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Realization of the Heisenberg-Kitaev model in the honeycomb lattice iridates A2IrO3
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Using thermodynamic measurements on the honeycomb lattice iridates A2IrO3 (A =Na, Li) we
demonstrate that these materials are possible realizations of the Heisenberg-Kitaev model. Both
materials are Mott insulators with effective spins S = 1/2 on a honeycomb lattice. The Curie
Weiss temperature decreases from θ ≈ −125 K for Na2IrO3 to θ ≈ −33 K for Li2IrO3. Surprisingly
however, the antiferromagnetic ordering temperature for both materials is the same TN ≈ 15 K.
This counter-intuitive behavior directly mimics the recent predictions of the finite temperature
Heisenberg-Kitaev model on a honeycomb lattice. Our results also indicate that the Li2IrO3 system
is close (0.6 ≤ α ≤ 0.7) to the Kitaev limit (α ≥ 0.8) and that application of pressure might tune it
to the spin-liquid state expected in the Kitaev limit of the model.

Introduction: Recently the Kitaev model of spins S =
1/2 on a honeycomb lattice has attracted a lot of atten-
tion because it is a relatively simple spin model involv-
ing only nearest neighbor interactions and yet it shows
several exotic states of matter.1 The ground state is a
gapless spin-liquid with emergent Majorana excitations,
or a gapped topologically ordered state (the Z2 spin-
liquid) with Abelian anyonic excitations depending on
the model parameters.1 Yet another exotic phase of the
Kitaev model is obtained when the spin-liquid is gapped
out by applying a magnetic field perpendicular to the
honeycomb plane.1,2 This phase is also a gapped, topo-
logically ordered phase, but one with non-abelian quasi-
particle (Majorana fermions) statistics.2,3 Among sys-
tems predicted to support Majorana fermions are exotic
fractional quantum Hall systems4 and heterostructures
of topological insulators, semi-metals, or semiconductors
with conventional s-wave superconductors.5 Realizations
of the Kitaev model and its extentions would also be av-
enues to look for these elusive quasiparticles.
The Kitaev model is thus relevant to such diverse areas

as quantum computation1,6 and strongly correlated con-
densed matter systems7,8 among others and search for
realizations of this and related models is of fundamental
importance.
In looking for experimental realizations of the Ki-

taev model one must not only look for systems with
S = 1/2 on the honeycomb lattice. In addition one
also needs to look at how to introduce anisotropic ex-
change interactions required in the model. Supercon-
ducting circuits9 and optical lattices10 have been pro-
posed as possible ways of realizing the Kitaev model. In
solid state materials, Mott insulating transition metal ox-
ides with strong spin-orbit coupling have been suggested
as possible candidates.7,11

The layered iridate Na2IrO3 has effective S = 1/2 Ir4+

moments on a honeycomb lattice.12 The strong spin-orbit
coupling in this 5d transition metal system is likely to
lead to orbital dependent anisotropic in-plane exchange.
However, one needs to worry about the possibility of
other interactions like the isotropic Heisenberg interac-
tions being present in addition to the Kitaev like inter-

actions. Such a Heisenberg-Kitaev (HK) model has been
studied recently and found to have an interesting phase
diagram depending on the relative strength of the two
terms. The HK Hamiltonian can be written as11

HHK = (1− α)
∑

ij

σ⃗i.σ⃗j − 2α
∑

γ

σγ
i .σ

γ
j (1)

where the σi are the Pauli matrices for the effective
S = 1/2 and γ = x, y, z labels the three different links
for each spin of the honeycomb lattice. The first part
in Eq.(1) is the isotropic Heisenberg term while the sec-
ond term is the anisotropic Kitaev term.11 The Heisen-
berg exchange is antiferromagnetic, while the anisotropic
Kitaev exchange is ferromagnetic. Varying the relative
coupling strength 0 ≤ α ≤ 1, the model interpolates
from the simple Heisenberg model with a Néel ground
state for α = 0 to the Kitaev model for α = 1, which
even for ferromagnetic interactions is highly frustrated
and exhibits a gapless spin-liquid ground state.1 As the
coupling α is varied, three magnetic phases were found
in zero temperature calculations11 and have been found
to persist in calculations at finite temperatures too.13

The three phases are a simple Néel antiferromagnet for
0 ≤ α ≤ 0.4, a stripy antiferromagnet for 0.4 ≤ α ≤ 0.8,
and a spin-liquid state for 0.8 ≤ α ≤ 1.11,13

Even though the A2IrO3 materials have been sug-
gested as possible avenues to look for Kitaev like and
HK like physics,7,11,13 there is very limited experimental
data available for the A2IrO3 systems. We have ear-
lier shown that single crystal Na2IrO3 is a Mott insu-
lator which undergoes antiferromagnetic ordering below
TN = 15 K although the polycrystalline samples showed
glassy behavior.12 There are two conflicting reports on
the magnetic properties of Li2IrO3.14,15 The first report
suggested paramagnetic behavior between T = 5 K and
300 K without any sign of magnetic order14 while the
second report showed an anomaly in the magnetic sus-
ceptibility below T = 10 K which was also accompanied
by a hysteresis between zero-field-cooled and field-cooled
data suggesting glassy behavior.15 No heat capacity data
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Lattice	parameters	and	hopping	integrals	vs.	Pressure
(Lattice	optimized	with	SOC+U=2eV	in	VASP.	No	SOC,	U	is	included	in	Wannier	orbital	calculation)

Lattice	constants hopping:	Z-bonds	(in	eV) {X,Y}-bonds	(in	eV)
a/a0 b/b0 c/c0 t1 |t2| t3 t1 |t2| t3

-3.9 1.008 1.010 1.012 0.080 0.248 -0.139 0.078 0.248 -0.128
-1.1 0.998 0.998 1.004 0.087 0.242 -0.176 0.090 0.242 -0.185
2.1 0.988 0.986 0.996 0.094 0.241 -0.201 0.102 0.240 -0.240
5.9 0.978 0.974 0.987 0.100 0.237 -0.231 0.115 0.232 -0.302
10.2 0.968 0.962 0.980 0.106 0.238 -0.248 0.131 0.228 -0.365

Exchange	interactions	from	the	above	hopping	integrals	
(U=2.0eV,	J_H/U=0.2,	SOC=0.45eV	used.	J-K-G	ratio	is	robust	against	parameter	change.)

Lattice	constants JKG:	Z-bonds	(in	meV) JKG:	{X,Y}-bonds	(in	meV)
a/a0 b/b0 c/c0 J K Gamma J K Gamma

-3.9 1.008 1.010 1.012 -1.4 -6.5 -5.2 -1.1 -6.8 -4.9
-1.1 0.998 0.998 1.004 -2.2 -5.1 -6.1 -2.4 -4.8 -6.4
2.1 0.988 0.986 0.996 -2.7 -4.2 -6.8 -3.4 -2.7 -7.9
5.9 0.978 0.974 0.987 -3.2 -2.8 -7.5 -4.1 0.6 -9.3
10.2 0.968 0.962 0.980 -3.6 -2.1 -8.1 -4.9 4.3 -10.8

a2 6.1742 6.1742 4.0687 3.0 3.0 2.0 6.0 6.0 0.0
a1 4.1486 8.1999 0 2.0 4.0 0.0 -2.0 2.0 0.0
a3 -2.0257 2.0257 4.0687 -1.0 1.0 2.0 0.0 0.0 4.0

c-a-b c0-a0-b0raio
12.348 12.348 0 17.463 17.8271 0.9796
-4.0513 4.0513 0 5.7294 5.9194 0.9679

0 0 8.1373 8.1373 8.4562 0.9623
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bonds are ferromagnetically correlated. As a result, despite
being in the AF-Heisenberg regime, there is a net moment in
the â direction. The size of the net moment is small, especially
compared to the FMa phase, and decreases as we approach the
SPa+ phase or the AF Kitaev point. We illustrate this decrease
in net moment by the lightening of the color contours.

B. Existing magnetic orders

AFc: This collinear phase is the exact ground state in the
AF-Heisenberg region when J > �K and J > �: the LTA
succeeds in finding this exact ground state for both lattices.
This phase is the HK-AF state with moments aligned antifer-
romagnetically and locked in the ĉ direction due to the pres-
ence of �.

FMa: This coplanar state with finite net moment encom-
passes a large fraction of both phase diagrams. Only in the hy-
perhoneycomb does the LTA succeed in identifying this phase
as the exact ground state. In both lattices, the projection of
the spins along the â direction is ferromagnetic while the pro-
jection along the ĉ direction vanishes. The projection along
the ˆb direction behaves differently for the hyperhoneycomb
and the H–1 models. In the hyperhoneycomb lattice, the ˆb
component orders in the skew-zigzag order, while in the H–1
lattice, the ˆb component is ferromagnetic within each honey-
comb strip. This state is connected to the HK-FM phase, and
in the case of the hyperhoneycomb lattice, it is also connected
to the J > �K/2 segment of the HK-SZ phase, where ObD
studies have shown that the HK-SZ phase orders in the ˆb di-
rection, much like the FMa phase. The Ca

2 rotation symmetry
is preserved in this phase.

Since the ˆb component of the phase in both lattices have
a vanishing net moment, only the â component contributes to
the total moment. This total moment becomes saturated (spins
point entirely in the â direction) when approaching the HK-
FM phase and decreases smoothly as we approach the SPa�

boundary. In the hyperhoneycomb case, the total moment fur-
ther decreases and vanishes smoothly as we approach the HK-
SZ phase. The magnitude of the moment along â is depicted
by the color contours in Fig. 2 where the largest projection is
colored darkest.

SSx/y: Wedged within the HK-SS, AFc, and SPb+ phases
are two skew-stripy phases, the first of which to be discussed
is the non-coplanar SSx/y phase. This phase has the largest
projection along the x(y) direction and this component orders
in a skew-stripy fashion (these two orientations are degener-
ate). In the hyperhoneycomb lattice, the other two Cartesian
components of the spins are small but finite and ensure that
the spins along each zigzag chain are collinear. In the H–1
lattice, the y(x) component also orders in a skew-stripy fash-
ion. This phase does not have a net moment and breaks all C2

symmetries.
SSb: This other skew-stripy phase is coplanar and lies far-

ther away from the FM Kitaev point relative to the SSx/y

phase. This phase borders the AFc phase and can be identified
via the LTA in the hyperhoneycomb lattice. In both lattices,
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(b) H–1 model

FIG. 5. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with �  0. The details of this phase diagram
can be understood via a classical mapping that relates (J,K,�) !
(�J,�K,��); see Sec. V C for details. The color contours are
guides for the eye: in the case of spiral (SP) states, they represent the
length of the Q-vector, whereas in the case of non-spiral states, they
represent properties relevant to that particular phase; see Sec. V for
details.

Some	notable	features:	
1. Pressure	reduces	the	Ir-Ir	distance,	changing	

t3	term	drastically.	
2. Strain	is	anisotropic:	X/Y	bonds	are	more	

strongly	affected	by	the	pressure.		
3. At	high	pressure,	sign	of	Kitaev	term	can	be	

opposite	for	X/Y	and	Z	bonds.		
4. Γ	dominates	at	high	P.
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FIG. S3. (Color online) Band structures (solid red lines) calculated from tight-binding calculations including up to (a) NN, (b) NNN, and (c)
third-NN hopping terms from the Wannier orbital calcualtions tabulated in Table. S3, compared to those from ab-initio results (dashed grey
lines). SOC is included in the calculations.

The role of further-neighbor hopping amplitudes in the
band structure are shown in Fig. S3, where the evolution of
band structure as we include NNN and third NN terms are
presented. Fig. S3 shows the change of the band structures
as further-neighbor hopping terms are included with the pres-
ence of SOC; Fig. S3(a), (b) and (c) show the bands with hop-
ping terms up to NN, NNN, and third NN terms, respectively,
with the presence of SOC. One can see that, the large SOC
in Ir tends to make the jeff = 1/2 bands to be flatter in this
locally honeycomb-like lattice, and including NNN and third
NN terms does not change the overall behavior. Comparing
Fig. S3(a) and Fig. S3(b), one can notice that the dispersion
inside the jeff = 1/2 subbands is affected by the NNN terms,
but the semi-metallic character is left unchanged. Inclusion
of third NN terms, as can be seen in Fig. S3(c), makes the
dispersion slightly closer to the ab-initio bands.

Supplementary Material D:

NN exchange interactions

The exchanges J , K, and � are given by (suppressing the
bond label ↵)

J =
4

27


(2t1 + t3)2(4JH + 3U)

U2
� 16JH(t1 � t3)2

(2U + 3�)2

�

K =
32JH

9


(t1 � t3)2�3t22

(2U + 3�)2

�
, � =

64JH

9

t2(t1 � t3)

(2U + 3�)2
, (1)

where ti (i = 1, 2, 3), JH , U , and � are the NN hopping
amplitudes, Hund’s coupling, on-site Coulomb repulsion, and
SOC respectively[9]. ti is illustrated in Fig. S2(a). Note that,
the small amount of NN Heisenberg interaction is attributed
to the cancelation between the 2t1 and t3 in the antiferromag-
netic contrubution to J in Eq. 1. Since t2 is the largest term,
as mentioned in the main text, ferromagnetic K becomes the
most dominant contribution in the exchange interactions.

TABLE S3: A subset of Ir t2g hopping terms T
ij

as representatives of each
hopping channels up to third NN, where Hhop =

P
ij

C†
i

·T
ij

·C
j

and C† and
C† being the creation and annihilation operator for t2g states, respectively. d is
approximate distance between Ir and O. Other hopping terms can be recovered
by applying T

ji

= T†
ij

, Ca,b,z

2 rotations, and inversion operations.

Kind r
ij

(in Cartesian coord.) Sublattice Ue↵ = 0.0 eV Ue↵ = 1.5 eV Ue↵ = 3.0 eV

tNN d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

X,X’ (-d, 0,+d) 1 ! 4 d

xy

+0.088 +0.018 +0.260 +0.080 +0.019 +0.276 +0.064 +0.021 +0.289
d

xz

+0.018 -0.152 +0.013 +0.020 -0.110 +0.013 +0.021 -0.051 0.005
d

yz

+0.259 +0.013 +0.078 +0.276 +0.013 +0.067 +0.288 0.003 +0.052

tNN d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

Z (+d,+d, 0) 1 ! 2 d

xy

-0.162 -0.022 +0.021 -0.119 -0.024 +0.023 -0.059 -0.031 +0.030
d

xz

+0.016 +0.087 -0.239 +0.017 +0.078 -0.255 +0.025 +0.072 -0.269
d

yz

-0.016 -0.239 +0.086 -0.017 -0.254 +0.077 -0.024 -0.271 +0.056

Continued in next page...

Exchange interactions:

tNN
ij =

�

�
t1 t2
t2 t1

t3

�

�
Other terms are smaller 
then 20 meV and ignored.
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Lattice	parameters	and	hopping	integrals	vs.	Pressure
(Lattice	optimized	with	SOC+U=2eV	in	VASP.	No	SOC,	U	is	included	in	Wannier	orbital	calculation)

Lattice	constants hopping:	Z-bonds	(in	eV) {X,Y}-bonds	(in	eV)
a/a0 b/b0 c/c0 t1 |t2| t3 t1 |t2| t3

-3.9 1.008 1.010 1.012 0.080 0.248 -0.139 0.078 0.248 -0.128
-1.1 0.998 0.998 1.004 0.087 0.242 -0.176 0.090 0.242 -0.185
2.1 0.988 0.986 0.996 0.094 0.241 -0.201 0.102 0.240 -0.240
5.9 0.978 0.974 0.987 0.100 0.237 -0.231 0.115 0.232 -0.302
10.2 0.968 0.962 0.980 0.106 0.238 -0.248 0.131 0.228 -0.365

Exchange	interactions	from	the	above	hopping	integrals	
(U=2.0eV,	J_H/U=0.2,	SOC=0.45eV	used.	J-K-G	ratio	is	robust	against	parameter	change.)

Lattice	constants JKG:	Z-bonds	(in	meV) JKG:	{X,Y}-bonds	(in	meV)
a/a0 b/b0 c/c0 J K Gamma J K Gamma

-3.9 1.008 1.010 1.012 -1.4 -6.5 -5.2 -1.1 -6.8 -4.9
-1.1 0.998 0.998 1.004 -2.2 -5.1 -6.1 -2.4 -4.8 -6.4
2.1 0.988 0.986 0.996 -2.7 -4.2 -6.8 -3.4 -2.7 -7.9
5.9 0.978 0.974 0.987 -3.2 -2.8 -7.5 -4.1 0.6 -9.3
10.2 0.968 0.962 0.980 -3.6 -2.1 -8.1 -4.9 4.3 -10.8

a2 6.1742 6.1742 4.0687 3.0 3.0 2.0 6.0 6.0 0.0
a1 4.1486 8.1999 0 2.0 4.0 0.0 -2.0 2.0 0.0
a3 -2.0257 2.0257 4.0687 -1.0 1.0 2.0 0.0 0.0 4.0

c-a-b c0-a0-b0raio
12.348 12.348 0 17.463 17.8271 0.9796
-4.0513 4.0513 0 5.7294 5.9194 0.9679

0 0 8.1373 8.1373 8.4562 0.9623
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bonds are ferromagnetically correlated. As a result, despite
being in the AF-Heisenberg regime, there is a net moment in
the â direction. The size of the net moment is small, especially
compared to the FMa phase, and decreases as we approach the
SPa+ phase or the AF Kitaev point. We illustrate this decrease
in net moment by the lightening of the color contours.

B. Existing magnetic orders

AFc: This collinear phase is the exact ground state in the
AF-Heisenberg region when J > �K and J > �: the LTA
succeeds in finding this exact ground state for both lattices.
This phase is the HK-AF state with moments aligned antifer-
romagnetically and locked in the ĉ direction due to the pres-
ence of �.

FMa: This coplanar state with finite net moment encom-
passes a large fraction of both phase diagrams. Only in the hy-
perhoneycomb does the LTA succeed in identifying this phase
as the exact ground state. In both lattices, the projection of
the spins along the â direction is ferromagnetic while the pro-
jection along the ĉ direction vanishes. The projection along
the ˆb direction behaves differently for the hyperhoneycomb
and the H–1 models. In the hyperhoneycomb lattice, the ˆb
component orders in the skew-zigzag order, while in the H–1
lattice, the ˆb component is ferromagnetic within each honey-
comb strip. This state is connected to the HK-FM phase, and
in the case of the hyperhoneycomb lattice, it is also connected
to the J > �K/2 segment of the HK-SZ phase, where ObD
studies have shown that the HK-SZ phase orders in the ˆb di-
rection, much like the FMa phase. The Ca

2 rotation symmetry
is preserved in this phase.

Since the ˆb component of the phase in both lattices have
a vanishing net moment, only the â component contributes to
the total moment. This total moment becomes saturated (spins
point entirely in the â direction) when approaching the HK-
FM phase and decreases smoothly as we approach the SPa�

boundary. In the hyperhoneycomb case, the total moment fur-
ther decreases and vanishes smoothly as we approach the HK-
SZ phase. The magnitude of the moment along â is depicted
by the color contours in Fig. 2 where the largest projection is
colored darkest.

SSx/y: Wedged within the HK-SS, AFc, and SPb+ phases
are two skew-stripy phases, the first of which to be discussed
is the non-coplanar SSx/y phase. This phase has the largest
projection along the x(y) direction and this component orders
in a skew-stripy fashion (these two orientations are degener-
ate). In the hyperhoneycomb lattice, the other two Cartesian
components of the spins are small but finite and ensure that
the spins along each zigzag chain are collinear. In the H–1
lattice, the y(x) component also orders in a skew-stripy fash-
ion. This phase does not have a net moment and breaks all C2

symmetries.
SSb: This other skew-stripy phase is coplanar and lies far-

ther away from the FM Kitaev point relative to the SSx/y

phase. This phase borders the AFc phase and can be identified
via the LTA in the hyperhoneycomb lattice. In both lattices,
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(b) H–1 model

FIG. 5. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with �  0. The details of this phase diagram
can be understood via a classical mapping that relates (J,K,�) !
(�J,�K,��); see Sec. V C for details. The color contours are
guides for the eye: in the case of spiral (SP) states, they represent the
length of the Q-vector, whereas in the case of non-spiral states, they
represent properties relevant to that particular phase; see Sec. V for
details.

Some	notable	features:	
1. Pressure	reduces	the	Ir-Ir	distance,	changing	

t3	term	drastically.	
2. Strain	is	anisotropic:	X/Y	bonds	are	more	

strongly	affected	by	the	pressure.		
3. At	high	pressure,	sign	of	Kitaev	term	can	be	

opposite	for	X/Y	and	Z	bonds.		
4. Γ	dominates	at	high	P.

Low-P

High-P
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FIG. S3. (Color online) Band structures (solid red lines) calculated from tight-binding calculations including up to (a) NN, (b) NNN, and (c)
third-NN hopping terms from the Wannier orbital calcualtions tabulated in Table. S3, compared to those from ab-initio results (dashed grey
lines). SOC is included in the calculations.

The role of further-neighbor hopping amplitudes in the
band structure are shown in Fig. S3, where the evolution of
band structure as we include NNN and third NN terms are
presented. Fig. S3 shows the change of the band structures
as further-neighbor hopping terms are included with the pres-
ence of SOC; Fig. S3(a), (b) and (c) show the bands with hop-
ping terms up to NN, NNN, and third NN terms, respectively,
with the presence of SOC. One can see that, the large SOC
in Ir tends to make the jeff = 1/2 bands to be flatter in this
locally honeycomb-like lattice, and including NNN and third
NN terms does not change the overall behavior. Comparing
Fig. S3(a) and Fig. S3(b), one can notice that the dispersion
inside the jeff = 1/2 subbands is affected by the NNN terms,
but the semi-metallic character is left unchanged. Inclusion
of third NN terms, as can be seen in Fig. S3(c), makes the
dispersion slightly closer to the ab-initio bands.

Supplementary Material D:

NN exchange interactions

The exchanges J , K, and � are given by (suppressing the
bond label ↵)

J =
4

27


(2t1 + t3)2(4JH + 3U)

U2
� 16JH(t1 � t3)2

(2U + 3�)2

�

K =
32JH

9


(t1 � t3)2�3t22

(2U + 3�)2

�
, � =

64JH

9

t2(t1 � t3)

(2U + 3�)2
, (1)

where ti (i = 1, 2, 3), JH , U , and � are the NN hopping
amplitudes, Hund’s coupling, on-site Coulomb repulsion, and
SOC respectively[9]. ti is illustrated in Fig. S2(a). Note that,
the small amount of NN Heisenberg interaction is attributed
to the cancelation between the 2t1 and t3 in the antiferromag-
netic contrubution to J in Eq. 1. Since t2 is the largest term,
as mentioned in the main text, ferromagnetic K becomes the
most dominant contribution in the exchange interactions.

