair potential	full gap	nodal (to be nontrivial)
Translational symmetry	not necessary	necessary
Topo # in bulk	Z	W(k) (if TRS is preserved)
ZESs at a <mark>clean</mark> surface	Z	$\sum_{k} W(k) $
ZESs at a dirty surface	Z	$ N_{ m ZES} $

Ikegaya, Suzuki, Tanaka, YA, PRB 94, 054512 (2016)

spin-triplet SC

Conductance minimum is quantized at Atiyah-Singer index

degenerate ZESs

Cooper pairs?Spin X Parity X FrequencyIn SCtripletp-wave (odd)evenIn dirty Ntriplets-wave (even)odd

to satisfy a requirement of Fermi-Dirac statistics

Odd-freq. Pairs

General definition of pairing function

$$f_{\sigma,\sigma'}(r-r',\tau-\tau') = -\langle T_\tau \psi_\sigma(r,\tau) \psi_{\sigma'}(r'\tau') \rangle$$

$$f_{\sigma,\sigma'}(p,\omega_n)$$

Fourier trans.

spin X orbital X frequency = -1

Topological surfaces (ZES)

generate odd-freq. pairs

Paramagnetic response of a small superconductor

Diamagnetic

Paramagnetic

Odd-frequency pairs are paramagnetic! YA, Golubov, Fominov, Tanaka, PRL **107**, 087001 (2011) Small unconventional superconductors

are paramagnetic due to odd-freq. pair at their surface Suzuki and YA, PRB **89**, 184508 (2014)

We consider…

Solve Eilenberger and Maxwell Eqs. simultaneousely Pair potential and vector potential are determined self-consistently on 2D disks

Paramagnetic response of a singlet d-wave SC $\chi(\mathbf{r}) = \left[H(\mathbf{r}) - H_{ex}\right] / \left[4\pi H_{ex}\right]$

$$R = 3\xi_0$$
$$\lambda_L = 3\xi_0$$
$$H_{ex} = 0.001 H_{c2}$$

subdominant component odd-freq. paramagnetic

Paramagnetic response of a triplet p-wave SC

subdominant component odd-freq. paramagnetic

Susceptibility v.s. Temperature

Crossover to paramagnetic phase at low temperature odd-freq. pairs are paramagnetic energetically localize near E=0

Crossover temperature v.s. Size of disk

odd-freq. pairs are confined at surface within ξ_0 In larger discs, relative area of 'surface' becomes smaller

Any difference between p and d?

Yes!

in the presence of surface roughness

Effects of surface roughness

Suzuki and Asano, PRB 91, 214510 (2015)

Jdd-w p-wave $N_{
m ZES}=0$

Odd-w s-wave $N_{
m ZES} \neq 0$

w

R

Susceptibility v.s. Temperature under surface roughness

Relating papers on d-wave SC

Higashitani, JPSJ **66**, 2556 (1997) Fogelstrom, Rainer, and Sauls, PRL **79**, 281 (1997) Barash, Kalenkov, and Kurkijarvi, PRB **62**, 6665 (2000) Zare, Dahm, and Schophl, PRL **104**, 237001 (2010) Vorontsov, PRL**102**, 177001 (2009). Hakansson, Lofwander and Fogelstrom, Nat. Phys. **11**, 755 (2015).

energetics of flat-band ZESs

Our papers on d, p, chiral-d, chiral-p, chiral-f

Suzuki and YA, PRB **89**, 184508 (2014) Suzuki and YA, PRB **91**, 214510 (2015) Suzuki and YA, PRB **94**, 155302 (2016) odd-frequency pairs

Trouble!

A spin-triplet p-wave superconductor has never been discovered yet!

 $N_{\rm ZES} \neq 0$

Why don't we make it? Sure! Why not!