TABLE S3: A subset of Ir t2g hopping terms T
ij

as representatives of each
hopping channels up to third NN, where Hhop =

P
ij

C†
i

·T
ij

·C
j

and C† and
C† being the creation and annihilation operator for t2g states, respectively. d is
approximate distance between Ir and O. Other hopping terms can be recovered
by applying T

ji

= T†
ij

, Ca,b,z

2 rotations, and inversion operations.

Kind r
ij

(in Cartesian coord.) Sublattice Ue↵ = 0.0 eV Ue↵ = 1.5 eV Ue↵ = 3.0 eV

tNN d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

X,X’ (-d, 0,+d) 1 ! 4 d

xy

+0.088 +0.018 +0.260 +0.080 +0.019 +0.276 +0.064 +0.021 +0.289
d

xz

+0.018 -0.152 +0.013 +0.020 -0.110 +0.013 +0.021 -0.051 0.005
d

yz

+0.259 +0.013 +0.078 +0.276 +0.013 +0.067 +0.288 0.003 +0.052

tNN d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

Z (+d,+d, 0) 1 ! 2 d

xy

-0.162 -0.022 +0.021 -0.119 -0.024 +0.023 -0.059 -0.031 +0.030
d

xz

+0.016 +0.087 -0.239 +0.017 +0.078 -0.255 +0.025 +0.072 -0.269
d

yz

-0.016 -0.239 +0.086 -0.017 -0.254 +0.077 -0.024 -0.271 +0.056

Continued in next page...

Exchange interactions:
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Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium
Oxides A2IrO3

Jǐŕı Chaloupka,1, 2 George Jackeli,2, ∗ and Giniyat Khaliullin2

1Department of Condensed Matter Physics, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
2Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

(Dated: July 12, 2010)

We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange
interactions between Ir4+ ions in a family of layered iridates A2IrO3 (A=Li, Na). Depending on the
microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable
Kitaev models. Exact diagonalization and a complementary spin-wave analysis reveal the presence
of an extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the
Heisenberg limit. The two phases are separated by an unusual stripy antiferromagnetic state, which
is the exact ground state of the model at the midpoint between two limits.

PACS numbers: 75.10.Jm, 75.25.Dk, 75.30.Et

Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An ex-
ception are frustrated magnets, in which the topology of
the underlying lattice and/or competing interactions lead
to an extensively degenerate manifold of classical states.
In such systems, exotic quantum phases of Mott insula-
tors (spin liquids, valence bond solids, etc.) can emerge
as the true ground states (for reviews see Refs. [1, 2]). In
quantum spin liquids, strong zero-point fluctuations of
correlated spins prevent them to “freeze” into magnetic
or statically dimerized patterns, and conventional phase
transitions that break time-reversal and lattice symme-
tries are avoided. Spin liquids have attracted particular
attention since Anderson proposed their possible connec-
tion to superconductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but, be-
cause different bonds use different spin components [see
Fig. 1(a)], the model is highly frustrated. Its ground state
is spin-disordered and supports the emergent gapless ex-
citations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5, 6]. This may suggest the robustness of
the disordered state to spin perturbations. Indeed, Tsve-
lik has shown [7] that there is a window of stability for
the spin-liquid state in the Kitaev model perturbed by
isotropic Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key el-
ement of the model is a bond-selective spin anisotropy,
one possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be
translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.

In this Letter, we examine the iridium oxides A2IrO3

from this perspective. In these compounds, the Ir4+ ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an in-
teresting phase behavior and hosts, in addition to the
spin-liquid state, an unusual AF order that is also an
exact solution at a certain point in phase space.
Experimental studies of iridium compounds are rather

scarce, and the nature of their insulating behavior is not
yet fully understood. In fact, Na2IrO3 was suggested as
an interesting candidate for a topological band insulator
[9]. Given that high temperature magnetic susceptibil-
ities of Na2IrO3 and Li2IrO3 obey the Curie-Weiss law
with an effective moment corresponding S = 1/2 per Ir
ion [10–13], we start here with the Mott insulator picture.
The Hamiltonian.– We recall that the Ir4+ ion in the

octahedral field has a single hole in the threefold degener-
ate t2g level hosting an orbital angular momentum l = 1.
Strong spin-orbit coupling lifts this degeneracy, and the
resulting ground state is a Kramers doublet with total
angular momentum one-half [14], referred to as “spin”
hereafter. In fact, it is predominantly of orbital origin,
and this is what makes the magnetic interactions highly
anisotropic due to the spin-orbit entanglement of mag-
netic and real spaces. In A2IrO3 compounds, the IrO6

octahedra share the edges, and Ir ions can communicate
through two 90◦ Ir-O-Ir exchange paths [8] or via direct
overlap of their orbitals. Collecting the possible exchange
processes (discussed below) and projecting them onto the
lowest Kramers doublet with S = 1/2, we obtain the fol-
lowing spin Hamiltonian on a given NN ij bond:

H(γ)
ij = −J1 Sγ

i S
γ
j + J2 Si ·Sj . (1)

Here, spin quantization axes are taken along the cubic
axes of IrO6 octahedra. In a honeycomb lattice formed

4

atures. If the exchange interactions were purely Kitaev
like they would have been ferromagnetic and we would
have obtained a positive Weiss temperature θ and addi-
tionally the ground state would have been a spin-liquid.
Therefore, the magnetic properties of these materials are
not governed entirely by Kitaev physics alone.
If on the other hand the exchange interactions were

entirely Heisenberg like, then these materials would have
shown a simple Néel type antiferromagnetic ordering.
However, recent resonant x-ray scattering measurements
on single crystalline Na2IrO3 have established that the
magnetic order is not a simple Néel antiferromagnet but
is rather of a stripy antiferromagnetic kind.16 Such a
stripy AFM state has been predicted for the Heisenberg-
Kitaev model when the parameter α in the model lies in
the range 0.4 ≤ α ≤ 0.8.11,13 Given the similarities of
the magnetic anomalies in the χ(T ) and C(T ) data for
both Na2IrO3 and Li2IrO3 it is most likely that Li2IrO3

also shows a similar stripy antiferromagnetic structure.
Thus there are strong indications that the A2IrO3 mate-
rials lie in the region 0.4 ≤ α ≤ 0.8 of the Heisenberg-
Kitaev model. Calculations of the finite temperature
Heisenberg-Kitaev model predict that if the system stays
in the region where 0.4 ≤ α ≤ 0.8 then θ monotonically
decreases with increasing α.13 Remarkably however, it is
also predicted that the magnetic ordering temperature
stays unchanged between 0.4 ≤ α ≤ 0.7 and only starts
dropping significantly as one approaches the Kitaev limit
beyond α ≥ 0.8 where long range order is replaced by a
spin-liquid state as the ground state.13 The reduction of
the Weiss temperature scale on increasing α is natural
since the Heisenberg term comes with an antiferromag-
netic sign and the Kitaev term comes with a ferromag-
netic sign. This reduction in the Weiss temperature scale
is indeed observed for our systems where θ decreases from
≈ −125 K to ≈ −33 K on going from Na2IrO3 to the
Li2IrO3 system. We can get a lower-limit estimate of
the proximity of the Li2IrO3 system to the Kitaev limit
of α ≥ 0.8 by assuming that Na2IrO3 sits at the lower
edge α = 0.4 of the region in which the stripy antiferro-
magnetism is observed. We can then use the theoretical
predictions of the variation of the Weiss temperature ver-
sus α [Ref. 13] and our experimental estimates of θ for

Na2IrO3 and Li2IrO3 to obtain α ≈ 0.6 as a lower limit
for Li2IrO3. Thus, Li2IrO3 lies very close to the Kitaev
limit α ≥ 0.8.
In going from the Na to the Li system the a, b lattice

parameters are reduced by ≈ 4.5% while the c parame-
ter is reduced by ≈ 10%. Thus, substituting Na by Li
is equivalent to preferentially applying chemical pressure
along the c axis (⊥ to the honeycomb planes). This leads
to a decrease of the c-axis distortion of the IrO6 octahe-
dra which enhances the parameters η1,2 leading to an
increased Kitaev coupling.11 This is consistent with the
value of α ≥ 0.6 for Li2IrO3 which puts its closer to the
Kitaev limit.
In addition to the above reduction of the Weiss scale,

the antiferromagnetic ordering temperature TN ≈ 15 K
is the same for both Na2IrO3 and Li2IrO3 despite a
factor of≈ 5 reduction of θ. This counter-intuitive re-
sult is again in direct agreement with the above theo-
retical predictions of the finite temperature Hiesenberg-
Kitaev model.13 The above independence of TN on θ for
0.4 ≤ α ≤ 0.7 and the factor of 8 reduction of TN com-
pared to θ for the Na system, are issues that will need
to be addressed in future experimental and theoretical
work.
In summary, our results provide the strongest support

yet that the A2IrO3 materials are the first realization of
the Heinsenberg-Kitaev model in real solid-state materi-
als. From the above comparison of experiment and the-
ory it is also clear that Li2IrO3 lies close to the α ≥ 0.8
Kitaev limit. The application of c-axis pressure to the
A2IrO3 materials can push them closer to the Kitaev
limit and the Li2IrO3 system should be easier to tune
given that it most likely lies close to α = 0.8.
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Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit
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Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates, origi-
nating from oxygen-mediated exchange through edge-shared octahedra. However, for the je⇥ = 1/2 Mott insu-
lator in these materials exchange from direct d-orbital overlap is relevant, and it was proposed that a Heisenberg
term should be added to the Kitaev model. Here we provide the generic nearest-neighbour spin Hamiltonian
when both oxygen-mediated and direct overlap are present, containing a bond-dependent o⇥-diagonal exchange
in addition to Heisenberg and Kitaev terms. We analyze this complete model using a combination of classical
techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic phases, 120⌅ and incommen-
surate spiral order, as well as extended regions of zigzag and stripy order. Possible applications to Na2IrO3 and
Li2IrO3 are discussed.

The honeycomb family of iridium oxides[1–11] has at-
tracted a considerable amount of attention [12–20] due to
the possibility they lie near a realization of Kitaev’s exactly
solvable spin-1/2 honeycomb model[21]. This model hosts
a number of remarkable features: a Z2 spin liquid with gap-
less Majorana fermions and (non-Abelian) anyonic excita-
tions under an applied magnetic field. No symmetry prin-
ciple excludes terms besides the Kitaev, so additional inter-
actions are generically expected. From microscopic calcu-
lations of exchange mediated through the edge-shared oxy-
gen octahedra, it has been proposed that a pure Kitaev model
of je⇥ = 1/2 spins was the appropriate description[22]. It
was further suggested that direct overlap of the d-orbitals
generalizes this to a Heisenberg-Kitaev (HK) model[13], lin-
early interpolating between an isotropic Heisenberg model
and Kitaev’s bond-dependent exchange Hamiltonian. Exten-
sive study of the HK model[23–28] has shown a variety of fas-
cinating phenomena, including an extended spin liquid phase
and quantum phase transitions into several well-understood
magnetic ground states. While present, the zigzag phase seen
in Na2IrO3 [2, 4, 6] is di⇤cult to stabilize within the HK
model; one must resort to additional t2g-eg exchange paths[18]
or further neighbour hoppings[14]. In light of this puzzle one
may question whether the HK model provides an adequate de-
scription of the honeycomb iridates even at the nearest neigh-
bour level.

In this Letter, we show that when applied to the honey-
comb iridates the HK model is incomplete, explicitly deriving
the je⇥ = 1/2 spin model from a multiorbital t2g Hubbard-
Kanamori Hamiltonian. Considering the most idealized crys-
tal structure, an additional spin-spin interaction beyond the
HK model must be included: bond-dependent symmetric o⇥-
diagonal exchange. The complete spin Hamiltonian has the
form

H =
⇤

⌃i j⌥⇧�⇥(⇤)

⌅
J�S i · �S j + KS ⇤i S ⇤j + �

�
S �i S ⇥j + S ⇥i S �j

⇥⇧
, (1)

where J is Heisenberg exchange, K is the Kitaev exchange,
and � denotes the symmetric o⇥-diagonal exchange. On each
bond we distinguish one spin direction ⇤, labeling the bond

yx

z

zx(y)

yz(x)

xy(z)

Ir4+

O2�A+

FIG. 1: Crystal structure of the honeycomb iridates A2IrO3
with Ir4+ in black, O2� in white, and A = Na+,Li+ in gray.
For the Kitaev and bond-dependent exchanges we have
denoted the yz(x) bonds blue, the zx(y) bonds green and the
xy(z) bonds red.

�⇥(⇤) where � and ⇥ are the two remaining directions. Ex-
amining the phase diagram using a combination of classical
arguments and exact diagonalization, we find that with the in-
clusion of � new magnetic phases are stabilized near the Ki-
taev limits: an incommensurate spiral (IS) and 120⌅ order, in
addition to extended regions of zigzag and stripy order.

Microscopics.– We first construct a minimal model of a
honeycomb lattice of Ir4+ ions surrounded by a network of
edge-sharing oxygen octahedra. The Ir4+ 5d levels are split
into an eg doublet and t2g triplet by large crystal field e⇥ects,
leaving a single hole in the t2g states. Within the t2g mani-
fold, the orbital angular momentum behaves as an le⇥ = 1
triplet, with large spin-orbit coupling splitting this into an ac-
tive je⇥ = 1/2 doublet and filled je⇥ = 3/2 states. Because of
significant on-site interactions, localized je⇥ = 1/2 spins pro-
vide an e⇥ective model for the low-energy physics. To per-
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tNN
ij =

�

�
t1 t2
t2 t1

t3

�

�
Other terms are smaller 
then 20 meV and ignored.

a

b

c

Z-bonds
X-bonds

Y-bonds

Lattice	parameters	and	hopping	integrals	vs.	Pressure
(Lattice	optimized	with	SOC+U=2eV	in	VASP.	No	SOC,	U	is	included	in	Wannier	orbital	calculation)

Lattice	constants hopping:	Z-bonds	(in	eV) {X,Y}-bonds	(in	eV)
a/a0 b/b0 c/c0 t1 |t2| t3 t1 |t2| t3

-3.9 1.008 1.010 1.012 0.080 0.248 -0.139 0.078 0.248 -0.128
-1.1 0.998 0.998 1.004 0.087 0.242 -0.176 0.090 0.242 -0.185
2.1 0.988 0.986 0.996 0.094 0.241 -0.201 0.102 0.240 -0.240
5.9 0.978 0.974 0.987 0.100 0.237 -0.231 0.115 0.232 -0.302
10.2 0.968 0.962 0.980 0.106 0.238 -0.248 0.131 0.228 -0.365

Exchange	interactions	from	the	above	hopping	integrals	
(U=2.0eV,	J_H/U=0.2,	SOC=0.45eV	used.	J-K-G	ratio	is	robust	against	parameter	change.)

Lattice	constants JKG:	Z-bonds	(in	meV) JKG:	{X,Y}-bonds	(in	meV)
a/a0 b/b0 c/c0 J K Gamma J K Gamma

-3.9 1.008 1.010 1.012 -1.4 -6.5 -5.2 -1.1 -6.8 -4.9
-1.1 0.998 0.998 1.004 -2.2 -5.1 -6.1 -2.4 -4.8 -6.4
2.1 0.988 0.986 0.996 -2.7 -4.2 -6.8 -3.4 -2.7 -7.9
5.9 0.978 0.974 0.987 -3.2 -2.8 -7.5 -4.1 0.6 -9.3
10.2 0.968 0.962 0.980 -3.6 -2.1 -8.1 -4.9 4.3 -10.8

a2 6.1742 6.1742 4.0687 3.0 3.0 2.0 6.0 6.0 0.0
a1 4.1486 8.1999 0 2.0 4.0 0.0 -2.0 2.0 0.0
a3 -2.0257 2.0257 4.0687 -1.0 1.0 2.0 0.0 0.0 4.0

c-a-b c0-a0-b0raio
12.348 12.348 0 17.463 17.8271 0.9796
-4.0513 4.0513 0 5.7294 5.9194 0.9679

0 0 8.1373 8.1373 8.4562 0.9623

Pressur
e	

Pressur
e	

Hopping integral between neighboring Ir t2g orbitals:

8

bonds are ferromagnetically correlated. As a result, despite
being in the AF-Heisenberg regime, there is a net moment in
the â direction. The size of the net moment is small, especially
compared to the FMa phase, and decreases as we approach the
SPa+ phase or the AF Kitaev point. We illustrate this decrease
in net moment by the lightening of the color contours.

B. Existing magnetic orders

AFc: This collinear phase is the exact ground state in the
AF-Heisenberg region when J > �K and J > �: the LTA
succeeds in finding this exact ground state for both lattices.
This phase is the HK-AF state with moments aligned antifer-
romagnetically and locked in the ĉ direction due to the pres-
ence of �.

FMa: This coplanar state with finite net moment encom-
passes a large fraction of both phase diagrams. Only in the hy-
perhoneycomb does the LTA succeed in identifying this phase
as the exact ground state. In both lattices, the projection of
the spins along the â direction is ferromagnetic while the pro-
jection along the ĉ direction vanishes. The projection along
the ˆb direction behaves differently for the hyperhoneycomb
and the H–1 models. In the hyperhoneycomb lattice, the ˆb
component orders in the skew-zigzag order, while in the H–1
lattice, the ˆb component is ferromagnetic within each honey-
comb strip. This state is connected to the HK-FM phase, and
in the case of the hyperhoneycomb lattice, it is also connected
to the J > �K/2 segment of the HK-SZ phase, where ObD
studies have shown that the HK-SZ phase orders in the ˆb di-
rection, much like the FMa phase. The Ca

2 rotation symmetry
is preserved in this phase.

Since the ˆb component of the phase in both lattices have
a vanishing net moment, only the â component contributes to
the total moment. This total moment becomes saturated (spins
point entirely in the â direction) when approaching the HK-
FM phase and decreases smoothly as we approach the SPa�

boundary. In the hyperhoneycomb case, the total moment fur-
ther decreases and vanishes smoothly as we approach the HK-
SZ phase. The magnitude of the moment along â is depicted
by the color contours in Fig. 2 where the largest projection is
colored darkest.

SSx/y: Wedged within the HK-SS, AFc, and SPb+ phases
are two skew-stripy phases, the first of which to be discussed
is the non-coplanar SSx/y phase. This phase has the largest
projection along the x(y) direction and this component orders
in a skew-stripy fashion (these two orientations are degener-
ate). In the hyperhoneycomb lattice, the other two Cartesian
components of the spins are small but finite and ensure that
the spins along each zigzag chain are collinear. In the H–1
lattice, the y(x) component also orders in a skew-stripy fash-
ion. This phase does not have a net moment and breaks all C2

symmetries.
SSb: This other skew-stripy phase is coplanar and lies far-

ther away from the FM Kitaev point relative to the SSx/y

phase. This phase borders the AFc phase and can be identified
via the LTA in the hyperhoneycomb lattice. In both lattices,
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FIG. 5. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with �  0. The details of this phase diagram
can be understood via a classical mapping that relates (J,K,�) !
(�J,�K,��); see Sec. V C for details. The color contours are
guides for the eye: in the case of spiral (SP) states, they represent the
length of the Q-vector, whereas in the case of non-spiral states, they
represent properties relevant to that particular phase; see Sec. V for
details.

Some	notable	features:	
1. Pressure	reduces	the	Ir-Ir	distance,	changing	

t3	term	drastically.	
2. Strain	is	anisotropic:	X/Y	bonds	are	more	

strongly	affected	by	the	pressure.		
3. At	high	pressure,	sign	of	Kitaev	term	can	be	

opposite	for	X/Y	and	Z	bonds.		
4. Γ	dominates	at	high	P.
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FIG. S3. (Color online) Band structures (solid red lines) calculated from tight-binding calculations including up to (a) NN, (b) NNN, and (c)
third-NN hopping terms from the Wannier orbital calcualtions tabulated in Table. S3, compared to those from ab-initio results (dashed grey
lines). SOC is included in the calculations.

The role of further-neighbor hopping amplitudes in the
band structure are shown in Fig. S3, where the evolution of
band structure as we include NNN and third NN terms are
presented. Fig. S3 shows the change of the band structures
as further-neighbor hopping terms are included with the pres-
ence of SOC; Fig. S3(a), (b) and (c) show the bands with hop-
ping terms up to NN, NNN, and third NN terms, respectively,
with the presence of SOC. One can see that, the large SOC
in Ir tends to make the jeff = 1/2 bands to be flatter in this
locally honeycomb-like lattice, and including NNN and third
NN terms does not change the overall behavior. Comparing
Fig. S3(a) and Fig. S3(b), one can notice that the dispersion
inside the jeff = 1/2 subbands is affected by the NNN terms,
but the semi-metallic character is left unchanged. Inclusion
of third NN terms, as can be seen in Fig. S3(c), makes the
dispersion slightly closer to the ab-initio bands.

Supplementary Material D:

NN exchange interactions

The exchanges J , K, and � are given by (suppressing the
bond label ↵)

J =
4

27


(2t1 + t3)2(4JH + 3U)

U2
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�
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�
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t2(t1 � t3)

(2U + 3�)2
, (1)

where ti (i = 1, 2, 3), JH , U , and � are the NN hopping
amplitudes, Hund’s coupling, on-site Coulomb repulsion, and
SOC respectively[9]. ti is illustrated in Fig. S2(a). Note that,
the small amount of NN Heisenberg interaction is attributed
to the cancelation between the 2t1 and t3 in the antiferromag-
netic contrubution to J in Eq. 1. Since t2 is the largest term,
as mentioned in the main text, ferromagnetic K becomes the
most dominant contribution in the exchange interactions.

TABLE S3: A subset of Ir t2g hopping terms T
ij

as representatives of each
hopping channels up to third NN, where Hhop =

P
ij

C†
i

·T
ij

·C
j

and C† and
C† being the creation and annihilation operator for t2g states, respectively. d is
approximate distance between Ir and O. Other hopping terms can be recovered
by applying T

ji

= T†
ij

, Ca,b,z

2 rotations, and inversion operations.