Ikegaya, Kobayashi, YA, in preparation

What we have done

spin-triplet p-wave A sufficient condition for $N_{\rm ZES} \neq 0$

Necessary conditions? single-band BdG Hamiltonian must belong to the class BDI specify realistic models

Solutions

$N_{\rm ZES} = Majorana$ number

$$\begin{split} \check{H}_{\rm D}(\boldsymbol{k}) &= \begin{bmatrix} \hat{h}_{\rm D}(\boldsymbol{k}) & \hat{\Delta}_{\rm D}(\boldsymbol{k}) \\ -\hat{\Delta}_{\rm D}^*(-\boldsymbol{k}) & -\hat{h}_{\rm D}^*(-\boldsymbol{k}) \end{bmatrix}, \\ \hat{h}_{\rm D}(\boldsymbol{k}) &= \varepsilon(\boldsymbol{k})\sigma_0 + \beta k_x \sigma_3 + \sum_{j=1,2} V_j \sigma_j, \\ \hat{\Delta}_{\rm D}(\boldsymbol{k}) &= i \Delta_s \sigma_2, \end{split}$$

$$\begin{split} \check{H}_{\rm P}(\boldsymbol{k}) &= \begin{bmatrix} \hat{h}_{\rm P}(\boldsymbol{k}) & \hat{\Delta}_{\rm P}(\boldsymbol{k}) \\ -\hat{\Delta}_{\rm P}^*(-\boldsymbol{k}) & -\hat{h}_{\rm P}^*(-\boldsymbol{k}) \end{bmatrix}, \\ \hat{h}_{\rm P}(\boldsymbol{k}) &= \varepsilon(\boldsymbol{k})\sigma_0 + \sum_{j=1,2} V_j \sigma_j \\ \hat{\Delta}_{\rm P}(\boldsymbol{k}) &= i \frac{\Delta_p}{k_{\rm F}} \left[k_x \hat{\sigma}_1 + k_y \hat{\sigma}_2 \right] \hat{\sigma}_2, \end{split}$$

 Dresselhaus [110]
 2D helical p-wave

 +
 Majorana!
 +

 in-plane Zeeman
 in plane Zeeman

 Alicea, PRB 81, 125381 (2010)
 Mizushima, Sato, Machida, PRL 109, 165031 (2012)

 You, Oh, Vedral, PRB 87, 054501 (2013)
 Wong, Oriz, Law, Lee, PRB 88, 060504 (2014)

SCs with $N_{\rm ZES} \neq 0$

Majorana SCs

Tunable φ -junction with a QAHI

Sakurai, Ikegaya, and YA, arXiv:1709.02338.

φ -junction $J = J_0 \sin(\theta - \varphi) = J \sin \theta \cos \varphi - J_0 \cos \theta \sin \varphi$

Current at zero phase difference Breaking TRS + Inversion

$J \propto (\boldsymbol{M}_1 \times \boldsymbol{M}_2 \cdot \boldsymbol{M}_3) \cos \theta + J_0 \sin(\theta)$

YA et. al, PRB 2007

Heim, et. al., J. Phys. 25, 215701 (2013).
Reynoso, et. al., PRL 101, 107001 (2008).
Dell'Anna, et. al, PRB 75, 085305 (2007).
Zazunov, et. al., PRL 103, 147004 (2009).
Campagnano, et. al., J. Phys.27, 2053012015).
Tanaka, et. al., PRL 103, 107002 (2009).
Dolcini, et. al., PRB 92,035428 (2015)
Buzdin, PRL 101, 107005 (2008)

built-in φ value

Yokoyama, Eto, Nazarov, PRB 89, 195407 (2014).