Kind r
ij

(in Cartesian coord.) Sublattice Ue↵ = 0.0 eV Ue↵ = 1.5 eV Ue↵ = 3.0 eV
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X,X’ (-d, 0,+d) 1 ! 4 d

xy

+0.088 +0.018 +0.260 +0.080 +0.019 +0.276 +0.064 +0.021 +0.289
d

xz

+0.018 -0.152 +0.013 +0.020 -0.110 +0.013 +0.021 -0.051 0.005
d

yz

+0.259 +0.013 +0.078 +0.276 +0.013 +0.067 +0.288 0.003 +0.052

tNN d
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d
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d

yz
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d
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d

yz

d
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d

xz

d

yz

Z (+d,+d, 0) 1 ! 2 d

xy

-0.162 -0.022 +0.021 -0.119 -0.024 +0.023 -0.059 -0.031 +0.030
d

xz

+0.016 +0.087 -0.239 +0.017 +0.078 -0.255 +0.025 +0.072 -0.269
d

yz

-0.016 -0.239 +0.086 -0.017 -0.254 +0.077 -0.024 -0.271 +0.056
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Exchange interactions:

tNN
ij =

�

�
t1 t2
t2 t1

t3

�

�
Other terms are smaller 
then 20 meV and ignored.

a

b

c

Z-bonds
X-bonds

Y-bonds

Lattice	parameters	and	hopping	integrals	vs.	Pressure
(Lattice	optimized	with	SOC+U=2eV	in	VASP.	No	SOC,	U	is	included	in	Wannier	orbital	calculation)

Lattice	constants hopping:	Z-bonds	(in	eV) {X,Y}-bonds	(in	eV)
a/a0 b/b0 c/c0 t1 |t2| t3 t1 |t2| t3

-3.9 1.008 1.010 1.012 0.080 0.248 -0.139 0.078 0.248 -0.128
-1.1 0.998 0.998 1.004 0.087 0.242 -0.176 0.090 0.242 -0.185
2.1 0.988 0.986 0.996 0.094 0.241 -0.201 0.102 0.240 -0.240
5.9 0.978 0.974 0.987 0.100 0.237 -0.231 0.115 0.232 -0.302
10.2 0.968 0.962 0.980 0.106 0.238 -0.248 0.131 0.228 -0.365

Exchange	interactions	from	the	above	hopping	integrals	
(U=2.0eV,	J_H/U=0.2,	SOC=0.45eV	used.	J-K-G	ratio	is	robust	against	parameter	change.)

Lattice	constants JKG:	Z-bonds	(in	meV) JKG:	{X,Y}-bonds	(in	meV)
a/a0 b/b0 c/c0 J K Gamma J K Gamma

-3.9 1.008 1.010 1.012 -1.4 -6.5 -5.2 -1.1 -6.8 -4.9
-1.1 0.998 0.998 1.004 -2.2 -5.1 -6.1 -2.4 -4.8 -6.4
2.1 0.988 0.986 0.996 -2.7 -4.2 -6.8 -3.4 -2.7 -7.9
5.9 0.978 0.974 0.987 -3.2 -2.8 -7.5 -4.1 0.6 -9.3
10.2 0.968 0.962 0.980 -3.6 -2.1 -8.1 -4.9 4.3 -10.8

a2 6.1742 6.1742 4.0687 3.0 3.0 2.0 6.0 6.0 0.0
a1 4.1486 8.1999 0 2.0 4.0 0.0 -2.0 2.0 0.0
a3 -2.0257 2.0257 4.0687 -1.0 1.0 2.0 0.0 0.0 4.0

c-a-b c0-a0-b0raio
12.348 12.348 0 17.463 17.8271 0.9796
-4.0513 4.0513 0 5.7294 5.9194 0.9679

0 0 8.1373 8.1373 8.4562 0.9623
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bonds are ferromagnetically correlated. As a result, despite
being in the AF-Heisenberg regime, there is a net moment in
the â direction. The size of the net moment is small, especially
compared to the FMa phase, and decreases as we approach the
SPa+ phase or the AF Kitaev point. We illustrate this decrease
in net moment by the lightening of the color contours.

B. Existing magnetic orders

AFc: This collinear phase is the exact ground state in the
AF-Heisenberg region when J > �K and J > �: the LTA
succeeds in finding this exact ground state for both lattices.
This phase is the HK-AF state with moments aligned antifer-
romagnetically and locked in the ĉ direction due to the pres-
ence of �.

FMa: This coplanar state with finite net moment encom-
passes a large fraction of both phase diagrams. Only in the hy-
perhoneycomb does the LTA succeed in identifying this phase
as the exact ground state. In both lattices, the projection of
the spins along the â direction is ferromagnetic while the pro-
jection along the ĉ direction vanishes. The projection along
the ˆb direction behaves differently for the hyperhoneycomb
and the H–1 models. In the hyperhoneycomb lattice, the ˆb
component orders in the skew-zigzag order, while in the H–1
lattice, the ˆb component is ferromagnetic within each honey-
comb strip. This state is connected to the HK-FM phase, and
in the case of the hyperhoneycomb lattice, it is also connected
to the J > �K/2 segment of the HK-SZ phase, where ObD
studies have shown that the HK-SZ phase orders in the ˆb di-
rection, much like the FMa phase. The Ca

2 rotation symmetry
is preserved in this phase.

Since the ˆb component of the phase in both lattices have
a vanishing net moment, only the â component contributes to
the total moment. This total moment becomes saturated (spins
point entirely in the â direction) when approaching the HK-
FM phase and decreases smoothly as we approach the SPa�

boundary. In the hyperhoneycomb case, the total moment fur-
ther decreases and vanishes smoothly as we approach the HK-
SZ phase. The magnitude of the moment along â is depicted
by the color contours in Fig. 2 where the largest projection is
colored darkest.

SSx/y: Wedged within the HK-SS, AFc, and SPb+ phases
are two skew-stripy phases, the first of which to be discussed
is the non-coplanar SSx/y phase. This phase has the largest
projection along the x(y) direction and this component orders
in a skew-stripy fashion (these two orientations are degener-
ate). In the hyperhoneycomb lattice, the other two Cartesian
components of the spins are small but finite and ensure that
the spins along each zigzag chain are collinear. In the H–1
lattice, the y(x) component also orders in a skew-stripy fash-
ion. This phase does not have a net moment and breaks all C2

symmetries.
SSb: This other skew-stripy phase is coplanar and lies far-

ther away from the FM Kitaev point relative to the SSx/y

phase. This phase borders the AFc phase and can be identified
via the LTA in the hyperhoneycomb lattice. In both lattices,
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(b) H–1 model

FIG. 5. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with �  0. The details of this phase diagram
can be understood via a classical mapping that relates (J,K,�) !
(�J,�K,��); see Sec. V C for details. The color contours are
guides for the eye: in the case of spiral (SP) states, they represent the
length of the Q-vector, whereas in the case of non-spiral states, they
represent properties relevant to that particular phase; see Sec. V for
details.

Some	notable	features:	
1. Pressure	reduces	the	Ir-Ir	distance,	changing	

t3	term	drastically.	
2. Strain	is	anisotropic:	X/Y	bonds	are	more	

strongly	affected	by	the	pressure.		
3. At	high	pressure,	sign	of	Kitaev	term	can	be	

opposite	for	X/Y	and	Z	bonds.		
4. Γ	dominates	at	high	P.
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FIG. S3. (Color online) Band structures (solid red lines) calculated from tight-binding calculations including up to (a) NN, (b) NNN, and (c)
third-NN hopping terms from the Wannier orbital calcualtions tabulated in Table. S3, compared to those from ab-initio results (dashed grey
lines). SOC is included in the calculations.

The role of further-neighbor hopping amplitudes in the
band structure are shown in Fig. S3, where the evolution of
band structure as we include NNN and third NN terms are
presented. Fig. S3 shows the change of the band structures
as further-neighbor hopping terms are included with the pres-
ence of SOC; Fig. S3(a), (b) and (c) show the bands with hop-
ping terms up to NN, NNN, and third NN terms, respectively,
with the presence of SOC. One can see that, the large SOC
in Ir tends to make the jeff = 1/2 bands to be flatter in this
locally honeycomb-like lattice, and including NNN and third
NN terms does not change the overall behavior. Comparing
Fig. S3(a) and Fig. S3(b), one can notice that the dispersion
inside the jeff = 1/2 subbands is affected by the NNN terms,
but the semi-metallic character is left unchanged. Inclusion
of third NN terms, as can be seen in Fig. S3(c), makes the
dispersion slightly closer to the ab-initio bands.
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NN exchange interactions

The exchanges J , K, and � are given by (suppressing the
bond label ↵)

J =
4
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where ti (i = 1, 2, 3), JH , U , and � are the NN hopping
amplitudes, Hund’s coupling, on-site Coulomb repulsion, and
SOC respectively[9]. ti is illustrated in Fig. S2(a). Note that,
the small amount of NN Heisenberg interaction is attributed
to the cancelation between the 2t1 and t3 in the antiferromag-
netic contrubution to J in Eq. 1. Since t2 is the largest term,
as mentioned in the main text, ferromagnetic K becomes the
most dominant contribution in the exchange interactions.

TABLE S3: A subset of Ir t2g hopping terms T
ij

as representatives of each
hopping channels up to third NN, where Hhop =

P
ij

C†
i

·T
ij

·C
j

and C† and
C† being the creation and annihilation operator for t2g states, respectively. d is
approximate distance between Ir and O. Other hopping terms can be recovered
by applying T

ji

= T†
ij

, Ca,b,z

2 rotations, and inversion operations.

Kind r
ij

(in Cartesian coord.) Sublattice Ue↵ = 0.0 eV Ue↵ = 1.5 eV Ue↵ = 3.0 eV
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+0.088 +0.018 +0.260 +0.080 +0.019 +0.276 +0.064 +0.021 +0.289
d

xz

+0.018 -0.152 +0.013 +0.020 -0.110 +0.013 +0.021 -0.051 0.005
d

yz
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Z (+d,+d, 0) 1 ! 2 d

xy
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d

xz

+0.016 +0.087 -0.239 +0.017 +0.078 -0.255 +0.025 +0.072 -0.269
d
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Other terms are smaller 
then 20 meV and ignored.
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Z-bonds
X-bonds

Y-bonds

Lattice	parameters	and	hopping	integrals	vs.	Pressure
(Lattice	optimized	with	SOC+U=2eV	in	VASP.	No	SOC,	U	is	included	in	Wannier	orbital	calculation)

Lattice	constants hopping:	Z-bonds	(in	eV) {X,Y}-bonds	(in	eV)
a/a0 b/b0 c/c0 t1 |t2| t3 t1 |t2| t3

-3.9 1.008 1.010 1.012 0.080 0.248 -0.139 0.078 0.248 -0.128
-1.1 0.998 0.998 1.004 0.087 0.242 -0.176 0.090 0.242 -0.185
2.1 0.988 0.986 0.996 0.094 0.241 -0.201 0.102 0.240 -0.240
5.9 0.978 0.974 0.987 0.100 0.237 -0.231 0.115 0.232 -0.302
10.2 0.968 0.962 0.980 0.106 0.238 -0.248 0.131 0.228 -0.365

Exchange	interactions	from	the	above	hopping	integrals	
(U=2.0eV,	J_H/U=0.2,	SOC=0.45eV	used.	J-K-G	ratio	is	robust	against	parameter	change.)

Lattice	constants JKG:	Z-bonds	(in	meV) JKG:	{X,Y}-bonds	(in	meV)
a/a0 b/b0 c/c0 J K Gamma J K Gamma

-3.9 1.008 1.010 1.012 -1.4 -6.5 -5.2 -1.1 -6.8 -4.9
-1.1 0.998 0.998 1.004 -2.2 -5.1 -6.1 -2.4 -4.8 -6.4
2.1 0.988 0.986 0.996 -2.7 -4.2 -6.8 -3.4 -2.7 -7.9
5.9 0.978 0.974 0.987 -3.2 -2.8 -7.5 -4.1 0.6 -9.3
10.2 0.968 0.962 0.980 -3.6 -2.1 -8.1 -4.9 4.3 -10.8

a2 6.1742 6.1742 4.0687 3.0 3.0 2.0 6.0 6.0 0.0
a1 4.1486 8.1999 0 2.0 4.0 0.0 -2.0 2.0 0.0
a3 -2.0257 2.0257 4.0687 -1.0 1.0 2.0 0.0 0.0 4.0

c-a-b c0-a0-b0raio
12.348 12.348 0 17.463 17.8271 0.9796
-4.0513 4.0513 0 5.7294 5.9194 0.9679

0 0 8.1373 8.1373 8.4562 0.9623
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bonds are ferromagnetically correlated. As a result, despite
being in the AF-Heisenberg regime, there is a net moment in
the â direction. The size of the net moment is small, especially
compared to the FMa phase, and decreases as we approach the
SPa+ phase or the AF Kitaev point. We illustrate this decrease
in net moment by the lightening of the color contours.

B. Existing magnetic orders

AFc: This collinear phase is the exact ground state in the
AF-Heisenberg region when J > �K and J > �: the LTA
succeeds in finding this exact ground state for both lattices.
This phase is the HK-AF state with moments aligned antifer-
romagnetically and locked in the ĉ direction due to the pres-
ence of �.

FMa: This coplanar state with finite net moment encom-
passes a large fraction of both phase diagrams. Only in the hy-
perhoneycomb does the LTA succeed in identifying this phase
as the exact ground state. In both lattices, the projection of
the spins along the â direction is ferromagnetic while the pro-
jection along the ĉ direction vanishes. The projection along
the ˆb direction behaves differently for the hyperhoneycomb
and the H–1 models. In the hyperhoneycomb lattice, the ˆb
component orders in the skew-zigzag order, while in the H–1
lattice, the ˆb component is ferromagnetic within each honey-
comb strip. This state is connected to the HK-FM phase, and
in the case of the hyperhoneycomb lattice, it is also connected
to the J > �K/2 segment of the HK-SZ phase, where ObD
studies have shown that the HK-SZ phase orders in the ˆb di-
rection, much like the FMa phase. The Ca

2 rotation symmetry
is preserved in this phase.

Since the ˆb component of the phase in both lattices have
a vanishing net moment, only the â component contributes to
the total moment. This total moment becomes saturated (spins
point entirely in the â direction) when approaching the HK-
FM phase and decreases smoothly as we approach the SPa�

boundary. In the hyperhoneycomb case, the total moment fur-
ther decreases and vanishes smoothly as we approach the HK-
SZ phase. The magnitude of the moment along â is depicted
by the color contours in Fig. 2 where the largest projection is
colored darkest.

SSx/y: Wedged within the HK-SS, AFc, and SPb+ phases
are two skew-stripy phases, the first of which to be discussed
is the non-coplanar SSx/y phase. This phase has the largest
projection along the x(y) direction and this component orders
in a skew-stripy fashion (these two orientations are degener-
ate). In the hyperhoneycomb lattice, the other two Cartesian
components of the spins are small but finite and ensure that
the spins along each zigzag chain are collinear. In the H–1
lattice, the y(x) component also orders in a skew-stripy fash-
ion. This phase does not have a net moment and breaks all C2

symmetries.
SSb: This other skew-stripy phase is coplanar and lies far-

ther away from the FM Kitaev point relative to the SSx/y

phase. This phase borders the AFc phase and can be identified
via the LTA in the hyperhoneycomb lattice. In both lattices,
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FIG. 5. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with �  0. The details of this phase diagram
can be understood via a classical mapping that relates (J,K,�) !
(�J,�K,��); see Sec. V C for details. The color contours are
guides for the eye: in the case of spiral (SP) states, they represent the
length of the Q-vector, whereas in the case of non-spiral states, they
represent properties relevant to that particular phase; see Sec. V for
details.

Some	notable	features:	
1. Pressure	reduces	the	Ir-Ir	distance,	changing	

t3	term	drastically.	
2. Strain	is	anisotropic:	X/Y	bonds	are	more	

strongly	affected	by	the	pressure.		
3. At	high	pressure,	sign	of	Kitaev	term	can	be	

opposite	for	X/Y	and	Z	bonds.		
4. Γ	dominates	at	high	P.
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FIG. S3. (Color online) Band structures (solid red lines) calculated from tight-binding calculations including up to (a) NN, (b) NNN, and (c)
third-NN hopping terms from the Wannier orbital calcualtions tabulated in Table. S3, compared to those from ab-initio results (dashed grey
lines). SOC is included in the calculations.

The role of further-neighbor hopping amplitudes in the
band structure are shown in Fig. S3, where the evolution of
band structure as we include NNN and third NN terms are
presented. Fig. S3 shows the change of the band structures
as further-neighbor hopping terms are included with the pres-
ence of SOC; Fig. S3(a), (b) and (c) show the bands with hop-
ping terms up to NN, NNN, and third NN terms, respectively,
with the presence of SOC. One can see that, the large SOC
in Ir tends to make the jeff = 1/2 bands to be flatter in this
locally honeycomb-like lattice, and including NNN and third
NN terms does not change the overall behavior. Comparing
Fig. S3(a) and Fig. S3(b), one can notice that the dispersion
inside the jeff = 1/2 subbands is affected by the NNN terms,
but the semi-metallic character is left unchanged. Inclusion
of third NN terms, as can be seen in Fig. S3(c), makes the
dispersion slightly closer to the ab-initio bands.

Supplementary Material D:

NN exchange interactions

The exchanges J , K, and � are given by (suppressing the
bond label ↵)

J =
4

27


(2t1 + t3)2(4JH + 3U)

U2
� 16JH(t1 � t3)2

(2U + 3�)2

�

K =
32JH

9


(t1 � t3)2�3t22

(2U + 3�)2

�
, � =

64JH

9

t2(t1 � t3)

(2U + 3�)2
, (1)

where ti (i = 1, 2, 3), JH , U , and � are the NN hopping
amplitudes, Hund’s coupling, on-site Coulomb repulsion, and
SOC respectively[9]. ti is illustrated in Fig. S2(a). Note that,
the small amount of NN Heisenberg interaction is attributed
to the cancelation between the 2t1 and t3 in the antiferromag-
netic contrubution to J in Eq. 1. Since t2 is the largest term,
as mentioned in the main text, ferromagnetic K becomes the
most dominant contribution in the exchange interactions.

TABLE S3: A subset of Ir t2g hopping terms T
ij

as representatives of each
hopping channels up to third NN, where Hhop =

P
ij

C†
i

·T
ij

·C
j

and C† and
C† being the creation and annihilation operator for t2g states, respectively. d is
approximate distance between Ir and O. Other hopping terms can be recovered
by applying T

ji

= T†
ij

, Ca,b,z

2 rotations, and inversion operations.

Kind r
ij

(in Cartesian coord.) Sublattice Ue↵ = 0.0 eV Ue↵ = 1.5 eV Ue↵ = 3.0 eV

tNN d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

X,X’ (-d, 0,+d) 1 ! 4 d

xy

+0.088 +0.018 +0.260 +0.080 +0.019 +0.276 +0.064 +0.021 +0.289
d

xz

+0.018 -0.152 +0.013 +0.020 -0.110 +0.013 +0.021 -0.051 0.005
d

yz

+0.259 +0.013 +0.078 +0.276 +0.013 +0.067 +0.288 0.003 +0.052

tNN d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

Z (+d,+d, 0) 1 ! 2 d

xy

-0.162 -0.022 +0.021 -0.119 -0.024 +0.023 -0.059 -0.031 +0.030
d

xz

+0.016 +0.087 -0.239 +0.017 +0.078 -0.255 +0.025 +0.072 -0.269
d

yz

-0.016 -0.239 +0.086 -0.017 -0.254 +0.077 -0.024 -0.271 +0.056

Continued in next page...
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Realization of the Heisenberg-Kitaev model in the honeycomb lattice iridates A2IrO3
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1I. Physikalisches Institut, Georg-August-Universität Göttingen, D-37077, Göttingen, Germany
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(Dated: June 3, 2011)

Using thermodynamic measurements on the honeycomb lattice iridates A2IrO3 (A =Na, Li) we
demonstrate that these materials are possible realizations of the Heisenberg-Kitaev model. Both
materials are Mott insulators with effective spins S = 1/2 on a honeycomb lattice. The Curie
Weiss temperature decreases from θ ≈ −125 K for Na2IrO3 to θ ≈ −33 K for Li2IrO3. Surprisingly
however, the antiferromagnetic ordering temperature for both materials is the same TN ≈ 15 K.
This counter-intuitive behavior directly mimics the recent predictions of the finite temperature
Heisenberg-Kitaev model on a honeycomb lattice. Our results also indicate that the Li2IrO3 system
is close (0.6 ≤ α ≤ 0.7) to the Kitaev limit (α ≥ 0.8) and that application of pressure might tune it
to the spin-liquid state expected in the Kitaev limit of the model.

Introduction: Recently the Kitaev model of spins S =
1/2 on a honeycomb lattice has attracted a lot of atten-
tion because it is a relatively simple spin model involv-
ing only nearest neighbor interactions and yet it shows
several exotic states of matter.1 The ground state is a
gapless spin-liquid with emergent Majorana excitations,
or a gapped topologically ordered state (the Z2 spin-
liquid) with Abelian anyonic excitations depending on
the model parameters.1 Yet another exotic phase of the
Kitaev model is obtained when the spin-liquid is gapped
out by applying a magnetic field perpendicular to the
honeycomb plane.1,2 This phase is also a gapped, topo-
logically ordered phase, but one with non-abelian quasi-
particle (Majorana fermions) statistics.2,3 Among sys-
tems predicted to support Majorana fermions are exotic
fractional quantum Hall systems4 and heterostructures
of topological insulators, semi-metals, or semiconductors
with conventional s-wave superconductors.5 Realizations
of the Kitaev model and its extentions would also be av-
enues to look for these elusive quasiparticles.
The Kitaev model is thus relevant to such diverse areas

as quantum computation1,6 and strongly correlated con-
densed matter systems7,8 among others and search for
realizations of this and related models is of fundamental
importance.
In looking for experimental realizations of the Ki-

taev model one must not only look for systems with
S = 1/2 on the honeycomb lattice. In addition one
also needs to look at how to introduce anisotropic ex-
change interactions required in the model. Supercon-
ducting circuits9 and optical lattices10 have been pro-
posed as possible ways of realizing the Kitaev model. In
solid state materials, Mott insulating transition metal ox-
ides with strong spin-orbit coupling have been suggested
as possible candidates.7,11

The layered iridate Na2IrO3 has effective S = 1/2 Ir4+

moments on a honeycomb lattice.12 The strong spin-orbit
coupling in this 5d transition metal system is likely to
lead to orbital dependent anisotropic in-plane exchange.
However, one needs to worry about the possibility of
other interactions like the isotropic Heisenberg interac-
tions being present in addition to the Kitaev like inter-

actions. Such a Heisenberg-Kitaev (HK) model has been
studied recently and found to have an interesting phase
diagram depending on the relative strength of the two
terms. The HK Hamiltonian can be written as11

HHK = (1− α)
∑

ij

σ⃗i.σ⃗j − 2α
∑

γ

σγ
i .σ

γ
j (1)

where the σi are the Pauli matrices for the effective
S = 1/2 and γ = x, y, z labels the three different links
for each spin of the honeycomb lattice. The first part
in Eq.(1) is the isotropic Heisenberg term while the sec-
ond term is the anisotropic Kitaev term.11 The Heisen-
berg exchange is antiferromagnetic, while the anisotropic
Kitaev exchange is ferromagnetic. Varying the relative
coupling strength 0 ≤ α ≤ 1, the model interpolates
from the simple Heisenberg model with a Néel ground
state for α = 0 to the Kitaev model for α = 1, which
even for ferromagnetic interactions is highly frustrated
and exhibits a gapless spin-liquid ground state.1 As the
coupling α is varied, three magnetic phases were found
in zero temperature calculations11 and have been found
to persist in calculations at finite temperatures too.13

The three phases are a simple Néel antiferromagnet for
0 ≤ α ≤ 0.4, a stripy antiferromagnet for 0.4 ≤ α ≤ 0.8,
and a spin-liquid state for 0.8 ≤ α ≤ 1.11,13

Even though the A2IrO3 materials have been sug-
gested as possible avenues to look for Kitaev like and
HK like physics,7,11,13 there is very limited experimental
data available for the A2IrO3 systems. We have ear-
lier shown that single crystal Na2IrO3 is a Mott insu-
lator which undergoes antiferromagnetic ordering below
TN = 15 K although the polycrystalline samples showed
glassy behavior.12 There are two conflicting reports on
the magnetic properties of Li2IrO3.14,15 The first report
suggested paramagnetic behavior between T = 5 K and
300 K without any sign of magnetic order14 while the
second report showed an anomaly in the magnetic sus-
ceptibility below T = 10 K which was also accompanied
by a hysteresis between zero-field-cooled and field-cooled
data suggesting glassy behavior.15 No heat capacity data

α-A2IrO3

| ⇤j⌅ = � 1⌃
3
(i|xz, ⇥s⌅ � |yz, ⇥s⌅+ |xy, ⇤s⌅)

| �j⇤ =
1⇧
3
(i|xz, ⇥s⇤+ |yz, ⇥s⇤+ |xy, �s⇤) Spin-Orbit entangled  

pseudo-spin basis  
(Kramers Doublet)

Jeff=1/2

tNN
ij =

�

�
t1 t2
t2 t1

t3

�

�
Other terms are smaller 
then 20 meV and ignored.

a

b

c

Z-bonds
X-bonds

Y-bonds

Lattice	parameters	and	hopping	integrals	vs.	Pressure
(Lattice	optimized	with	SOC+U=2eV	in	VASP.	No	SOC,	U	is	included	in	Wannier	orbital	calculation)

Lattice	constants hopping:	Z-bonds	(in	eV) {X,Y}-bonds	(in	eV)
a/a0 b/b0 c/c0 t1 |t2| t3 t1 |t2| t3

-3.9 1.008 1.010 1.012 0.080 0.248 -0.139 0.078 0.248 -0.128
-1.1 0.998 0.998 1.004 0.087 0.242 -0.176 0.090 0.242 -0.185
2.1 0.988 0.986 0.996 0.094 0.241 -0.201 0.102 0.240 -0.240
5.9 0.978 0.974 0.987 0.100 0.237 -0.231 0.115 0.232 -0.302
10.2 0.968 0.962 0.980 0.106 0.238 -0.248 0.131 0.228 -0.365

Exchange	interactions	from	the	above	hopping	integrals	
(U=2.0eV,	J_H/U=0.2,	SOC=0.45eV	used.	J-K-G	ratio	is	robust	against	parameter	change.)

Lattice	constants JKG:	Z-bonds	(in	meV) JKG:	{X,Y}-bonds	(in	meV)
a/a0 b/b0 c/c0 J K Gamma J K Gamma

-3.9 1.008 1.010 1.012 -1.4 -6.5 -5.2 -1.1 -6.8 -4.9
-1.1 0.998 0.998 1.004 -2.2 -5.1 -6.1 -2.4 -4.8 -6.4
2.1 0.988 0.986 0.996 -2.7 -4.2 -6.8 -3.4 -2.7 -7.9
5.9 0.978 0.974 0.987 -3.2 -2.8 -7.5 -4.1 0.6 -9.3
10.2 0.968 0.962 0.980 -3.6 -2.1 -8.1 -4.9 4.3 -10.8

a2 6.1742 6.1742 4.0687 3.0 3.0 2.0 6.0 6.0 0.0
a1 4.1486 8.1999 0 2.0 4.0 0.0 -2.0 2.0 0.0
a3 -2.0257 2.0257 4.0687 -1.0 1.0 2.0 0.0 0.0 4.0

c-a-b c0-a0-b0raio
12.348 12.348 0 17.463 17.8271 0.9796
-4.0513 4.0513 0 5.7294 5.9194 0.9679

0 0 8.1373 8.1373 8.4562 0.9623
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Hopping integral between neighboring Ir t2g orbitals:

8

bonds are ferromagnetically correlated. As a result, despite
being in the AF-Heisenberg regime, there is a net moment in
the â direction. The size of the net moment is small, especially
compared to the FMa phase, and decreases as we approach the
SPa+ phase or the AF Kitaev point. We illustrate this decrease
in net moment by the lightening of the color contours.

B. Existing magnetic orders

AFc: This collinear phase is the exact ground state in the
AF-Heisenberg region when J > �K and J > �: the LTA
succeeds in finding this exact ground state for both lattices.
This phase is the HK-AF state with moments aligned antifer-
romagnetically and locked in the ĉ direction due to the pres-
ence of �.

FMa: This coplanar state with finite net moment encom-
passes a large fraction of both phase diagrams. Only in the hy-
perhoneycomb does the LTA succeed in identifying this phase
as the exact ground state. In both lattices, the projection of
the spins along the â direction is ferromagnetic while the pro-
jection along the ĉ direction vanishes. The projection along
the ˆb direction behaves differently for the hyperhoneycomb
and the H–1 models. In the hyperhoneycomb lattice, the ˆb
component orders in the skew-zigzag order, while in the H–1
lattice, the ˆb component is ferromagnetic within each honey-
comb strip. This state is connected to the HK-FM phase, and
in the case of the hyperhoneycomb lattice, it is also connected
to the J > �K/2 segment of the HK-SZ phase, where ObD
studies have shown that the HK-SZ phase orders in the ˆb di-
rection, much like the FMa phase. The Ca

2 rotation symmetry
is preserved in this phase.

Since the ˆb component of the phase in both lattices have
a vanishing net moment, only the â component contributes to
the total moment. This total moment becomes saturated (spins
point entirely in the â direction) when approaching the HK-
FM phase and decreases smoothly as we approach the SPa�

boundary. In the hyperhoneycomb case, the total moment fur-
ther decreases and vanishes smoothly as we approach the HK-
SZ phase. The magnitude of the moment along â is depicted
by the color contours in Fig. 2 where the largest projection is
colored darkest.

SSx/y: Wedged within the HK-SS, AFc, and SPb+ phases
are two skew-stripy phases, the first of which to be discussed
is the non-coplanar SSx/y phase. This phase has the largest
projection along the x(y) direction and this component orders
in a skew-stripy fashion (these two orientations are degener-
ate). In the hyperhoneycomb lattice, the other two Cartesian
components of the spins are small but finite and ensure that
the spins along each zigzag chain are collinear. In the H–1
lattice, the y(x) component also orders in a skew-stripy fash-
ion. This phase does not have a net moment and breaks all C2

symmetries.
SSb: This other skew-stripy phase is coplanar and lies far-

ther away from the FM Kitaev point relative to the SSx/y

phase. This phase borders the AFc phase and can be identified
via the LTA in the hyperhoneycomb lattice. In both lattices,
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FIG. 5. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with �  0. The details of this phase diagram
can be understood via a classical mapping that relates (J,K,�) !
(�J,�K,��); see Sec. V C for details. The color contours are
guides for the eye: in the case of spiral (SP) states, they represent the
length of the Q-vector, whereas in the case of non-spiral states, they
represent properties relevant to that particular phase; see Sec. V for
details.

Some	notable	features:	
1. Pressure	reduces	the	Ir-Ir	distance,	changing	

t3	term	drastically.	
2. Strain	is	anisotropic:	X/Y	bonds	are	more	

strongly	affected	by	the	pressure.		
3. At	high	pressure,	sign	of	Kitaev	term	can	be	

opposite	for	X/Y	and	Z	bonds.		
4. Γ	dominates	at	high	P.
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FIG. S3. (Color online) Band structures (solid red lines) calculated from tight-binding calculations including up to (a) NN, (b) NNN, and (c)
third-NN hopping terms from the Wannier orbital calcualtions tabulated in Table. S3, compared to those from ab-initio results (dashed grey
lines). SOC is included in the calculations.

The role of further-neighbor hopping amplitudes in the
band structure are shown in Fig. S3, where the evolution of
band structure as we include NNN and third NN terms are
presented. Fig. S3 shows the change of the band structures
as further-neighbor hopping terms are included with the pres-
ence of SOC; Fig. S3(a), (b) and (c) show the bands with hop-
ping terms up to NN, NNN, and third NN terms, respectively,
with the presence of SOC. One can see that, the large SOC
in Ir tends to make the jeff = 1/2 bands to be flatter in this
locally honeycomb-like lattice, and including NNN and third
NN terms does not change the overall behavior. Comparing
Fig. S3(a) and Fig. S3(b), one can notice that the dispersion
inside the jeff = 1/2 subbands is affected by the NNN terms,
but the semi-metallic character is left unchanged. Inclusion
of third NN terms, as can be seen in Fig. S3(c), makes the
dispersion slightly closer to the ab-initio bands.

Supplementary Material D:

NN exchange interactions

The exchanges J , K, and � are given by (suppressing the
bond label ↵)

J =
4

27


(2t1 + t3)2(4JH + 3U)

U2
� 16JH(t1 � t3)2

(2U + 3�)2

�

K =
32JH

9


(t1 � t3)2�3t22

(2U + 3�)2

�
, � =

64JH

9

t2(t1 � t3)

(2U + 3�)2
, (1)

where ti (i = 1, 2, 3), JH , U , and � are the NN hopping
amplitudes, Hund’s coupling, on-site Coulomb repulsion, and
SOC respectively[9]. ti is illustrated in Fig. S2(a). Note that,
the small amount of NN Heisenberg interaction is attributed
to the cancelation between the 2t1 and t3 in the antiferromag-
netic contrubution to J in Eq. 1. Since t2 is the largest term,
as mentioned in the main text, ferromagnetic K becomes the
most dominant contribution in the exchange interactions.

TABLE S3: A subset of Ir t2g hopping terms T
ij

as representatives of each
hopping channels up to third NN, where Hhop =

P
ij

C†
i

·T
ij

·C
j

and C† and
C† being the creation and annihilation operator for t2g states, respectively. d is
approximate distance between Ir and O. Other hopping terms can be recovered
by applying T

ji

= T†
ij

, Ca,b,z

2 rotations, and inversion operations.

Kind r
ij

(in Cartesian coord.) Sublattice Ue↵ = 0.0 eV Ue↵ = 1.5 eV Ue↵ = 3.0 eV

tNN d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

X,X’ (-d, 0,+d) 1 ! 4 d

xy

+0.088 +0.018 +0.260 +0.080 +0.019 +0.276 +0.064 +0.021 +0.289
d

xz

+0.018 -0.152 +0.013 +0.020 -0.110 +0.013 +0.021 -0.051 0.005
d

yz

+0.259 +0.013 +0.078 +0.276 +0.013 +0.067 +0.288 0.003 +0.052

tNN d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

Z (+d,+d, 0) 1 ! 2 d

xy

-0.162 -0.022 +0.021 -0.119 -0.024 +0.023 -0.059 -0.031 +0.030
d

xz

+0.016 +0.087 -0.239 +0.017 +0.078 -0.255 +0.025 +0.072 -0.269
d

yz

-0.016 -0.239 +0.086 -0.017 -0.254 +0.077 -0.024 -0.271 +0.056

Continued in next page...

Exchange interactions:

tNN
ij =

�

�
t1 t2
t2 t1

t3

�

�
Other terms are smaller 
then 20 meV and ignored.

a

b

c

Z-bonds
X-bonds

Y-bonds

Lattice	parameters	and	hopping	integrals	vs.	Pressure
(Lattice	optimized	with	SOC+U=2eV	in	VASP.	No	SOC,	U	is	included	in	Wannier	orbital	calculation)

Lattice	constants hopping:	Z-bonds	(in	eV) {X,Y}-bonds	(in	eV)
a/a0 b/b0 c/c0 t1 |t2| t3 t1 |t2| t3

-3.9 1.008 1.010 1.012 0.080 0.248 -0.139 0.078 0.248 -0.128
-1.1 0.998 0.998 1.004 0.087 0.242 -0.176 0.090 0.242 -0.185
2.1 0.988 0.986 0.996 0.094 0.241 -0.201 0.102 0.240 -0.240
5.9 0.978 0.974 0.987 0.100 0.237 -0.231 0.115 0.232 -0.302
10.2 0.968 0.962 0.980 0.106 0.238 -0.248 0.131 0.228 -0.365

Exchange	interactions	from	the	above	hopping	integrals	
(U=2.0eV,	J_H/U=0.2,	SOC=0.45eV	used.	J-K-G	ratio	is	robust	against	parameter	change.)

Lattice	constants JKG:	Z-bonds	(in	meV) JKG:	{X,Y}-bonds	(in	meV)
a/a0 b/b0 c/c0 J K Gamma J K Gamma

-3.9 1.008 1.010 1.012 -1.4 -6.5 -5.2 -1.1 -6.8 -4.9
-1.1 0.998 0.998 1.004 -2.2 -5.1 -6.1 -2.4 -4.8 -6.4
2.1 0.988 0.986 0.996 -2.7 -4.2 -6.8 -3.4 -2.7 -7.9
5.9 0.978 0.974 0.987 -3.2 -2.8 -7.5 -4.1 0.6 -9.3
10.2 0.968 0.962 0.980 -3.6 -2.1 -8.1 -4.9 4.3 -10.8

a2 6.1742 6.1742 4.0687 3.0 3.0 2.0 6.0 6.0 0.0
a1 4.1486 8.1999 0 2.0 4.0 0.0 -2.0 2.0 0.0
a3 -2.0257 2.0257 4.0687 -1.0 1.0 2.0 0.0 0.0 4.0

c-a-b c0-a0-b0raio
12.348 12.348 0 17.463 17.8271 0.9796
-4.0513 4.0513 0 5.7294 5.9194 0.9679

0 0 8.1373 8.1373 8.4562 0.9623
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bonds are ferromagnetically correlated. As a result, despite
being in the AF-Heisenberg regime, there is a net moment in
the â direction. The size of the net moment is small, especially
compared to the FMa phase, and decreases as we approach the
SPa+ phase or the AF Kitaev point. We illustrate this decrease
in net moment by the lightening of the color contours.

B. Existing magnetic orders

AFc: This collinear phase is the exact ground state in the
AF-Heisenberg region when J > �K and J > �: the LTA
succeeds in finding this exact ground state for both lattices.
This phase is the HK-AF state with moments aligned antifer-
romagnetically and locked in the ĉ direction due to the pres-
ence of �.

FMa: This coplanar state with finite net moment encom-
passes a large fraction of both phase diagrams. Only in the hy-
perhoneycomb does the LTA succeed in identifying this phase
as the exact ground state. In both lattices, the projection of
the spins along the â direction is ferromagnetic while the pro-
jection along the ĉ direction vanishes. The projection along
the ˆb direction behaves differently for the hyperhoneycomb
and the H–1 models. In the hyperhoneycomb lattice, the ˆb
component orders in the skew-zigzag order, while in the H–1
lattice, the ˆb component is ferromagnetic within each honey-
comb strip. This state is connected to the HK-FM phase, and
in the case of the hyperhoneycomb lattice, it is also connected
to the J > �K/2 segment of the HK-SZ phase, where ObD
studies have shown that the HK-SZ phase orders in the ˆb di-
rection, much like the FMa phase. The Ca

2 rotation symmetry
is preserved in this phase.

Since the ˆb component of the phase in both lattices have
a vanishing net moment, only the â component contributes to
the total moment. This total moment becomes saturated (spins
point entirely in the â direction) when approaching the HK-
FM phase and decreases smoothly as we approach the SPa�

boundary. In the hyperhoneycomb case, the total moment fur-
ther decreases and vanishes smoothly as we approach the HK-
SZ phase. The magnitude of the moment along â is depicted
by the color contours in Fig. 2 where the largest projection is
colored darkest.

SSx/y: Wedged within the HK-SS, AFc, and SPb+ phases
are two skew-stripy phases, the first of which to be discussed
is the non-coplanar SSx/y phase. This phase has the largest
projection along the x(y) direction and this component orders
in a skew-stripy fashion (these two orientations are degener-
ate). In the hyperhoneycomb lattice, the other two Cartesian
components of the spins are small but finite and ensure that
the spins along each zigzag chain are collinear. In the H–1
lattice, the y(x) component also orders in a skew-stripy fash-
ion. This phase does not have a net moment and breaks all C2

symmetries.
SSb: This other skew-stripy phase is coplanar and lies far-

ther away from the FM Kitaev point relative to the SSx/y

phase. This phase borders the AFc phase and can be identified
via the LTA in the hyperhoneycomb lattice. In both lattices,
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FIG. 5. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with �  0. The details of this phase diagram
can be understood via a classical mapping that relates (J,K,�) !
(�J,�K,��); see Sec. V C for details. The color contours are
guides for the eye: in the case of spiral (SP) states, they represent the
length of the Q-vector, whereas in the case of non-spiral states, they
represent properties relevant to that particular phase; see Sec. V for
details.

Some	notable	features:	
1. Pressure	reduces	the	Ir-Ir	distance,	changing	

t3	term	drastically.	
2. Strain	is	anisotropic:	X/Y	bonds	are	more	

strongly	affected	by	the	pressure.		
3. At	high	pressure,	sign	of	Kitaev	term	can	be	

opposite	for	X/Y	and	Z	bonds.		
4. Γ	dominates	at	high	P.
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FIG. S3. (Color online) Band structures (solid red lines) calculated from tight-binding calculations including up to (a) NN, (b) NNN, and (c)
third-NN hopping terms from the Wannier orbital calcualtions tabulated in Table. S3, compared to those from ab-initio results (dashed grey
lines). SOC is included in the calculations.

The role of further-neighbor hopping amplitudes in the
band structure are shown in Fig. S3, where the evolution of
band structure as we include NNN and third NN terms are
presented. Fig. S3 shows the change of the band structures
as further-neighbor hopping terms are included with the pres-
ence of SOC; Fig. S3(a), (b) and (c) show the bands with hop-
ping terms up to NN, NNN, and third NN terms, respectively,
with the presence of SOC. One can see that, the large SOC
in Ir tends to make the jeff = 1/2 bands to be flatter in this
locally honeycomb-like lattice, and including NNN and third
NN terms does not change the overall behavior. Comparing
Fig. S3(a) and Fig. S3(b), one can notice that the dispersion
inside the jeff = 1/2 subbands is affected by the NNN terms,
but the semi-metallic character is left unchanged. Inclusion
of third NN terms, as can be seen in Fig. S3(c), makes the
dispersion slightly closer to the ab-initio bands.

Supplementary Material D:

NN exchange interactions

The exchanges J , K, and � are given by (suppressing the
bond label ↵)

J =
4

27


(2t1 + t3)2(4JH + 3U)

U2
� 16JH(t1 � t3)2

(2U + 3�)2

�

K =
32JH

9


(t1 � t3)2�3t22

(2U + 3�)2

�
, � =

64JH

9

t2(t1 � t3)

(2U + 3�)2
, (1)

where ti (i = 1, 2, 3), JH , U , and � are the NN hopping
amplitudes, Hund’s coupling, on-site Coulomb repulsion, and
SOC respectively[9]. ti is illustrated in Fig. S2(a). Note that,
the small amount of NN Heisenberg interaction is attributed
to the cancelation between the 2t1 and t3 in the antiferromag-
netic contrubution to J in Eq. 1. Since t2 is the largest term,
as mentioned in the main text, ferromagnetic K becomes the
most dominant contribution in the exchange interactions.

TABLE S3: A subset of Ir t2g hopping terms T
ij

as representatives of each
hopping channels up to third NN, where Hhop =

P
ij

C†
i

·T
ij

·C
j

and C† and
C† being the creation and annihilation operator for t2g states, respectively. d is
approximate distance between Ir and O. Other hopping terms can be recovered
by applying T

ji

= T†
ij

, Ca,b,z

2 rotations, and inversion operations.
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(in Cartesian coord.) Sublattice Ue↵ = 0.0 eV Ue↵ = 1.5 eV Ue↵ = 3.0 eV
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d
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+0.016 +0.087 -0.239 +0.017 +0.078 -0.255 +0.025 +0.072 -0.269
d
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-0.016 -0.239 +0.086 -0.017 -0.254 +0.077 -0.024 -0.271 +0.056
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tNN
ij =

�

�
t1 t2
t2 t1

t3

�

�
Other terms are smaller 
then 20 meV and ignored.

a

b

c

Z-bonds
X-bonds

Y-bonds

Lattice	parameters	and	hopping	integrals	vs.	Pressure
(Lattice	optimized	with	SOC+U=2eV	in	VASP.	No	SOC,	U	is	included	in	Wannier	orbital	calculation)

Lattice	constants hopping:	Z-bonds	(in	eV) {X,Y}-bonds	(in	eV)
a/a0 b/b0 c/c0 t1 |t2| t3 t1 |t2| t3

-3.9 1.008 1.010 1.012 0.080 0.248 -0.139 0.078 0.248 -0.128
-1.1 0.998 0.998 1.004 0.087 0.242 -0.176 0.090 0.242 -0.185
2.1 0.988 0.986 0.996 0.094 0.241 -0.201 0.102 0.240 -0.240
5.9 0.978 0.974 0.987 0.100 0.237 -0.231 0.115 0.232 -0.302
10.2 0.968 0.962 0.980 0.106 0.238 -0.248 0.131 0.228 -0.365

Exchange	interactions	from	the	above	hopping	integrals	
(U=2.0eV,	J_H/U=0.2,	SOC=0.45eV	used.	J-K-G	ratio	is	robust	against	parameter	change.)

Lattice	constants JKG:	Z-bonds	(in	meV) JKG:	{X,Y}-bonds	(in	meV)
a/a0 b/b0 c/c0 J K Gamma J K Gamma

-3.9 1.008 1.010 1.012 -1.4 -6.5 -5.2 -1.1 -6.8 -4.9
-1.1 0.998 0.998 1.004 -2.2 -5.1 -6.1 -2.4 -4.8 -6.4
2.1 0.988 0.986 0.996 -2.7 -4.2 -6.8 -3.4 -2.7 -7.9
5.9 0.978 0.974 0.987 -3.2 -2.8 -7.5 -4.1 0.6 -9.3
10.2 0.968 0.962 0.980 -3.6 -2.1 -8.1 -4.9 4.3 -10.8

a2 6.1742 6.1742 4.0687 3.0 3.0 2.0 6.0 6.0 0.0
a1 4.1486 8.1999 0 2.0 4.0 0.0 -2.0 2.0 0.0
a3 -2.0257 2.0257 4.0687 -1.0 1.0 2.0 0.0 0.0 4.0

c-a-b c0-a0-b0raio
12.348 12.348 0 17.463 17.8271 0.9796
-4.0513 4.0513 0 5.7294 5.9194 0.9679

0 0 8.1373 8.1373 8.4562 0.9623
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bonds are ferromagnetically correlated. As a result, despite
being in the AF-Heisenberg regime, there is a net moment in
the â direction. The size of the net moment is small, especially
compared to the FMa phase, and decreases as we approach the
SPa+ phase or the AF Kitaev point. We illustrate this decrease
in net moment by the lightening of the color contours.