Quantum Anomalous Hall Insulator

Zeeman

Spin-orbit

Current-phase relationship (CPR)

Andreev reflections

$$J = \frac{e\Delta}{\hbar} t_0^2 t_I \sin(\theta - \varphi),$$
$$\varphi = 2k_1 L = \frac{2V_y L}{\lambda}.$$

$$e^{ik_e L} e^{-i\theta_R} e^{-ik_h L} e^{i\theta_L}$$

$$(1) \qquad (2) \qquad (3) \qquad (4)$$

$$= e^{i\theta} e^{i(k_e - k_h)L}$$

$$-\varphi$$

Magnetic mirror reflection symmetry

 $\check{H} = \check{H}_L + \check{H}_R + \check{H}_O$

0 or π $\check{H}_O^* = \check{H}_O$ $E(\theta) = E(-\theta)$ $\check{H}_O^* \neq \check{H}_Q$ φ -junction $E(\theta) \neq E(-\theta)$ Zeeman random $\hat{H}_{Q}(\boldsymbol{r}) = (\varepsilon_{\boldsymbol{r}} - m_{z})\hat{\sigma}_{3} + i\lambda\partial_{x}\hat{\sigma}_{2} - i\lambda\partial_{y}\hat{\sigma}_{1} - V_{y}\hat{\sigma}_{2} + V(x,y)$ $\hat{H}_{\mathcal{O}}^*(\mathbf{r}) = (\varepsilon_{\mathbf{r}} - m_z)\hat{\sigma}_3 + i\overline{\lambda}\partial_x\hat{\sigma}_2 + i\overline{\lambda}\partial_y\hat{\sigma}_1 + V_y\hat{\sigma}_2 + V(x, -y)$ This sign can be changed by $y \rightarrow -y$

Impurity potential

Zeeman field Impurities Junction shape

 φ -junction

Changing width

Flat-band Andreev bound states in a nodal SC

Conductance minimum and index theorem Flat-band ZESs = Majorana Paramagnetic response of a small superconductor Flat-band ZESs = odd-frequency Cooper pairs

odd-frequency pair

Andreev bound state

Majorana BS

Collaborators

S. Ikegaya (Hokkaido Univ.)
S.-I. Suzuki (Hokkaido Univ. and Nagoya Univ.)
K. Sakurai (Hokkaido Univ.)
Y. Tanaka (Nagoya Univ.)
S. Kobayashi (Nagoya Univ.)

Acknowledgements

MEXT of Japan

Discussion

A. A. Golubov (Twente & MIPT)Ya. V. Fominov (Landau Institute)S. Kashiwaya (AIST Tsukuba)

Core-to-core by JSPS

QP in normal metal At E=0 Normal metal P_x Sup

In the ballistic limit

$$\begin{split} \psi_{N}(\boldsymbol{r}) &= \sum_{n=1}^{N_{c}} \left[\left(\begin{array}{c} 1\\r_{n}^{he} \end{array} \right) e^{ik_{n}x} + \left(\begin{array}{c} r_{n}^{ee} \\ 0 \end{array} \right) e^{-ik_{n}x} \right] Y_{n}(y) \\ r_{n}^{ee} &= 0, \quad r_{n}^{he} = -i \quad \text{Perfect Andreev reflection} \\ \gamma_{N}(\boldsymbol{r}) &= \sum_{n=1}^{N_{c}} \left(\begin{array}{c} 1\\-i \end{array} \right) e^{ik_{n}x} Y_{n}(y) \quad \lambda = 1 \quad \text{Purely chiral} \\ \downarrow & \downarrow \\ \text{lirty case} \quad \psi_{N}(\boldsymbol{r}) = \left(\begin{array}{c} 1\\-i \end{array} \right) Z(\boldsymbol{r}) \quad \text{eigen state of} \quad -\hat{\tau}_{2} \end{split}$$

Chiral Symmetry protects the degeneracy of ZESs

Ikegaya, YA, Tanaka, PRB 91, 174511 (2015)

Penetration of Majorana fermions

YA, Tanaka, Kashiwaya, PRL 96, 097007 (2006) Ikegaya, YA, J. Phys Condens. Matter 28, 375702 (2016) Origin of fractional Josephson effect

DOS in a dirty normal metal

1

0

 E/Δ_0

S: singlet s-wave S: triplet px-wave even-freq. \rightarrow gap odd-freq. \rightarrow peak