B. Existing magnetic orders

AFc: This collinear phase is the exact ground state in the
AF-Heisenberg region when J > �K and J > �: the LTA
succeeds in finding this exact ground state for both lattices.
This phase is the HK-AF state with moments aligned antifer-
romagnetically and locked in the ĉ direction due to the pres-
ence of �.

FMa: This coplanar state with finite net moment encom-
passes a large fraction of both phase diagrams. Only in the hy-
perhoneycomb does the LTA succeed in identifying this phase
as the exact ground state. In both lattices, the projection of
the spins along the â direction is ferromagnetic while the pro-
jection along the ĉ direction vanishes. The projection along
the ˆb direction behaves differently for the hyperhoneycomb
and the H–1 models. In the hyperhoneycomb lattice, the ˆb
component orders in the skew-zigzag order, while in the H–1
lattice, the ˆb component is ferromagnetic within each honey-
comb strip. This state is connected to the HK-FM phase, and
in the case of the hyperhoneycomb lattice, it is also connected
to the J > �K/2 segment of the HK-SZ phase, where ObD
studies have shown that the HK-SZ phase orders in the ˆb di-
rection, much like the FMa phase. The Ca

2 rotation symmetry
is preserved in this phase.

Since the ˆb component of the phase in both lattices have
a vanishing net moment, only the â component contributes to
the total moment. This total moment becomes saturated (spins
point entirely in the â direction) when approaching the HK-
FM phase and decreases smoothly as we approach the SPa�

boundary. In the hyperhoneycomb case, the total moment fur-
ther decreases and vanishes smoothly as we approach the HK-
SZ phase. The magnitude of the moment along â is depicted
by the color contours in Fig. 2 where the largest projection is
colored darkest.

SSx/y: Wedged within the HK-SS, AFc, and SPb+ phases
are two skew-stripy phases, the first of which to be discussed
is the non-coplanar SSx/y phase. This phase has the largest
projection along the x(y) direction and this component orders
in a skew-stripy fashion (these two orientations are degener-
ate). In the hyperhoneycomb lattice, the other two Cartesian
components of the spins are small but finite and ensure that
the spins along each zigzag chain are collinear. In the H–1
lattice, the y(x) component also orders in a skew-stripy fash-
ion. This phase does not have a net moment and breaks all C2

symmetries.
SSb: This other skew-stripy phase is coplanar and lies far-

ther away from the FM Kitaev point relative to the SSx/y

phase. This phase borders the AFc phase and can be identified
via the LTA in the hyperhoneycomb lattice. In both lattices,
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FIG. 5. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with �  0. The details of this phase diagram
can be understood via a classical mapping that relates (J,K,�) !
(�J,�K,��); see Sec. V C for details. The color contours are
guides for the eye: in the case of spiral (SP) states, they represent the
length of the Q-vector, whereas in the case of non-spiral states, they
represent properties relevant to that particular phase; see Sec. V for
details.

Some	notable	features:	
1. Pressure	reduces	the	Ir-Ir	distance,	changing	

t3	term	drastically.	
2. Strain	is	anisotropic:	X/Y	bonds	are	more	

strongly	affected	by	the	pressure.		
3. At	high	pressure,	sign	of	Kitaev	term	can	be	

opposite	for	X/Y	and	Z	bonds.		
4. Γ	dominates	at	high	P.
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FIG. S3. (Color online) Band structures (solid red lines) calculated from tight-binding calculations including up to (a) NN, (b) NNN, and (c)
third-NN hopping terms from the Wannier orbital calcualtions tabulated in Table. S3, compared to those from ab-initio results (dashed grey
lines). SOC is included in the calculations.

The role of further-neighbor hopping amplitudes in the
band structure are shown in Fig. S3, where the evolution of
band structure as we include NNN and third NN terms are
presented. Fig. S3 shows the change of the band structures
as further-neighbor hopping terms are included with the pres-
ence of SOC; Fig. S3(a), (b) and (c) show the bands with hop-
ping terms up to NN, NNN, and third NN terms, respectively,
with the presence of SOC. One can see that, the large SOC
in Ir tends to make the jeff = 1/2 bands to be flatter in this
locally honeycomb-like lattice, and including NNN and third
NN terms does not change the overall behavior. Comparing
Fig. S3(a) and Fig. S3(b), one can notice that the dispersion
inside the jeff = 1/2 subbands is affected by the NNN terms,
but the semi-metallic character is left unchanged. Inclusion
of third NN terms, as can be seen in Fig. S3(c), makes the
dispersion slightly closer to the ab-initio bands.

Supplementary Material D:

NN exchange interactions

The exchanges J , K, and � are given by (suppressing the
bond label ↵)

J =
4

27


(2t1 + t3)2(4JH + 3U)

U2
� 16JH(t1 � t3)2

(2U + 3�)2

�

K =
32JH

9


(t1 � t3)2�3t22

(2U + 3�)2

�
, � =

64JH

9

t2(t1 � t3)

(2U + 3�)2
, (1)

where ti (i = 1, 2, 3), JH , U , and � are the NN hopping
amplitudes, Hund’s coupling, on-site Coulomb repulsion, and
SOC respectively[9]. ti is illustrated in Fig. S2(a). Note that,
the small amount of NN Heisenberg interaction is attributed
to the cancelation between the 2t1 and t3 in the antiferromag-
netic contrubution to J in Eq. 1. Since t2 is the largest term,
as mentioned in the main text, ferromagnetic K becomes the
most dominant contribution in the exchange interactions.

TABLE S3: A subset of Ir t2g hopping terms T
ij

as representatives of each
hopping channels up to third NN, where Hhop =

P
ij

C†
i

·T
ij

·C
j

and C† and
C† being the creation and annihilation operator for t2g states, respectively. d is
approximate distance between Ir and O. Other hopping terms can be recovered
by applying T

ji

= T†
ij

, Ca,b,z

2 rotations, and inversion operations.
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(in Cartesian coord.) Sublattice Ue↵ = 0.0 eV Ue↵ = 1.5 eV Ue↵ = 3.0 eV

tNN d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

X,X’ (-d, 0,+d) 1 ! 4 d
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+0.088 +0.018 +0.260 +0.080 +0.019 +0.276 +0.064 +0.021 +0.289
d

xz

+0.018 -0.152 +0.013 +0.020 -0.110 +0.013 +0.021 -0.051 0.005
d
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+0.259 +0.013 +0.078 +0.276 +0.013 +0.067 +0.288 0.003 +0.052
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Z (+d,+d, 0) 1 ! 2 d

xy

-0.162 -0.022 +0.021 -0.119 -0.024 +0.023 -0.059 -0.031 +0.030
d

xz

+0.016 +0.087 -0.239 +0.017 +0.078 -0.255 +0.025 +0.072 -0.269
d

yz

-0.016 -0.239 +0.086 -0.017 -0.254 +0.077 -0.024 -0.271 +0.056

Continued in next page...

Exchange interactions:

Ir4+ = 5d5

Ru3+ = 4d5

� ⇠ 0.15 eV

� ⇠ 0.5 eV

α- RuCl3 Clever way to lift orbital degeneracy !
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Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium
Oxides A2IrO3

Jǐŕı Chaloupka,1, 2 George Jackeli,2, ∗ and Giniyat Khaliullin2

1Department of Condensed Matter Physics, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
2Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

(Dated: July 12, 2010)

We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange
interactions between Ir4+ ions in a family of layered iridates A2IrO3 (A=Li, Na). Depending on the
microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable
Kitaev models. Exact diagonalization and a complementary spin-wave analysis reveal the presence
of an extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the
Heisenberg limit. The two phases are separated by an unusual stripy antiferromagnetic state, which
is the exact ground state of the model at the midpoint between two limits.
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Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An ex-
ception are frustrated magnets, in which the topology of
the underlying lattice and/or competing interactions lead
to an extensively degenerate manifold of classical states.
In such systems, exotic quantum phases of Mott insula-
tors (spin liquids, valence bond solids, etc.) can emerge
as the true ground states (for reviews see Refs. [1, 2]). In
quantum spin liquids, strong zero-point fluctuations of
correlated spins prevent them to “freeze” into magnetic
or statically dimerized patterns, and conventional phase
transitions that break time-reversal and lattice symme-
tries are avoided. Spin liquids have attracted particular
attention since Anderson proposed their possible connec-
tion to superconductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but, be-
cause different bonds use different spin components [see
Fig. 1(a)], the model is highly frustrated. Its ground state
is spin-disordered and supports the emergent gapless ex-
citations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5, 6]. This may suggest the robustness of
the disordered state to spin perturbations. Indeed, Tsve-
lik has shown [7] that there is a window of stability for
the spin-liquid state in the Kitaev model perturbed by
isotropic Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key el-
ement of the model is a bond-selective spin anisotropy,
one possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be
translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.

In this Letter, we examine the iridium oxides A2IrO3

from this perspective. In these compounds, the Ir4+ ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an in-
teresting phase behavior and hosts, in addition to the
spin-liquid state, an unusual AF order that is also an
exact solution at a certain point in phase space.
Experimental studies of iridium compounds are rather

scarce, and the nature of their insulating behavior is not
yet fully understood. In fact, Na2IrO3 was suggested as
an interesting candidate for a topological band insulator
[9]. Given that high temperature magnetic susceptibil-
ities of Na2IrO3 and Li2IrO3 obey the Curie-Weiss law
with an effective moment corresponding S = 1/2 per Ir
ion [10–13], we start here with the Mott insulator picture.
The Hamiltonian.– We recall that the Ir4+ ion in the

octahedral field has a single hole in the threefold degener-
ate t2g level hosting an orbital angular momentum l = 1.
Strong spin-orbit coupling lifts this degeneracy, and the
resulting ground state is a Kramers doublet with total
angular momentum one-half [14], referred to as “spin”
hereafter. In fact, it is predominantly of orbital origin,
and this is what makes the magnetic interactions highly
anisotropic due to the spin-orbit entanglement of mag-
netic and real spaces. In A2IrO3 compounds, the IrO6

octahedra share the edges, and Ir ions can communicate
through two 90◦ Ir-O-Ir exchange paths [8] or via direct
overlap of their orbitals. Collecting the possible exchange
processes (discussed below) and projecting them onto the
lowest Kramers doublet with S = 1/2, we obtain the fol-
lowing spin Hamiltonian on a given NN ij bond:

H(γ)
ij = −J1 Sγ

i S
γ
j + J2 Si ·Sj . (1)

Here, spin quantization axes are taken along the cubic
axes of IrO6 octahedra. In a honeycomb lattice formed
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atures. If the exchange interactions were purely Kitaev
like they would have been ferromagnetic and we would
have obtained a positive Weiss temperature θ and addi-
tionally the ground state would have been a spin-liquid.
Therefore, the magnetic properties of these materials are
not governed entirely by Kitaev physics alone.
If on the other hand the exchange interactions were

entirely Heisenberg like, then these materials would have
shown a simple Néel type antiferromagnetic ordering.
However, recent resonant x-ray scattering measurements
on single crystalline Na2IrO3 have established that the
magnetic order is not a simple Néel antiferromagnet but
is rather of a stripy antiferromagnetic kind.16 Such a
stripy AFM state has been predicted for the Heisenberg-
Kitaev model when the parameter α in the model lies in
the range 0.4 ≤ α ≤ 0.8.11,13 Given the similarities of
the magnetic anomalies in the χ(T ) and C(T ) data for
both Na2IrO3 and Li2IrO3 it is most likely that Li2IrO3

also shows a similar stripy antiferromagnetic structure.
Thus there are strong indications that the A2IrO3 mate-
rials lie in the region 0.4 ≤ α ≤ 0.8 of the Heisenberg-
Kitaev model. Calculations of the finite temperature
Heisenberg-Kitaev model predict that if the system stays
in the region where 0.4 ≤ α ≤ 0.8 then θ monotonically
decreases with increasing α.13 Remarkably however, it is
also predicted that the magnetic ordering temperature
stays unchanged between 0.4 ≤ α ≤ 0.7 and only starts
dropping significantly as one approaches the Kitaev limit
beyond α ≥ 0.8 where long range order is replaced by a
spin-liquid state as the ground state.13 The reduction of
the Weiss temperature scale on increasing α is natural
since the Heisenberg term comes with an antiferromag-
netic sign and the Kitaev term comes with a ferromag-
netic sign. This reduction in the Weiss temperature scale
is indeed observed for our systems where θ decreases from
≈ −125 K to ≈ −33 K on going from Na2IrO3 to the
Li2IrO3 system. We can get a lower-limit estimate of
the proximity of the Li2IrO3 system to the Kitaev limit
of α ≥ 0.8 by assuming that Na2IrO3 sits at the lower
edge α = 0.4 of the region in which the stripy antiferro-
magnetism is observed. We can then use the theoretical
predictions of the variation of the Weiss temperature ver-
sus α [Ref. 13] and our experimental estimates of θ for

Na2IrO3 and Li2IrO3 to obtain α ≈ 0.6 as a lower limit
for Li2IrO3. Thus, Li2IrO3 lies very close to the Kitaev
limit α ≥ 0.8.
In going from the Na to the Li system the a, b lattice

parameters are reduced by ≈ 4.5% while the c parame-
ter is reduced by ≈ 10%. Thus, substituting Na by Li
is equivalent to preferentially applying chemical pressure
along the c axis (⊥ to the honeycomb planes). This leads
to a decrease of the c-axis distortion of the IrO6 octahe-
dra which enhances the parameters η1,2 leading to an
increased Kitaev coupling.11 This is consistent with the
value of α ≥ 0.6 for Li2IrO3 which puts its closer to the
Kitaev limit.
In addition to the above reduction of the Weiss scale,

the antiferromagnetic ordering temperature TN ≈ 15 K
is the same for both Na2IrO3 and Li2IrO3 despite a
factor of≈ 5 reduction of θ. This counter-intuitive re-
sult is again in direct agreement with the above theo-
retical predictions of the finite temperature Hiesenberg-
Kitaev model.13 The above independence of TN on θ for
0.4 ≤ α ≤ 0.7 and the factor of 8 reduction of TN com-
pared to θ for the Na system, are issues that will need
to be addressed in future experimental and theoretical
work.
In summary, our results provide the strongest support

yet that the A2IrO3 materials are the first realization of
the Heinsenberg-Kitaev model in real solid-state materi-
als. From the above comparison of experiment and the-
ory it is also clear that Li2IrO3 lies close to the α ≥ 0.8
Kitaev limit. The application of c-axis pressure to the
A2IrO3 materials can push them closer to the Kitaev
limit and the Li2IrO3 system should be easier to tune
given that it most likely lies close to α = 0.8.
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Kitaev Interaction ?
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Realization of the Heisenberg-Kitaev model in the honeycomb lattice iridates A2IrO3
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Using thermodynamic measurements on the honeycomb lattice iridates A2IrO3 (A =Na, Li) we
demonstrate that these materials are possible realizations of the Heisenberg-Kitaev model. Both
materials are Mott insulators with effective spins S = 1/2 on a honeycomb lattice. The Curie
Weiss temperature decreases from θ ≈ −125 K for Na2IrO3 to θ ≈ −33 K for Li2IrO3. Surprisingly
however, the antiferromagnetic ordering temperature for both materials is the same TN ≈ 15 K.
This counter-intuitive behavior directly mimics the recent predictions of the finite temperature
Heisenberg-Kitaev model on a honeycomb lattice. Our results also indicate that the Li2IrO3 system
is close (0.6 ≤ α ≤ 0.7) to the Kitaev limit (α ≥ 0.8) and that application of pressure might tune it
to the spin-liquid state expected in the Kitaev limit of the model.

Introduction: Recently the Kitaev model of spins S =
1/2 on a honeycomb lattice has attracted a lot of atten-
tion because it is a relatively simple spin model involv-
ing only nearest neighbor interactions and yet it shows
several exotic states of matter.1 The ground state is a
gapless spin-liquid with emergent Majorana excitations,
or a gapped topologically ordered state (the Z2 spin-
liquid) with Abelian anyonic excitations depending on
the model parameters.1 Yet another exotic phase of the
Kitaev model is obtained when the spin-liquid is gapped
out by applying a magnetic field perpendicular to the
honeycomb plane.1,2 This phase is also a gapped, topo-
logically ordered phase, but one with non-abelian quasi-
particle (Majorana fermions) statistics.2,3 Among sys-
tems predicted to support Majorana fermions are exotic
fractional quantum Hall systems4 and heterostructures
of topological insulators, semi-metals, or semiconductors
with conventional s-wave superconductors.5 Realizations
of the Kitaev model and its extentions would also be av-
enues to look for these elusive quasiparticles.
The Kitaev model is thus relevant to such diverse areas

as quantum computation1,6 and strongly correlated con-
densed matter systems7,8 among others and search for
realizations of this and related models is of fundamental
importance.
In looking for experimental realizations of the Ki-

taev model one must not only look for systems with
S = 1/2 on the honeycomb lattice. In addition one
also needs to look at how to introduce anisotropic ex-
change interactions required in the model. Supercon-
ducting circuits9 and optical lattices10 have been pro-
posed as possible ways of realizing the Kitaev model. In
solid state materials, Mott insulating transition metal ox-
ides with strong spin-orbit coupling have been suggested
as possible candidates.7,11

The layered iridate Na2IrO3 has effective S = 1/2 Ir4+

moments on a honeycomb lattice.12 The strong spin-orbit
coupling in this 5d transition metal system is likely to
lead to orbital dependent anisotropic in-plane exchange.
However, one needs to worry about the possibility of
other interactions like the isotropic Heisenberg interac-
tions being present in addition to the Kitaev like inter-

actions. Such a Heisenberg-Kitaev (HK) model has been
studied recently and found to have an interesting phase
diagram depending on the relative strength of the two
terms. The HK Hamiltonian can be written as11

HHK = (1− α)
∑

ij

σ⃗i.σ⃗j − 2α
∑

γ

σγ
i .σ

γ
j (1)

where the σi are the Pauli matrices for the effective
S = 1/2 and γ = x, y, z labels the three different links
for each spin of the honeycomb lattice. The first part
in Eq.(1) is the isotropic Heisenberg term while the sec-
ond term is the anisotropic Kitaev term.11 The Heisen-
berg exchange is antiferromagnetic, while the anisotropic
Kitaev exchange is ferromagnetic. Varying the relative
coupling strength 0 ≤ α ≤ 1, the model interpolates
from the simple Heisenberg model with a Néel ground
state for α = 0 to the Kitaev model for α = 1, which
even for ferromagnetic interactions is highly frustrated
and exhibits a gapless spin-liquid ground state.1 As the
coupling α is varied, three magnetic phases were found
in zero temperature calculations11 and have been found
to persist in calculations at finite temperatures too.13

The three phases are a simple Néel antiferromagnet for
0 ≤ α ≤ 0.4, a stripy antiferromagnet for 0.4 ≤ α ≤ 0.8,
and a spin-liquid state for 0.8 ≤ α ≤ 1.11,13

Even though the A2IrO3 materials have been sug-
gested as possible avenues to look for Kitaev like and
HK like physics,7,11,13 there is very limited experimental
data available for the A2IrO3 systems. We have ear-
lier shown that single crystal Na2IrO3 is a Mott insu-
lator which undergoes antiferromagnetic ordering below
TN = 15 K although the polycrystalline samples showed
glassy behavior.12 There are two conflicting reports on
the magnetic properties of Li2IrO3.14,15 The first report
suggested paramagnetic behavior between T = 5 K and
300 K without any sign of magnetic order14 while the
second report showed an anomaly in the magnetic sus-
ceptibility below T = 10 K which was also accompanied
by a hysteresis between zero-field-cooled and field-cooled
data suggesting glassy behavior.15 No heat capacity data
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Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium
Oxides A2IrO3
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We derive and study a spin one-half Hamiltonian on a honeycomb lattice describing the exchange
interactions between Ir4+ ions in a family of layered iridates A2IrO3 (A=Li, Na). Depending on the
microscopic parameters, the Hamiltonian interpolates between the Heisenberg and exactly solvable
Kitaev models. Exact diagonalization and a complementary spin-wave analysis reveal the presence
of an extended spin-liquid phase near the Kitaev limit and a conventional Néel state close to the
Heisenberg limit. The two phases are separated by an unusual stripy antiferromagnetic state, which
is the exact ground state of the model at the midpoint between two limits.
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Magnetic systems exhibit, most commonly, long-range
classical order at sufficiently low temperatures. An ex-
ception are frustrated magnets, in which the topology of
the underlying lattice and/or competing interactions lead
to an extensively degenerate manifold of classical states.
In such systems, exotic quantum phases of Mott insula-
tors (spin liquids, valence bond solids, etc.) can emerge
as the true ground states (for reviews see Refs. [1, 2]). In
quantum spin liquids, strong zero-point fluctuations of
correlated spins prevent them to “freeze” into magnetic
or statically dimerized patterns, and conventional phase
transitions that break time-reversal and lattice symme-
tries are avoided. Spin liquids have attracted particular
attention since Anderson proposed their possible connec-
tion to superconductivity of cuprates [3].

Recently, spin-liquid states of matter have been exem-
plified, on a quantitative level, by an exactly solvable
model by Kitaev [4]. His model deals with spins one-half
that live on a honeycomb lattice. The nearest-neighbor
(NN) spins interact in a simple Ising-like fashion but, be-
cause different bonds use different spin components [see
Fig. 1(a)], the model is highly frustrated. Its ground state
is spin-disordered and supports the emergent gapless ex-
citations represented by Majorana fermions [4]. Spin-
spin correlations are, however, short-ranged and confined
to NN pairs [5, 6]. This may suggest the robustness of
the disordered state to spin perturbations. Indeed, Tsve-
lik has shown [7] that there is a window of stability for
the spin-liquid state in the Kitaev model perturbed by
isotropic Heisenberg exchange.

Finding a physical realization of this remarkable model
is a great challenge, also because of its special properties
attractive for quantum computation [4]. As the key el-
ement of the model is a bond-selective spin anisotropy,
one possible idea [8] is to explore Mott insulators of late
transition metal ions with orbital degeneracy, in which
the bond directional nature of electron orbitals can be
translated into a desired anisotropy of magnetic interac-
tions through strong spin-orbit coupling.

In this Letter, we examine the iridium oxides A2IrO3

from this perspective. In these compounds, the Ir4+ ions
have an effective spin one-half moment and form weakly
coupled honeycomb-lattice planes. Our analysis of the
underlying exchange mechanisms shows that the spin
Hamiltonian comprises two terms, ferromagnetic (FM)
and antiferromagnetic (AF), in the form of Kitaev and
Heisenberg models, respectively. The model has an in-
teresting phase behavior and hosts, in addition to the
spin-liquid state, an unusual AF order that is also an
exact solution at a certain point in phase space.
Experimental studies of iridium compounds are rather

scarce, and the nature of their insulating behavior is not
yet fully understood. In fact, Na2IrO3 was suggested as
an interesting candidate for a topological band insulator
[9]. Given that high temperature magnetic susceptibil-
ities of Na2IrO3 and Li2IrO3 obey the Curie-Weiss law
with an effective moment corresponding S = 1/2 per Ir
ion [10–13], we start here with the Mott insulator picture.
The Hamiltonian.– We recall that the Ir4+ ion in the

octahedral field has a single hole in the threefold degener-
ate t2g level hosting an orbital angular momentum l = 1.
Strong spin-orbit coupling lifts this degeneracy, and the
resulting ground state is a Kramers doublet with total
angular momentum one-half [14], referred to as “spin”
hereafter. In fact, it is predominantly of orbital origin,
and this is what makes the magnetic interactions highly
anisotropic due to the spin-orbit entanglement of mag-
netic and real spaces. In A2IrO3 compounds, the IrO6

octahedra share the edges, and Ir ions can communicate
through two 90◦ Ir-O-Ir exchange paths [8] or via direct
overlap of their orbitals. Collecting the possible exchange
processes (discussed below) and projecting them onto the
lowest Kramers doublet with S = 1/2, we obtain the fol-
lowing spin Hamiltonian on a given NN ij bond:

H(γ)
ij = −J1 Sγ

i S
γ
j + J2 Si ·Sj . (1)

Here, spin quantization axes are taken along the cubic
axes of IrO6 octahedra. In a honeycomb lattice formed

4

atures. If the exchange interactions were purely Kitaev
like they would have been ferromagnetic and we would
have obtained a positive Weiss temperature θ and addi-
tionally the ground state would have been a spin-liquid.
Therefore, the magnetic properties of these materials are
not governed entirely by Kitaev physics alone.
If on the other hand the exchange interactions were

entirely Heisenberg like, then these materials would have
shown a simple Néel type antiferromagnetic ordering.
However, recent resonant x-ray scattering measurements
on single crystalline Na2IrO3 have established that the
magnetic order is not a simple Néel antiferromagnet but
is rather of a stripy antiferromagnetic kind.16 Such a
stripy AFM state has been predicted for the Heisenberg-
Kitaev model when the parameter α in the model lies in
the range 0.4 ≤ α ≤ 0.8.11,13 Given the similarities of
the magnetic anomalies in the χ(T ) and C(T ) data for
both Na2IrO3 and Li2IrO3 it is most likely that Li2IrO3

also shows a similar stripy antiferromagnetic structure.
Thus there are strong indications that the A2IrO3 mate-
rials lie in the region 0.4 ≤ α ≤ 0.8 of the Heisenberg-
Kitaev model. Calculations of the finite temperature
Heisenberg-Kitaev model predict that if the system stays
in the region where 0.4 ≤ α ≤ 0.8 then θ monotonically
decreases with increasing α.13 Remarkably however, it is
also predicted that the magnetic ordering temperature
stays unchanged between 0.4 ≤ α ≤ 0.7 and only starts
dropping significantly as one approaches the Kitaev limit
beyond α ≥ 0.8 where long range order is replaced by a
spin-liquid state as the ground state.13 The reduction of
the Weiss temperature scale on increasing α is natural
since the Heisenberg term comes with an antiferromag-
netic sign and the Kitaev term comes with a ferromag-
netic sign. This reduction in the Weiss temperature scale
is indeed observed for our systems where θ decreases from
≈ −125 K to ≈ −33 K on going from Na2IrO3 to the
Li2IrO3 system. We can get a lower-limit estimate of
the proximity of the Li2IrO3 system to the Kitaev limit
of α ≥ 0.8 by assuming that Na2IrO3 sits at the lower
edge α = 0.4 of the region in which the stripy antiferro-
magnetism is observed. We can then use the theoretical
predictions of the variation of the Weiss temperature ver-
sus α [Ref. 13] and our experimental estimates of θ for

Na2IrO3 and Li2IrO3 to obtain α ≈ 0.6 as a lower limit
for Li2IrO3. Thus, Li2IrO3 lies very close to the Kitaev
limit α ≥ 0.8.
In going from the Na to the Li system the a, b lattice

parameters are reduced by ≈ 4.5% while the c parame-
ter is reduced by ≈ 10%. Thus, substituting Na by Li
is equivalent to preferentially applying chemical pressure
along the c axis (⊥ to the honeycomb planes). This leads
to a decrease of the c-axis distortion of the IrO6 octahe-
dra which enhances the parameters η1,2 leading to an
increased Kitaev coupling.11 This is consistent with the
value of α ≥ 0.6 for Li2IrO3 which puts its closer to the
Kitaev limit.
In addition to the above reduction of the Weiss scale,

the antiferromagnetic ordering temperature TN ≈ 15 K
is the same for both Na2IrO3 and Li2IrO3 despite a
factor of≈ 5 reduction of θ. This counter-intuitive re-
sult is again in direct agreement with the above theo-
retical predictions of the finite temperature Hiesenberg-
Kitaev model.13 The above independence of TN on θ for
0.4 ≤ α ≤ 0.7 and the factor of 8 reduction of TN com-
pared to θ for the Na system, are issues that will need
to be addressed in future experimental and theoretical
work.
In summary, our results provide the strongest support

yet that the A2IrO3 materials are the first realization of
the Heinsenberg-Kitaev model in real solid-state materi-
als. From the above comparison of experiment and the-
ory it is also clear that Li2IrO3 lies close to the α ≥ 0.8
Kitaev limit. The application of c-axis pressure to the
A2IrO3 materials can push them closer to the Kitaev
limit and the Li2IrO3 system should be easier to tune
given that it most likely lies close to α = 0.8.
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Rev. Lett. 106, 067203 (2011).

9 J. Q. You, X.-F. Shi, X. Hu, and F. Nori, Phys. Rev. B
81, 014505 (2010).

10 L.-M. Duan, E. Demler, and M. D. Lukin, Phys. Rev. Lett.
91, 090402 (2003).

11 J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev.
Lett. 105, 027204 (2010).

12 Y. Singh and P. Gegenwart, Phys. Rev. B 82, 064412
(2010).

13 J. Reuther, R. Thomale, and S. Trebst, arXiv:1105.2005,
(2011).

2

isospin up z=0spin up, l z=1spin down, l

+=

FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy⟩-orbital, lz = 0, (middle) and
spin down one in (|yz⟩ + i|xz⟩) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy⟩ and |xz⟩ orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1S⃗i · S⃗j + J2(S⃗i · r⃗ij)(r⃗ij · S⃗j) , (2)

where S⃗i is the S = 1/2 operator for isospins (referred to
as simply spins from now on), r⃗ij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 ≃ 1
and ν2 ≃ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated

pyxy xy

pzxz xz

180o
(a)

pz

pz

(b)

xz yz

yz xz

o90

FIG. 2: (Color online) Two possible geometries of a TM-
O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz⟩ and |yz⟩ orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass

Including  
Hund’s coupling  

and projecting to  
Jeff=1/2 manifold

Edge-Sharing  
Oxygen Octahedra

tNN
ij =

�

�
t1 t2
t2 t1

t3

�

�
Other terms are smaller 
then 20 meV and ignored.

a

b

c

Z-bonds
X-bonds

Y-bonds

Lattice	parameters	and	hopping	integrals	vs.	Pressure
(Lattice	optimized	with	SOC+U=2eV	in	VASP.	No	SOC,	U	is	included	in	Wannier	orbital	calculation)

Lattice	constants hopping:	Z-bonds	(in	eV) {X,Y}-bonds	(in	eV)
a/a0 b/b0 c/c0 t1 |t2| t3 t1 |t2| t3

-3.9 1.008 1.010 1.012 0.080 0.248 -0.139 0.078 0.248 -0.128
-1.1 0.998 0.998 1.004 0.087 0.242 -0.176 0.090 0.242 -0.185
2.1 0.988 0.986 0.996 0.094 0.241 -0.201 0.102 0.240 -0.240
5.9 0.978 0.974 0.987 0.100 0.237 -0.231 0.115 0.232 -0.302
10.2 0.968 0.962 0.980 0.106 0.238 -0.248 0.131 0.228 -0.365

Exchange	interactions	from	the	above	hopping	integrals	
(U=2.0eV,	J_H/U=0.2,	SOC=0.45eV	used.	J-K-G	ratio	is	robust	against	parameter	change.)

Lattice	constants JKG:	Z-bonds	(in	meV) JKG:	{X,Y}-bonds	(in	meV)
a/a0 b/b0 c/c0 J K Gamma J K Gamma

-3.9 1.008 1.010 1.012 -1.4 -6.5 -5.2 -1.1 -6.8 -4.9
-1.1 0.998 0.998 1.004 -2.2 -5.1 -6.1 -2.4 -4.8 -6.4
2.1 0.988 0.986 0.996 -2.7 -4.2 -6.8 -3.4 -2.7 -7.9
5.9 0.978 0.974 0.987 -3.2 -2.8 -7.5 -4.1 0.6 -9.3
10.2 0.968 0.962 0.980 -3.6 -2.1 -8.1 -4.9 4.3 -10.8

a2 6.1742 6.1742 4.0687 3.0 3.0 2.0 6.0 6.0 0.0
a1 4.1486 8.1999 0 2.0 4.0 0.0 -2.0 2.0 0.0
a3 -2.0257 2.0257 4.0687 -1.0 1.0 2.0 0.0 0.0 4.0

c-a-b c0-a0-b0raio
12.348 12.348 0 17.463 17.8271 0.9796
-4.0513 4.0513 0 5.7294 5.9194 0.9679

0 0 8.1373 8.1373 8.4562 0.9623

Pressur
e	

Pressur
e	

Hopping integral between neighboring Ir t2g orbitals:
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bonds are ferromagnetically correlated. As a result, despite
being in the AF-Heisenberg regime, there is a net moment in
the â direction. The size of the net moment is small, especially
compared to the FMa phase, and decreases as we approach the
SPa+ phase or the AF Kitaev point. We illustrate this decrease
in net moment by the lightening of the color contours.

B. Existing magnetic orders

AFc: This collinear phase is the exact ground state in the
AF-Heisenberg region when J > �K and J > �: the LTA
succeeds in finding this exact ground state for both lattices.
This phase is the HK-AF state with moments aligned antifer-
romagnetically and locked in the ĉ direction due to the pres-
ence of �.

FMa: This coplanar state with finite net moment encom-
passes a large fraction of both phase diagrams. Only in the hy-
perhoneycomb does the LTA succeed in identifying this phase
as the exact ground state. In both lattices, the projection of
the spins along the â direction is ferromagnetic while the pro-
jection along the ĉ direction vanishes. The projection along
the ˆb direction behaves differently for the hyperhoneycomb
and the H–1 models. In the hyperhoneycomb lattice, the ˆb
component orders in the skew-zigzag order, while in the H–1
lattice, the ˆb component is ferromagnetic within each honey-
comb strip. This state is connected to the HK-FM phase, and
in the case of the hyperhoneycomb lattice, it is also connected
to the J > �K/2 segment of the HK-SZ phase, where ObD
studies have shown that the HK-SZ phase orders in the ˆb di-
rection, much like the FMa phase. The Ca

2 rotation symmetry
is preserved in this phase.

Since the ˆb component of the phase in both lattices have
a vanishing net moment, only the â component contributes to
the total moment. This total moment becomes saturated (spins
point entirely in the â direction) when approaching the HK-
FM phase and decreases smoothly as we approach the SPa�

boundary. In the hyperhoneycomb case, the total moment fur-
ther decreases and vanishes smoothly as we approach the HK-
SZ phase. The magnitude of the moment along â is depicted
by the color contours in Fig. 2 where the largest projection is
colored darkest.

SSx/y: Wedged within the HK-SS, AFc, and SPb+ phases
are two skew-stripy phases, the first of which to be discussed
is the non-coplanar SSx/y phase. This phase has the largest
projection along the x(y) direction and this component orders
in a skew-stripy fashion (these two orientations are degener-
ate). In the hyperhoneycomb lattice, the other two Cartesian
components of the spins are small but finite and ensure that
the spins along each zigzag chain are collinear. In the H–1
lattice, the y(x) component also orders in a skew-stripy fash-
ion. This phase does not have a net moment and breaks all C2

symmetries.
SSb: This other skew-stripy phase is coplanar and lies far-

ther away from the FM Kitaev point relative to the SSx/y

phase. This phase borders the AFc phase and can be identified
via the LTA in the hyperhoneycomb lattice. In both lattices,
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(b) H–1 model

FIG. 5. (Color online) Classical phase diagrams for the J–K–�
pseudospin model with �  0. The details of this phase diagram
can be understood via a classical mapping that relates (J,K,�) !
(�J,�K,��); see Sec. V C for details. The color contours are
guides for the eye: in the case of spiral (SP) states, they represent the
length of the Q-vector, whereas in the case of non-spiral states, they
represent properties relevant to that particular phase; see Sec. V for
details.

Some	notable	features:	
1. Pressure	reduces	the	Ir-Ir	distance,	changing	

t3	term	drastically.	
2. Strain	is	anisotropic:	X/Y	bonds	are	more	

strongly	affected	by	the	pressure.		
3. At	high	pressure,	sign	of	Kitaev	term	can	be	

opposite	for	X/Y	and	Z	bonds.		
4. Γ	dominates	at	high	P.

Low-P

High-P
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FIG. S3. (Color online) Band structures (solid red lines) calculated from tight-binding calculations including up to (a) NN, (b) NNN, and (c)
third-NN hopping terms from the Wannier orbital calcualtions tabulated in Table. S3, compared to those from ab-initio results (dashed grey
lines). SOC is included in the calculations.

The role of further-neighbor hopping amplitudes in the
band structure are shown in Fig. S3, where the evolution of
band structure as we include NNN and third NN terms are
presented. Fig. S3 shows the change of the band structures
as further-neighbor hopping terms are included with the pres-
ence of SOC; Fig. S3(a), (b) and (c) show the bands with hop-
ping terms up to NN, NNN, and third NN terms, respectively,
with the presence of SOC. One can see that, the large SOC
in Ir tends to make the jeff = 1/2 bands to be flatter in this
locally honeycomb-like lattice, and including NNN and third
NN terms does not change the overall behavior. Comparing
Fig. S3(a) and Fig. S3(b), one can notice that the dispersion
inside the jeff = 1/2 subbands is affected by the NNN terms,
but the semi-metallic character is left unchanged. Inclusion
of third NN terms, as can be seen in Fig. S3(c), makes the
dispersion slightly closer to the ab-initio bands.

Supplementary Material D:

NN exchange interactions

The exchanges J , K, and � are given by (suppressing the
bond label ↵)

J =
4

27


(2t1 + t3)2(4JH + 3U)

U2
� 16JH(t1 � t3)2

(2U + 3�)2

�

K =
32JH

9


(t1 � t3)2�3t22

(2U + 3�)2

�
, � =

64JH

9

t2(t1 � t3)

(2U + 3�)2
, (1)

where ti (i = 1, 2, 3), JH , U , and � are the NN hopping
amplitudes, Hund’s coupling, on-site Coulomb repulsion, and
SOC respectively[9]. ti is illustrated in Fig. S2(a). Note that,
the small amount of NN Heisenberg interaction is attributed
to the cancelation between the 2t1 and t3 in the antiferromag-
netic contrubution to J in Eq. 1. Since t2 is the largest term,
as mentioned in the main text, ferromagnetic K becomes the
most dominant contribution in the exchange interactions.

TABLE S3: A subset of Ir t2g hopping terms T
ij

as representatives of each
hopping channels up to third NN, where Hhop =

P
ij

C†
i

·T
ij

·C
j

and C† and
C† being the creation and annihilation operator for t2g states, respectively. d is
approximate distance between Ir and O. Other hopping terms can be recovered
by applying T

ji

= T†
ij

, Ca,b,z

2 rotations, and inversion operations.

Kind r
ij

(in Cartesian coord.) Sublattice Ue↵ = 0.0 eV Ue↵ = 1.5 eV Ue↵ = 3.0 eV

tNN d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

X,X’ (-d, 0,+d) 1 ! 4 d

xy

+0.088 +0.018 +0.260 +0.080 +0.019 +0.276 +0.064 +0.021 +0.289
d

xz

+0.018 -0.152 +0.013 +0.020 -0.110 +0.013 +0.021 -0.051 0.005
d

yz

+0.259 +0.013 +0.078 +0.276 +0.013 +0.067 +0.288 0.003 +0.052

tNN d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

d

xy

d

xz

d

yz

Z (+d,+d, 0) 1 ! 2 d

xy

-0.162 -0.022 +0.021 -0.119 -0.024 +0.023 -0.059 -0.031 +0.030
d

xz

+0.016 +0.087 -0.239 +0.017 +0.078 -0.255 +0.025 +0.072 -0.269
d

yz

-0.016 -0.239 +0.086 -0.017 -0.254 +0.077 -0.024 -0.271 +0.056

Continued in next page...

Exchange interactions:



Kitaev Model on Honeycomb Lattice: Exact Solution

II. HEISENBERG-KITAEV MODEL ON HYPER-HONEYCOMB

Let us consider the following Heisenberg-Kitaev model on the Hyper-honeycomb lattice.

HHK = J
�

⇥ij⇤

Si · Sj �K
�

��links

S�
i S

�
j (1)

We first study the di�erent limits.

A. K=0

This is the limit of the pure antiferromagnetic Heisenberg model. The above lattice is

similar topologically to the lattice in fig. 5. On this lattice, the Neel order is not frustrated.

This is shown in figure 6. The reason that Neel order is not frustrated is that the above

lattice can be seen as a partially deleted cubic lattice where the deletion is done without

introducing new bonds.[7] So the Neel order remains unfrustrated and is the classical ground

state.

B. J=0

This is the pure Kitaev limit. This limit was first studied by Mandal et. al [4] on the

deleted cubic lattice (fig. 5). The Hamiltonian looks like:

HK = �
�

��links

S�
i S

�
j (2)

where the di�erent links are given in fig. 5. The details of this lattice are described in

Appendix A. Using the usual majorana fermion decomposition of the spins, we find that the

Hamiltonian is given by:

HK =
i

2

�

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ) (3)

Now unlike the 2D case here we do not have a clear cut Lieb’s theorem which says that the

ground state belongs to the zero flux sector. So Ref. [4] resorted to some selected numerical

check and found that the ground state indeed belongs to this sector. We shall assume that

this is correct and look for the majorana dispersion in this sector. In this sector, we can set
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

⌥

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
�

loop

u�
ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =

i

2

⌥

ij

cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
K =

⌥

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and

Hk =
i

4

�

⇧⇤

0 1 0 Ak

�1 0 BK 0
0 �B⇤

k 0 1
�A⇤

k 0 �1 0

⇥

⌃⌅ (8)

where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:
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where we have put the overall scale K = 1. The {bxi , b
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i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6
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Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =
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This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins
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we find that the Hamiltonian (Eq. 1) in this limit is given by:
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are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6
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Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =
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This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get
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y � z and x � z bonds respectively. We would like to re-
emphasize that the word skew indicates that this is essentially
a three dimensional magnetic order as opposed to a stacked
up two dimensional spin order. At this special point there is a
continuous “SU(2)” spin rotation symmetry that ensures that
all the three skew-stripy phases described above have the same
energy.

It is however worthwhile to note that there is a crucial
difference from the honeycomb case away from this special
point. In the honeycomb lattice a two dimensional stripy
phase is obtained for the Heisenberg-Kitaev model at the same
parameter value. There, a C3 symmetry of the lattice along
with concomitant rotation of the spins which is a symmetry
of the HHK Hamiltonian on the honeycomb lattice ensures
that the three stripy ordered phases have the same energy even
away from this special point where there is no “SU(2)” sym-
metry. However on the hyper-honeycomb lattice, there is only
a C2 symmetry between the x and the y bonds, while the z
bonds are not related by any symmetry. So there is no a-priori
reason for the Sz ordered skew-stripy phase to have the same
energy as the other two. Indeed we find that, away from this
point (K = 2J), although the classical energies of the three
states remain the same, quantum corrections coming from the
spin-wave fluctuations lift this accidental classical degener-
acy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al19 showed
that the pure Kitaev model on the deleted cubic lattice which
is topologically similar to the hyper-honeycomb lattice can
be exactly solved using methods originally employed by
Kitaev.18

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual Ma-
jorana fermion decomposition of the spins
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we find that the Hamiltonian (Eq. 1) in this limit is given by:
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WP =
⌦

loop

u�
ij . (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.

This separation of the Majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.18
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in the background of frozen fluxes on the hyper-honeycomb
lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al.28 proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice19 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al.19 resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes for several flux configurations and found that the zero-
flux sector has the lowest energy. Thus it is expected that the
zero flux sector corresponds to the ground state in our case as
well. We can then specialize to the zero-flux sector choosing
a gauge where u�

ij = +1 (⇤⌥ij�) to get

H0�flux
K =
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This Hamiltonian can then be diagonalized by fourier trans-
formation, taking the unit cell as given in Fig. 1 (the lattice
vectors are given in Appendix A). We get
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where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)

The spectrum is given by:
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The spectrum for the dispersing Majorana fermion, c, along
the high symmetry lines within the first Brillouin zone is given
in Fig. 5. The lower two bands are occupied while the zero
energy surface describe the contour of the gapless excitation.
We find a fermi surface of co-dimension two, i.e. line nodes.
From Eq. 11, it is easy to see that this is given by the zeros of
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Kitaev Model on Honeycomb Lattice: Exact Solution

II. HEISENBERG-KITAEV MODEL ON HYPER-HONEYCOMB

Let us consider the following Heisenberg-Kitaev model on the Hyper-honeycomb lattice.

HHK = J
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i S
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j (1)

We first study the di�erent limits.

A. K=0

This is the limit of the pure antiferromagnetic Heisenberg model. The above lattice is

similar topologically to the lattice in fig. 5. On this lattice, the Neel order is not frustrated.

This is shown in figure 6. The reason that Neel order is not frustrated is that the above

lattice can be seen as a partially deleted cubic lattice where the deletion is done without

introducing new bonds.[7] So the Neel order remains unfrustrated and is the classical ground

state.