-1

0<u>-</u>____

0

 E/Δ_0

1

 $N(E=0)/N_0 \approx \cosh[2G_Q R_N N_{\rm ZES}] \gg 1$

Free-energy

$$F_{S} - F_{N} = \int d\mathbf{r} \mathcal{F}(\mathbf{r}),$$
$$\mathcal{F}(\mathbf{r}) = \mathcal{F}_{\Delta}(\mathbf{r}) + \mathcal{F}_{H}(\mathbf{r}),$$
$$\mathcal{F}_{H}(\mathbf{r}) = \frac{\{H(\mathbf{r}) - H^{\text{ext}}\}^{2}}{8\pi},$$
$$\mathcal{F}_{\Delta}(\mathbf{r}) = \mathcal{F}_{f}(\mathbf{r}) + \mathcal{F}_{g}(\mathbf{r}),$$

Inhomogeneous superconducting state

Paramagnetic but $F_S - F_N < 0$

A relating experiment on HTSC films

Current profile

s-wave pairs exist (para)

Odd-frequency pairs in two-band superconductors

Multi-band Superconductors MgB2, Iron pnivtides

A. M. Black-Schaffer and A. V. Balatsky, PRB 88, 104514 (2013).

s-wave, equal-time order parameter

$$H = \begin{bmatrix} \xi_1 & V & \Delta_1 \\ V & \xi_2 & \Delta_2 \\ \Delta_1^* & -\xi_1 & -V \\ & \Delta_2^* & -V & -\xi_2 \end{bmatrix}$$

V: hybridization (real)

Hybridization generates odd-frequency odd-interband pairs! $\Delta_1 \neq \Delta_2$

$$H = \begin{bmatrix} \xi_1 & V & \Delta_1 & 0 \\ V^* & \xi_2 & 0 & \Delta_2 \\ \Delta_1^* & 0 & -\xi_1 & -V^* \\ 0 & \Delta_2^* & -V & -\xi_2 \end{bmatrix} \qquad V = v_1 + iv_2$$

$$[i\omega - H]\check{G} = 1 \qquad \check{G}(k, i\omega) = \begin{bmatrix} \mathcal{G} & \mathcal{F} \\ \underline{\mathcal{F}} & \underline{\mathcal{G}} \end{bmatrix}$$
Analyze the anomalous Green function $\mathcal{F}(k, i\omega)$
Odd-frequency pairs: Diamagnetic or Paramagnetic?
Magnetic response

$$egin{aligned} egin{aligned} egi$$

Change basis

 ξ_- :Band asymmetry Δ : Difference in pair potential Δ_+ : Average of pair potential V: Hybridization Orbital Zeeman Equal-orbital pair Equal-orbital pair Orbital-flipping

Eilenberger Eq.

 $i\hbar v_F \hat{k} \cdot \nabla_r \check{g} + [\check{H},\check{g}] = 0,$

$$\begin{split} \check{H}(r,k,i\omega_n) &= \begin{bmatrix} \hat{\xi}(r,k,i\omega_n) & \hat{\Delta}(r,k) \\ \hat{\Delta}(r,k) & \hat{\xi}(r,k,i\omega_n) \end{bmatrix}, \\ \check{g}(r,k,i\omega_n) &= \begin{bmatrix} \hat{g}(r,k,i\omega_n) & \hat{f}(r,k,i\omega_n) \\ -\hat{f}(r,k,i\omega_n) & -\hat{g}(r,k,i\omega_n) \end{bmatrix}, \\ \hat{\xi}(r,k,i\omega_n) &= i\omega_n + (ev_F/c)k \cdot A(r), \end{split}$$

Maxwell Eq. $abla imes oldsymbol{H} = rac{4\pi}{c} oldsymbol{j}$

Current

$$j(r) = \frac{\pi e v_F N_0}{2i} T \sum_{\omega_n} \int \frac{dk}{2\pi} \operatorname{Tr}[\check{T}_3 \ k \ \check{g}(r,k,\omega_n)],$$

Meissner effect by bulk condensate

Pair potential