B. J=0

This is the pure Kitaev limit. This limit was first studied by Mandal et. al [4] on the

deleted cubic lattice (fig. 5). The Hamiltonian looks like:
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where the di�erent links are given in fig. 5. The details of this lattice are described in

Appendix A. Using the usual majorana fermion decomposition of the spins, we find that the

Hamiltonian is given by:

HK =
i

2

�

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ) (3)

Now unlike the 2D case here we do not have a clear cut Lieb’s theorem which says that the

ground state belongs to the zero flux sector. So Ref. [4] resorted to some selected numerical

check and found that the ground state indeed belongs to this sector. We shall assume that

this is correct and look for the majorana dispersion in this sector. In this sector, we can set
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
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where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
�

loop

u�
ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =

i

2

⌥

ij

cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
K =

⌥

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and
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where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins
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we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

⌥

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij
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Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =
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This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:
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with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
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over the 10 site loop (see fig. 1) are given by6
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Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =
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This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get
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y � z and x � z bonds respectively. We would like to re-
emphasize that the word skew indicates that this is essentially
a three dimensional magnetic order as opposed to a stacked
up two dimensional spin order. At this special point there is a
continuous “SU(2)” spin rotation symmetry that ensures that
all the three skew-stripy phases described above have the same
energy.

It is however worthwhile to note that there is a crucial
difference from the honeycomb case away from this special
point. In the honeycomb lattice a two dimensional stripy
phase is obtained for the Heisenberg-Kitaev model at the same
parameter value. There, a C3 symmetry of the lattice along
with concomitant rotation of the spins which is a symmetry
of the HHK Hamiltonian on the honeycomb lattice ensures
that the three stripy ordered phases have the same energy even
away from this special point where there is no “SU(2)” sym-
metry. However on the hyper-honeycomb lattice, there is only
a C2 symmetry between the x and the y bonds, while the z
bonds are not related by any symmetry. So there is no a-priori
reason for the Sz ordered skew-stripy phase to have the same
energy as the other two. Indeed we find that, away from this
point (K = 2J), although the classical energies of the three
states remain the same, quantum corrections coming from the
spin-wave fluctuations lift this accidental classical degener-
acy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al19 showed
that the pure Kitaev model on the deleted cubic lattice which
is topologically similar to the hyper-honeycomb lattice can
be exactly solved using methods originally employed by
Kitaev.18

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual Ma-
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lem can be solved independently for different flux sectors.
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Unfortunately, unlike the 2D-honeycomb lattice, we cannot
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absence of suitable miror planes. In absence of such theo-
rems, Mandal et al.19 resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
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flux sector has the lowest energy. Thus it is expected that the
zero flux sector corresponds to the ground state in our case as
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The spectrum for the dispersing Majorana fermion, c, along
the high symmetry lines within the first Brillouin zone is given
in Fig. 5. The lower two bands are occupied while the zero
energy surface describe the contour of the gapless excitation.
We find a fermi surface of co-dimension two, i.e. line nodes.
From Eq. 11, it is easy to see that this is given by the zeros of
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
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point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

⌥

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
�

loop

u�
ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =

i

2

⌥

ij

cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
K =

⌥

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and

Hk =
i

4

�

⇧⇤

0 1 0 Ak

�1 0 BK 0
0 �B⇤

k 0 1
�A⇤

k 0 �1 0

⇥

⌃⌅ (8)

where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)

Ground state is in the zero-flux sector 8
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FIG. 4: (Color online) Spinon spectrum in the Kitaev limit.
Bands shown in red are occupied, bands shown in blue are
unoccupied.

Defining ~k0 = ~k + ( 2⇡3 , 2⇡p
3
),

�dispersing(k
0) =

M

8
(1 + e

4⇡i

3 e�i~k0·~Rx

AB + e
2⇡i

3 e�i~k0·~Ry

AB )

⇡ M
p
3

16
(�k0x + ik0y). (49)

However, we would like to emphasize that the above
chiral p-wave pairing does not necessarily imply time-
reversal symmetry breaking, which is now implemented
projectively.1 The structure of the pairing terms di↵ers
from the work of Burnell and Nayak19, who found py
pairing about the Dirac points, by choosing a di↵erent
basis for the fermions which is related to the present one
by a gauge transformation.

We can further calculate the spin-spin correlation func-
tions within mean field theory. Using the Majorana rep-
resentation we find that this is given by:

hS↵
i S

�
j i ⇠ h�0

i�
0
j ih�↵

i �
�
j i (50)

Since the second correlation function involves absolutely
flat bands, it is only non-zero when ↵ = � and when
i = j or i and j belong to the same unit cell. Hence the
spin correlation are short ranged even if the spin liquid
is gapless. This is a novel feature of the Kitaev spin
liquid, where exact calculations7 also indicate that such
correlations vanish beyond nearest neighbour.

We would like to point out here that, when the model
is perturbed with the Heisenberg term, the gapped flat
bands acquire a weak dispersion, but still remain gapped.
Within perturbation theory, this is expected to lead
to exponentially decaying spin-spin correlation decaying
with a length-scale characteristic of the energy-gap.22

B. The gauge structure

At this point, before actually discussing the results of
our mean-field calculations, we wish to discuss the gauge
structure of the our spin liquid ansatz.
At the outset, it should be noted that the projec-

tive symmetry group (PSG) classification including the
triplet decoupling channels has not been comprehensively
studied. While a comprehensive discussion of these PSGs
is beyond the scope of our present work, we indicate the
relevant issues in the context of the Heisenberg-Kitaev
model by extending the formalism introduced by Shin-
dou and Momoi27.
While the formulation outlined above is more suited

to calculations of the mean field spectrum and self-
consistent solutions, to decipher the nature of the spin
liquid and the gauge transformations we wish to cast the
above decoupling within an SU(2) formalism.
In order to examine the nature of the spin liquid state,

it is worthwhile to formulate this Hamiltonian in another
basis. The transformation into this basis is defined by

~fi ! ~f 0
i = A~fi, Ui,p ! AUi,pA

†, (51)

where the transformation matrix is given by

A =

2

64

1 0 0 0
0 0 0 1
0 1 0 0
0 0 �1 0

3

75 (52)

and ~fi is given by Eq. 28. In the new basis, the ~f 0
i are

given by

~f 0
i
† =

h
f†
i," fi,# f†

i,# �fi,"

i
. (53)

In this basis, we can write the set of gauge transfor-
mations which leave our physical spin degrees of freedom
invariant in a block diagonal form,

Wi =


Vi 0
0 Vi

�
(54)

where the Vi matrices form a two dimensional represen-
tation of SU(2). The spinon Hamiltonian (Eq 31), when
written in the new basis, is invariant under the simulta-
neous gauge transformation

~f 0
i ! Wi

~f 0
i , U 0

i,p ! Wi+pU
0
i,pW

†
i . (55)

where U 0
i,p = AUi,pA

† gives the analog of Bogoliubov-de-
Gennes Hamiltonian in the new basis.
In order to study the low energy degrees of freedom

in this theory, we allow gauge fluctuations of the U 0
i,p

matrices of the form

U 0
i,p = Ū 0

i,pe
ial

i,p

l

, (56)
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FIG. 1. Single crystal of H⇧1⌃-Li2IrO3 and the Ir lattice structure. (A) Single crystal oriented to

be parallel to the crystallographic axes shown in (C), (B) 3D view and (C) projection in the ab

plane. In (B) gray shading emphasizes the Ir (purple balls) honeycomb rows that run parallel to the

a± b diagonals, alternating upon moving along the c-axis. For simplicity only Li ions (grey balls)

located in the center of Ir honeycombs are shown. In (B) and (C) the rectangular box indicates

the unit cell. Comparing (A) and (C) we note that the ⇤70� angle between honeycomb rows is

evident in the crystalline morphology.

the spin-anisotropy of exchange across the Ir-O2-Ir bond from the temperature dependence

of the anisotropic magnetic susceptibility. The crystals are synthesized as described in

Methods. As shown in Figure 1A, the crystals are clearly faceted and typically around

100�100�200µm3 in size. In contrast to the monoclinic structure of the layered iridate, we

find that these materials are orthorhombic and belong to the non-symmorphic space group

Cccm, with lattice parameters a = 5.9119(3) Å, b = 8.4461(5) Å, c = 17.8363(10) Å (see SI

I in published version for details of the crystallography). The structure (shown in Figure 1B

and C) contains two interlaced honeycomb planes, the orientation of which alternate along

the c axis. The angle ⇥0 between the honeycomb planes is fixed by the geometry of the

edge shared bonding of the IrO6 octahedra (see Figures 2A and 4A ). For cubic octahedra

cos⇥o = 1/3, namely ⇥o ⌅ 70�, as shown in Figure 2A. The x-ray refinement (see SI II

in published version) indicates that the stoichiometry is Li2IrO3, such that the Ir oxidation

state is Ir4+ 5d5 with an e�ective Ir local moment of Je� = 1/2. The possibility of Li deficiency

in our samples could lead to some Ir5+ sites, however this is not expected to have a marked

e�ect on the magnetism; in the case that spin-orbit coupling dominates over the Coulomb
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Topological and magnetic phases with strong spin-orbit coupling on the hyperhoneycomb lattice
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We study the general phase diagram of correlated electrons for iridium-based (Ir) compounds on the hyper-
honeycomb lattice—a crystal structure where the Ir4+ ions form a three-dimensional network with three-fold
coordination recently realized in the �-Li2IrO3 compound. Using a combination of microscopic derivations,
symmetry analysis, and density functional calculations, we determine the general model for the electrons occu-
pying the jeff = 1/2 orbitals at the Ir4+ sites. In the non-interacting limit, we find that this model allows for
both topological and trivial electronic band insulators along with metallic states. The effect of Hubbard-type
electron-electron repulsion on the above electronic structure in stabilizing q = 0 magnetic order reveals a phase
diagram with continuous phase transition between a topological band insulator and a Néel ordered magnetic
insulator.

I. INTRODUCTION

The importance of the interplay between spin-orbit cou-
pling (SOC) and electron-electron correlations in stabilizing
a wide variety of novel electronic phases such as topological
insulators (TI), Weyl semi-metals, and quantum spin liquids
has been explored recently.1–7 Materials such as 5d transition
metal (iridium=Ir, osmium=Os) oxides with strong atomic
SOC provide fertile grounds to uncover the above physics
and a large number of such compounds are currently being
investigated.8–16

Recently, the material �-Li2IrO3 has been synthesized by
Takagi et al.17 which has attracted attention due to the novel
three-dimensional network formed by the Ir4+ ions—the hy-
perhoneycomb lattice (see Fig. 1). It has been theoretically
predicted that the spin model in the strong-coupling limit can
be highly anisotropic and may lead to interesting magnetic
as well as a three-dimensional Kitaev quantum spin-liquid
ground state.18–21

In this paper, motivated by the above developments, we
study the weak- and intermediate-coupling regimes of �-
Li2IrO3 and iso-structural compounds with Ir situated on a
hyperhoneycomb lattice. We point out the possibility of inter-
esting ground states in these systems that generally arise from
the nature of the underlying lattice geometry and strong SOC
effects. In turn, these results can shed light on the physics of
the above material and others on a similar lattice structure.

An important starting point in the study of these compounds
is to ascertain the nature of the electronic structure, particu-
larly that of the electronic bands near the Fermi level. Due
to the large atomic SOC, as in a large number of Ir-based
compounds,3,6,12,13,22 the low energy bands are expected to be
formed by jeff = 1/2 atomic orbitals. Using the symmetries
of the hyperhoneycomb lattice, we obtain the general tight-
binding Hamiltonian for the jeff = 1/2 orbitals. Apart from
the generic metal and band insulator (BI), we find that this
hopping Hamiltonian allows for a three-dimensional strong

a3

a1

a2

x

y

z
1 2

3 4

FIG. 1. (Color online) The ideal hyperhoneycomb lattice. The Ir4+

atoms (denoted by white spheres, except for the four yellow ones
that indicate the four atoms in our unit cell) sit in an octahedral cage
(shaded in blue) of oxygen atoms (small red spheres). The lattice
vectors are denoted by a1,a2 and a3. The three nearest-neighbor
bonds are referred to as x (green), y (pink) and z (blue) bonds.

TI (STI) over a large parameter regime. The above tight-
binding model is further justified by more microscopic calcu-
lations based on Slater-Koster parameters for the 5d orbitals
in the large SOC limit for the ideal hyperhoneycomb lattice.
This latter calculation also reveals the connection between the
symmetry-allowed hopping parameters and the Slater-Koster
parameters. In parallel, we perform density functional theory
(DFT) calculations in the presence of SOC to probe the nature
of the states near the Fermi level for �-Li2IrO3 on an ideal hy-
perhoneycomb lattice. The DFT results support our assump-
tion that the low energy states near the Fermi level have a
predominantly jeff = 1/2 orbital character and are well sepa-
rated from the jeff = 3/2 bands that lie below the Fermi level.
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(a) Classical phase diagram with � > 0
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FIG. 2: (a) Combined Luttinger-Tisza and single-Q analysis.
Solid colours correspond to exact classical ground states
from Luttinger-Tisza while the region indicated by the white
dashed line are the single-Q results. (b-f) Ground state spin
configurations in each phase. (g) Magnitude of the ordering
wave-vector ⇣Q in the IS phase.

form the strong coupling expansion, we consider an atomic
Hamiltonian of Kanamori form[29]:

H0 =
↵

i

⇤
U � 3JH

2
(Ni � 5)2 � 2JHS 2

i � JH

2
L2

i

⌅
, (2)

where Ni, S i, and Li are the total number, spin, and (e⇤ec-
tive) orbital angular momentum operators at site i, U is the
Coulomb interaction, and JH is Hund’s coupling. The expan-
sion is carried out in the limit U, JH ⌅ ⌃ ⌅ t, first taking U
and JH to be large. Since the spin-orbit coupling then domi-
nates the kinetic terms, the resulting spin-orbital model can be
projected into the je⇤ = 1/2 subspace.

The kinetic terms are encapsulated through a tight-binding
model for the Ir t2g orbitals, including both direct overlap of d-

orbitals and hopping mediated through the oxygen atoms. For
our purposes, we focus on nearest-neighbour bonds where we
then have

↵

 i j⌦��⇥(⇤)

�
t1

�
d†i�d j� + d†i⇥d j⇥

⇥
+ t2

�
d†i�d j⇥ + d†i⇥d j�

⇥
+ t3d†i⇤di⇤

�
,

where d†i� = (d†i�⌃ d†i�⌥) and di� are the creation and annihila-
tion operators for the t2g state � at site i. Here we sum over the
yz(x), zx(y) and xy(z) links as indicated in Fig. 1, but mapping
the directions to orbitals as x ⇧ yz, y ⇧ zx and z ⇧ xy. The
parameters t1, t2, and t3 are given by

t1 =
tdd⌥ + tdd⌅

2
, t2 =

t2
pd⌥

⇥pd
+

tdd⌥ � tdd⌅

2
, t3 =

3tdd� + tdd⌅

4
,

where tdd�, tdd⌥, tdd⌅ and tpd⌥ are Slater-Koster[30] parameters
for the direct Ir-Ir overlap and Ir-O overlap while ⇥pd is the Ir-
O gap[31]. Treating the kinetic terms as a perturbation yields
the Hamiltonian in Eq. 1 with

J =
4

27

⇤
6t1(t1 + 2t3)

U � 3JH
+

2(t1 � t3)2

U � JH
+

(2t1 + t3)2

U + 2JH

⌅
, (3)

K =
8JH

9

⇧
    ⌥

(t1 � t3)2 � 3t2
2

(U � 3JH)(U � JH)

⌃
⌦⌦⌦⌦� , (4)

� =
16JH

9

⇤
t2(t1 � t3)

(U � 3JH)(U � JH)

⌅
. (5)

Exchanges of the same form as the � term were originally
called symmetric anisotropic exchange[32, 33] and can be re-
lated to the truncated dipolar exchange[34, 35] discussed in
other contexts through a reparametrization. We stress that
since this term is allowed by symmetry even in the most ide-
alized cases, the presence of the � term is a generic feature of
je⇤ = 1/2 models with edge-shared octahedra (see the Sup-
plemental material [36] for more information). To confirm
this, the strong coupling expansion was also carried out in the
limit where U, ⌃ ⌅ JH ⌅ t, with the contributions of JH
included in the excited states perturbatively. While energies
of the virtual states involve ⌃ instead of JH , all three terms are
generated, with the dependence of K and � on the hoppings t1,
t2, and t3 unchanged (Supplemental Material [36]). Whereas
the Kitaev limit can be naturally accessed when t2 ⌅ t1, t3,
leaving this regime introduces both J and �making it di⌅cult
to reach the HK limit[37]. Fine tuning could in principle ren-
der � small, but the dominant contributions to t1 ⇤ tdd⌥ and
t3 ⇤ tdd� are of opposite sign making any such tuning implau-
sible. Further applications to wider classes of iridium oxides
are left for future work.

Classical phase diagram.- To understand the e⇤ects of in-
cluding this bond-dependent � term, we first map out the clas-
sical magnetic phases. We parametrize the exchanges using
angles  and ⇧

J = sin ⇧ cos  , K = sin ⇧ sin  , � = cos ⇧, (6)

fixing the energy scale so that
�

J2 + K2 + �2 = 1. By map-
ping ⇣S i ⇧ �⇣S i on one sublattice, we send  ⇧ � and

2
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FIG. 2: (a) Combined Luttinger-Tisza and single-Q analysis.
Solid colours correspond to exact classical ground states
from Luttinger-Tisza while the region indicated by the white
dashed line are the single-Q results. (b-f) Ground state spin
configurations in each phase. (g) Magnitude of the ordering
wave-vector ⇣Q in the IS phase.

form the strong coupling expansion, we consider an atomic
Hamiltonian of Kanamori form[29]:
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where Ni, S i, and Li are the total number, spin, and (e⇤ec-
tive) orbital angular momentum operators at site i, U is the
Coulomb interaction, and JH is Hund’s coupling. The expan-
sion is carried out in the limit U, JH ⌅ ⌃ ⌅ t, first taking U
and JH to be large. Since the spin-orbit coupling then domi-
nates the kinetic terms, the resulting spin-orbital model can be
projected into the je⇤ = 1/2 subspace.

The kinetic terms are encapsulated through a tight-binding
model for the Ir t2g orbitals, including both direct overlap of d-

orbitals and hopping mediated through the oxygen atoms. For
our purposes, we focus on nearest-neighbour bonds where we
then have
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where tdd�, tdd⌥, tdd⌅ and tpd⌥ are Slater-Koster[30] parameters
for the direct Ir-Ir overlap and Ir-O overlap while ⇥pd is the Ir-
O gap[31]. Treating the kinetic terms as a perturbation yields
the Hamiltonian in Eq. 1 with
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Exchanges of the same form as the � term were originally
called symmetric anisotropic exchange[32, 33] and can be re-
lated to the truncated dipolar exchange[34, 35] discussed in
other contexts through a reparametrization. We stress that
since this term is allowed by symmetry even in the most ide-
alized cases, the presence of the � term is a generic feature of
je⇤ = 1/2 models with edge-shared octahedra (see the Sup-
plemental material [36] for more information). To confirm
this, the strong coupling expansion was also carried out in the
limit where U, ⌃ ⌅ JH ⌅ t, with the contributions of JH
included in the excited states perturbatively. While energies
of the virtual states involve ⌃ instead of JH , all three terms are
generated, with the dependence of K and � on the hoppings t1,
t2, and t3 unchanged (Supplemental Material [36]). Whereas
the Kitaev limit can be naturally accessed when t2 ⌅ t1, t3,
leaving this regime introduces both J and �making it di⌅cult
to reach the HK limit[37]. Fine tuning could in principle ren-
der � small, but the dominant contributions to t1 ⇤ tdd⌥ and
t3 ⇤ tdd� are of opposite sign making any such tuning implau-
sible. Further applications to wider classes of iridium oxides
are left for future work.

Classical phase diagram.- To understand the e⇤ects of in-
cluding this bond-dependent � term, we first map out the clas-
sical magnetic phases. We parametrize the exchanges using
angles  and ⇧

J = sin ⇧ cos  , K = sin ⇧ sin  , � = cos ⇧, (6)

fixing the energy scale so that
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J2 + K2 + �2 = 1. By map-
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Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates, origi-
nating from oxygen-mediated exchange through edge-shared octahedra. However, for the je⇥ = 1/2 Mott insu-
lator in these materials exchange from direct d-orbital overlap is relevant, and it was proposed that a Heisenberg
term should be added to the Kitaev model. Here we provide the generic nearest-neighbour spin Hamiltonian
when both oxygen-mediated and direct overlap are present, containing a bond-dependent o⇥-diagonal exchange
in addition to Heisenberg and Kitaev terms. We analyze this complete model using a combination of classical
techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic phases, 120⌅ and incommen-
surate spiral order, as well as extended regions of zigzag and stripy order. Possible applications to Na2IrO3 and
Li2IrO3 are discussed.

The honeycomb family of iridium oxides[1–11] has at-
tracted a considerable amount of attention [12–20] due to
the possibility they lie near a realization of Kitaev’s exactly
solvable spin-1/2 honeycomb model[21]. This model hosts
a number of remarkable features: a Z2 spin liquid with gap-
less Majorana fermions and (non-Abelian) anyonic excita-
tions under an applied magnetic field. No symmetry prin-
ciple excludes terms besides the Kitaev, so additional inter-
actions are generically expected. From microscopic calcu-
lations of exchange mediated through the edge-shared oxy-
gen octahedra, it has been proposed that a pure Kitaev model
of je⇥ = 1/2 spins was the appropriate description[22]. It
was further suggested that direct overlap of the d-orbitals
generalizes this to a Heisenberg-Kitaev (HK) model[13], lin-
early interpolating between an isotropic Heisenberg model
and Kitaev’s bond-dependent exchange Hamiltonian. Exten-
sive study of the HK model[23–28] has shown a variety of fas-
cinating phenomena, including an extended spin liquid phase
and quantum phase transitions into several well-understood
magnetic ground states. While present, the zigzag phase seen
in Na2IrO3 [2, 4, 6] is di⇤cult to stabilize within the HK
model; one must resort to additional t2g-eg exchange paths[18]
or further neighbour hoppings[14]. In light of this puzzle one
may question whether the HK model provides an adequate de-
scription of the honeycomb iridates even at the nearest neigh-
bour level.

In this Letter, we show that when applied to the honey-
comb iridates the HK model is incomplete, explicitly deriving
the je⇥ = 1/2 spin model from a multiorbital t2g Hubbard-
Kanamori Hamiltonian. Considering the most idealized crys-
tal structure, an additional spin-spin interaction beyond the
HK model must be included: bond-dependent symmetric o⇥-
diagonal exchange. The complete spin Hamiltonian has the
form

H =
⇤

⌃i j⌥⇧�⇥(⇤)

⌅
J�S i · �S j + KS ⇤i S ⇤j + �

�
S �i S ⇥j + S ⇥i S �j

⇥⇧
, (1)

where J is Heisenberg exchange, K is the Kitaev exchange,
and � denotes the symmetric o⇥-diagonal exchange. On each
bond we distinguish one spin direction ⇤, labeling the bond

FIG. 1: Crystal structure of the honeycomb iridates A2IrO3
with Ir4+ in black, O2� in white, and A = Na+,Li+ in gray.
For the Kitaev and bond-dependent exchanges we have
denoted the yz(x) bonds blue, the zx(y) bonds green and the
xy(z) bonds red.

�⇥(⇤) where � and ⇥ are the two remaining directions. Ex-
amining the phase diagram using a combination of classical
arguments and exact diagonalization, we find that with the in-
clusion of � new magnetic phases are stabilized near the Ki-
taev limits: an incommensurate spiral (IS) and 120⌅ order, in
addition to extended regions of zigzag and stripy order.

Microscopics.– We first construct a minimal model of a
honeycomb lattice of Ir4+ ions surrounded by a network of
edge-sharing oxygen octahedra. The Ir4+ 5d levels are split
into an eg doublet and t2g triplet by large crystal field e⇥ects,
leaving a single hole in the t2g states. Within the t2g mani-
fold, the orbital angular momentum behaves as an le⇥ = 1
triplet, with large spin-orbit coupling splitting this into an ac-
tive je⇥ = 1/2 doublet and filled je⇥ = 3/2 states. Because of
significant on-site interactions, localized je⇥ = 1/2 spins pro-
vide an e⇥ective model for the low-energy physics. To per-
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(a) Classical phase diagram with � > 0

(b) AFM (c) FM (d) Stripy

(e) Zigzag (f) 120⇥ (g) | ⇣Q| in the IS

FIG. 2: (a) Combined Luttinger-Tisza and single-Q analysis.
Solid colours correspond to exact classical ground states
from Luttinger-Tisza while the region indicated by the white
dashed line are the single-Q results. (b-f) Ground state spin
configurations in each phase. (g) Magnitude of the ordering
wave-vector ⇣Q in the IS phase.

form the strong coupling expansion, we consider an atomic
Hamiltonian of Kanamori form[29]:

H0 =
↵

i

⇤
U � 3JH

2
(Ni � 5)2 � 2JHS 2

i � JH

2
L2

i

⌅
, (2)

where Ni, S i, and Li are the total number, spin, and (e⇤ec-
tive) orbital angular momentum operators at site i, U is the
Coulomb interaction, and JH is Hund’s coupling. The expan-
sion is carried out in the limit U, JH ⌅ ⌃ ⌅ t, first taking U
and JH to be large. Since the spin-orbit coupling then domi-
nates the kinetic terms, the resulting spin-orbital model can be
projected into the je⇤ = 1/2 subspace.

The kinetic terms are encapsulated through a tight-binding
model for the Ir t2g orbitals, including both direct overlap of d-

orbitals and hopping mediated through the oxygen atoms. For
our purposes, we focus on nearest-neighbour bonds where we
then have

↵

 i j⌦��⇥(⇤)

�
t1

�
d†i�d j� + d†i⇥d j⇥

⇥
+ t2

�
d†i�d j⇥ + d†i⇥d j�

⇥
+ t3d†i⇤di⇤

�
,

where d†i� = (d†i�⌃ d†i�⌥) and di� are the creation and annihila-
tion operators for the t2g state � at site i. Here we sum over the
yz(x), zx(y) and xy(z) links as indicated in Fig. 1, but mapping
the directions to orbitals as x ⇧ yz, y ⇧ zx and z ⇧ xy. The
parameters t1, t2, and t3 are given by

t1 =
tdd⌥ + tdd⌅

2
, t2 =

t2
pd⌥

⇥pd
+

tdd⌥ � tdd⌅

2
, t3 =

3tdd� + tdd⌅

4
,

where tdd�, tdd⌥, tdd⌅ and tpd⌥ are Slater-Koster[30] parameters
for the direct Ir-Ir overlap and Ir-O overlap while ⇥pd is the Ir-
O gap[31]. Treating the kinetic terms as a perturbation yields
the Hamiltonian in Eq. 1 with

J =
4

27

⇤
6t1(t1 + 2t3)

U � 3JH
+

2(t1 � t3)2

U � JH
+

(2t1 + t3)2

U + 2JH

⌅
, (3)

K =
8JH

9

⇧
    ⌥

(t1 � t3)2 � 3t2
2

(U � 3JH)(U � JH)

⌃
⌦⌦⌦⌦� , (4)

� =
16JH

9

⇤
t2(t1 � t3)

(U � 3JH)(U � JH)

⌅
. (5)

Exchanges of the same form as the � term were originally
called symmetric anisotropic exchange[32, 33] and can be re-
lated to the truncated dipolar exchange[34, 35] discussed in
other contexts through a reparametrization. We stress that
since this term is allowed by symmetry even in the most ide-
alized cases, the presence of the � term is a generic feature of
je⇤ = 1/2 models with edge-shared octahedra (see the Sup-
plemental material [36] for more information). To confirm
this, the strong coupling expansion was also carried out in the
limit where U, ⌃ ⌅ JH ⌅ t, with the contributions of JH
included in the excited states perturbatively. While energies
of the virtual states involve ⌃ instead of JH , all three terms are
generated, with the dependence of K and � on the hoppings t1,
t2, and t3 unchanged (Supplemental Material [36]). Whereas
the Kitaev limit can be naturally accessed when t2 ⌅ t1, t3,
leaving this regime introduces both J and �making it di⌅cult
to reach the HK limit[37]. Fine tuning could in principle ren-
der � small, but the dominant contributions to t1 ⇤ tdd⌥ and
t3 ⇤ tdd� are of opposite sign making any such tuning implau-
sible. Further applications to wider classes of iridium oxides
are left for future work.

Classical phase diagram.- To understand the e⇤ects of in-
cluding this bond-dependent � term, we first map out the clas-
sical magnetic phases. We parametrize the exchanges using
angles  and ⇧

J = sin ⇧ cos  , K = sin ⇧ sin  , � = cos ⇧, (6)

fixing the energy scale so that
�

J2 + K2 + �2 = 1. By map-
ping ⇣S i ⇧ �⇣S i on one sublattice, we send  ⇧ � and

e.g. In the limit of 

Strong Coupling Limit: Localized Pseudo-Spin Model 6

Supplementary Material A:

Details on ab-initio electronic structure calculations

For the electronic structure calculations with SOC and on-
site Coulomb interaction, OPENMX code[31, 32], which is
based on the linear-combination-of-pseudo-atomic-orbital ba-
sis formalism, was used. A non-collinear DFT scheme and
a fully relativistic j-dependent pseudopotential were used to
treat SOC, and Perdew-Burke-Ernzerhof (PBE) parametriza-
tion of the generalized gradient apporoximation (GGA) was
chosen for the exchange-correlation functional[], (Cite PBE)
which was compared and found to be almost identical with
the results with the Perdew and Zunger local density approx-
imation functional[]. (Cite CA-PZ) 400 Ry of energy cutoff
was used for the real-space sampling, and 9 ⇥ 9 ⇥ 9 k-grid
was adopted for the primitive unit cell. Electron interactions
are treated as on-site Coulomb interactions via a simplified
LDA+U formalism implemented in OPENMX code[33], and

up to 3.0 eV of Ue↵ ⌘ U � JH parameter (JH is Hund’s
coupling) was used for Ir d orbital in our GGA+SOC+U cal-
culations. Maximally-localized Wannier orbital method[34],
which is implemented in OPENMX code[35], were used to
obtain the tight-binding Hamiltonian for Ir t2g atoms.
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FIG. 4. (Color online) (Supplementary materials:) The three largest
t2g Wannier orbital hopping amplitudes.
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FIG. 2: (a) Combined Luttinger-Tisza and single-Q analysis.
Solid colours correspond to exact classical ground states
from Luttinger-Tisza while the region indicated by the white
dashed line are the single-Q results. (b-f) Ground state spin
configurations in each phase. (g) Magnitude of the ordering
wave-vector ⇣Q in the IS phase.

form the strong coupling expansion, we consider an atomic
Hamiltonian of Kanamori form[29]:

H0 =
↵

i

⇤
U � 3JH

2
(Ni � 5)2 � 2JHS 2

i � JH

2
L2

i

⌅
, (2)

where Ni, S i, and Li are the total number, spin, and (e⇤ec-
tive) orbital angular momentum operators at site i, U is the
Coulomb interaction, and JH is Hund’s coupling. The expan-
sion is carried out in the limit U, JH ⌅ ⌃ ⌅ t, first taking U
and JH to be large. Since the spin-orbit coupling then domi-
nates the kinetic terms, the resulting spin-orbital model can be
projected into the je⇤ = 1/2 subspace.

The kinetic terms are encapsulated through a tight-binding
model for the Ir t2g orbitals, including both direct overlap of d-

orbitals and hopping mediated through the oxygen atoms. For
our purposes, we focus on nearest-neighbour bonds where we
then have

↵

 i j⌦��⇥(⇤)

�
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�
d†i�d j� + d†i⇥d j⇥

⇥
+ t2

�
d†i�d j⇥ + d†i⇥d j�

⇥
+ t3d†i⇤di⇤

�
,

where d†i� = (d†i�⌃ d†i�⌥) and di� are the creation and annihila-
tion operators for the t2g state � at site i. Here we sum over the
yz(x), zx(y) and xy(z) links as indicated in Fig. 1, but mapping
the directions to orbitals as x ⇧ yz, y ⇧ zx and z ⇧ xy. The
parameters t1, t2, and t3 are given by

t1 =
tdd⌥ + tdd⌅

2
, t2 =

t2
pd⌥

⇥pd
+

tdd⌥ � tdd⌅

2
, t3 =

3tdd� + tdd⌅

4
,

where tdd�, tdd⌥, tdd⌅ and tpd⌥ are Slater-Koster[30] parameters
for the direct Ir-Ir overlap and Ir-O overlap while ⇥pd is the Ir-
O gap[31]. Treating the kinetic terms as a perturbation yields
the Hamiltonian in Eq. 1 with

J =
4

27

⇤
6t1(t1 + 2t3)

U � 3JH
+

2(t1 � t3)2

U � JH
+

(2t1 + t3)2

U + 2JH

⌅
, (3)

K =
8JH
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⇧
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⌦⌦⌦⌦� , (4)

� =
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⌅
. (5)

Exchanges of the same form as the � term were originally
called symmetric anisotropic exchange[32, 33] and can be re-
lated to the truncated dipolar exchange[34, 35] discussed in
other contexts through a reparametrization. We stress that
since this term is allowed by symmetry even in the most ide-
alized cases, the presence of the � term is a generic feature of
je⇤ = 1/2 models with edge-shared octahedra (see the Sup-
plemental material [36] for more information). To confirm
this, the strong coupling expansion was also carried out in the
limit where U, ⌃ ⌅ JH ⌅ t, with the contributions of JH
included in the excited states perturbatively. While energies
of the virtual states involve ⌃ instead of JH , all three terms are
generated, with the dependence of K and � on the hoppings t1,
t2, and t3 unchanged (Supplemental Material [36]). Whereas
the Kitaev limit can be naturally accessed when t2 ⌅ t1, t3,
leaving this regime introduces both J and �making it di⌅cult
to reach the HK limit[37]. Fine tuning could in principle ren-
der � small, but the dominant contributions to t1 ⇤ tdd⌥ and
t3 ⇤ tdd� are of opposite sign making any such tuning implau-
sible. Further applications to wider classes of iridium oxides
are left for future work.

Classical phase diagram.- To understand the e⇤ects of in-
cluding this bond-dependent � term, we first map out the clas-
sical magnetic phases. We parametrize the exchanges using
angles  and ⇧

J = sin ⇧ cos  , K = sin ⇧ sin  , � = cos ⇧, (6)

fixing the energy scale so that
�

J2 + K2 + �2 = 1. By map-
ping ⇣S i ⇧ �⇣S i on one sublattice, we send  ⇧ � and
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(a) Classical phase diagram with � > 0
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(e) Zigzag (f) 120⇥ (g) | ⇣Q| in the IS

FIG. 2: (a) Combined Luttinger-Tisza and single-Q analysis.
Solid colours correspond to exact classical ground states
from Luttinger-Tisza while the region indicated by the white
dashed line are the single-Q results. (b-f) Ground state spin
configurations in each phase. (g) Magnitude of the ordering
wave-vector ⇣Q in the IS phase.

form the strong coupling expansion, we consider an atomic
Hamiltonian of Kanamori form[29]:

H0 =
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⇤
U � 3JH

2
(Ni � 5)2 � 2JHS 2

i � JH

2
L2

i

⌅
, (2)

where Ni, S i, and Li are the total number, spin, and (e⇤ec-
tive) orbital angular momentum operators at site i, U is the
Coulomb interaction, and JH is Hund’s coupling. The expan-
sion is carried out in the limit U, JH ⌅ ⌃ ⌅ t, first taking U
and JH to be large. Since the spin-orbit coupling then domi-
nates the kinetic terms, the resulting spin-orbital model can be
projected into the je⇤ = 1/2 subspace.

The kinetic terms are encapsulated through a tight-binding
model for the Ir t2g orbitals, including both direct overlap of d-

orbitals and hopping mediated through the oxygen atoms. For
our purposes, we focus on nearest-neighbour bonds where we
then have

↵

 i j⌦��⇥(⇤)

�
t1

�
d†i�d j� + d†i⇥d j⇥

⇥
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�
,

where d†i� = (d†i�⌃ d†i�⌥) and di� are the creation and annihila-
tion operators for the t2g state � at site i. Here we sum over the
yz(x), zx(y) and xy(z) links as indicated in Fig. 1, but mapping
the directions to orbitals as x ⇧ yz, y ⇧ zx and z ⇧ xy. The
parameters t1, t2, and t3 are given by

t1 =
tdd⌥ + tdd⌅

2
, t2 =

t2
pd⌥
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+

tdd⌥ � tdd⌅

2
, t3 =

3tdd� + tdd⌅
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,

where tdd�, tdd⌥, tdd⌅ and tpd⌥ are Slater-Koster[30] parameters
for the direct Ir-Ir overlap and Ir-O overlap while ⇥pd is the Ir-
O gap[31]. Treating the kinetic terms as a perturbation yields
the Hamiltonian in Eq. 1 with

J =
4

27

⇤
6t1(t1 + 2t3)

U � 3JH
+

2(t1 � t3)2
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+

(2t1 + t3)2

U + 2JH

⌅
, (3)
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8JH

9

⇧
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� =
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⌅
. (5)

Exchanges of the same form as the � term were originally
called symmetric anisotropic exchange[32, 33] and can be re-
lated to the truncated dipolar exchange[34, 35] discussed in
other contexts through a reparametrization. We stress that
since this term is allowed by symmetry even in the most ide-
alized cases, the presence of the � term is a generic feature of
je⇤ = 1/2 models with edge-shared octahedra (see the Sup-
plemental material [36] for more information). To confirm
this, the strong coupling expansion was also carried out in the
limit where U, ⌃ ⌅ JH ⌅ t, with the contributions of JH
included in the excited states perturbatively. While energies
of the virtual states involve ⌃ instead of JH , all three terms are
generated, with the dependence of K and � on the hoppings t1,
t2, and t3 unchanged (Supplemental Material [36]). Whereas
the Kitaev limit can be naturally accessed when t2 ⌅ t1, t3,
leaving this regime introduces both J and �making it di⌅cult
to reach the HK limit[37]. Fine tuning could in principle ren-
der � small, but the dominant contributions to t1 ⇤ tdd⌥ and
t3 ⇤ tdd� are of opposite sign making any such tuning implau-
sible. Further applications to wider classes of iridium oxides
are left for future work.

Classical phase diagram.- To understand the e⇤ects of in-
cluding this bond-dependent � term, we first map out the clas-
sical magnetic phases. We parametrize the exchanges using
angles  and ⇧

J = sin ⇧ cos  , K = sin ⇧ sin  , � = cos ⇧, (6)

fixing the energy scale so that
�

J2 + K2 + �2 = 1. By map-
ping ⇣S i ⇧ �⇣S i on one sublattice, we send  ⇧ � and
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Recently, realizations of Kitaev physics have been sought in the A2IrO3 family of honeycomb iridates, origi-
nating from oxygen-mediated exchange through edge-shared octahedra. However, for the je⇥ = 1/2 Mott insu-
lator in these materials exchange from direct d-orbital overlap is relevant, and it was proposed that a Heisenberg
term should be added to the Kitaev model. Here we provide the generic nearest-neighbour spin Hamiltonian
when both oxygen-mediated and direct overlap are present, containing a bond-dependent o⇥-diagonal exchange
in addition to Heisenberg and Kitaev terms. We analyze this complete model using a combination of classical
techniques and exact diagonalization. Near the Kitaev limit, we find new magnetic phases, 120⌅ and incommen-
surate spiral order, as well as extended regions of zigzag and stripy order. Possible applications to Na2IrO3 and
Li2IrO3 are discussed.

The honeycomb family of iridium oxides[1–11] has at-
tracted a considerable amount of attention [12–20] due to
the possibility they lie near a realization of Kitaev’s exactly
solvable spin-1/2 honeycomb model[21]. This model hosts
a number of remarkable features: a Z2 spin liquid with gap-
less Majorana fermions and (non-Abelian) anyonic excita-
tions under an applied magnetic field. No symmetry prin-
ciple excludes terms besides the Kitaev, so additional inter-
actions are generically expected. From microscopic calcu-
lations of exchange mediated through the edge-shared oxy-
gen octahedra, it has been proposed that a pure Kitaev model
of je⇥ = 1/2 spins was the appropriate description[22]. It
was further suggested that direct overlap of the d-orbitals
generalizes this to a Heisenberg-Kitaev (HK) model[13], lin-
early interpolating between an isotropic Heisenberg model
and Kitaev’s bond-dependent exchange Hamiltonian. Exten-
sive study of the HK model[23–28] has shown a variety of fas-
cinating phenomena, including an extended spin liquid phase
and quantum phase transitions into several well-understood
magnetic ground states. While present, the zigzag phase seen
in Na2IrO3 [2, 4, 6] is di⇤cult to stabilize within the HK
model; one must resort to additional t2g-eg exchange paths[18]
or further neighbour hoppings[14]. In light of this puzzle one
may question whether the HK model provides an adequate de-
scription of the honeycomb iridates even at the nearest neigh-
bour level.

In this Letter, we show that when applied to the honey-
comb iridates the HK model is incomplete, explicitly deriving
the je⇥ = 1/2 spin model from a multiorbital t2g Hubbard-
Kanamori Hamiltonian. Considering the most idealized crys-
tal structure, an additional spin-spin interaction beyond the
HK model must be included: bond-dependent symmetric o⇥-
diagonal exchange. The complete spin Hamiltonian has the
form

H =
⇤

⌃i j⌥⇧�⇥(⇤)

⌅
J�S i · �S j + KS ⇤i S ⇤j + �

�
S �i S ⇥j + S ⇥i S �j

⇥⇧
, (1)

where J is Heisenberg exchange, K is the Kitaev exchange,
and � denotes the symmetric o⇥-diagonal exchange. On each
bond we distinguish one spin direction ⇤, labeling the bond

FIG. 1: Crystal structure of the honeycomb iridates A2IrO3
with Ir4+ in black, O2� in white, and A = Na+,Li+ in gray.
For the Kitaev and bond-dependent exchanges we have
denoted the yz(x) bonds blue, the zx(y) bonds green and the
xy(z) bonds red.

�⇥(⇤) where � and ⇥ are the two remaining directions. Ex-
amining the phase diagram using a combination of classical
arguments and exact diagonalization, we find that with the in-
clusion of � new magnetic phases are stabilized near the Ki-
taev limits: an incommensurate spiral (IS) and 120⌅ order, in
addition to extended regions of zigzag and stripy order.

Microscopics.– We first construct a minimal model of a
honeycomb lattice of Ir4+ ions surrounded by a network of
edge-sharing oxygen octahedra. The Ir4+ 5d levels are split
into an eg doublet and t2g triplet by large crystal field e⇥ects,
leaving a single hole in the t2g states. Within the t2g mani-
fold, the orbital angular momentum behaves as an le⇥ = 1
triplet, with large spin-orbit coupling splitting this into an ac-
tive je⇥ = 1/2 doublet and filled je⇥ = 3/2 states. Because of
significant on-site interactions, localized je⇥ = 1/2 spins pro-
vide an e⇥ective model for the low-energy physics. To per-
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FIG. 2: (a) Combined Luttinger-Tisza and single-Q analysis.
Solid colours correspond to exact classical ground states
from Luttinger-Tisza while the region indicated by the white
dashed line are the single-Q results. (b-f) Ground state spin
configurations in each phase. (g) Magnitude of the ordering
wave-vector ⇣Q in the IS phase.

form the strong coupling expansion, we consider an atomic
Hamiltonian of Kanamori form[29]:

H0 =
↵

i

⇤
U � 3JH

2
(Ni � 5)2 � 2JHS 2

i � JH

2
L2

i

⌅
, (2)

where Ni, S i, and Li are the total number, spin, and (e⇤ec-
tive) orbital angular momentum operators at site i, U is the
Coulomb interaction, and JH is Hund’s coupling. The expan-
sion is carried out in the limit U, JH ⌅ ⌃ ⌅ t, first taking U
and JH to be large. Since the spin-orbit coupling then domi-
nates the kinetic terms, the resulting spin-orbital model can be
projected into the je⇤ = 1/2 subspace.

The kinetic terms are encapsulated through a tight-binding
model for the Ir t2g orbitals, including both direct overlap of d-

orbitals and hopping mediated through the oxygen atoms. For
our purposes, we focus on nearest-neighbour bonds where we
then have

↵

 i j⌦��⇥(⇤)

�
t1

�
d†i�d j� + d†i⇥d j⇥

⇥
+ t2

�
d†i�d j⇥ + d†i⇥d j�

⇥
+ t3d†i⇤di⇤

�
,

where d†i� = (d†i�⌃ d†i�⌥) and di� are the creation and annihila-
tion operators for the t2g state � at site i. Here we sum over the
yz(x), zx(y) and xy(z) links as indicated in Fig. 1, but mapping
the directions to orbitals as x ⇧ yz, y ⇧ zx and z ⇧ xy. The
parameters t1, t2, and t3 are given by

t1 =
tdd⌥ + tdd⌅

2
, t2 =

t2
pd⌥

⇥pd
+

tdd⌥ � tdd⌅

2
, t3 =

3tdd� + tdd⌅

4
,

where tdd�, tdd⌥, tdd⌅ and tpd⌥ are Slater-Koster[30] parameters
for the direct Ir-Ir overlap and Ir-O overlap while ⇥pd is the Ir-
O gap[31]. Treating the kinetic terms as a perturbation yields
the Hamiltonian in Eq. 1 with

J =
4

27

⇤
6t1(t1 + 2t3)

U � 3JH
+

2(t1 � t3)2

U � JH
+

(2t1 + t3)2

U + 2JH

⌅
, (3)

K =
8JH

9

⇧
    ⌥

(t1 � t3)2 � 3t2
2

(U � 3JH)(U � JH)

⌃
⌦⌦⌦⌦� , (4)

� =
16JH

9

⇤
t2(t1 � t3)

(U � 3JH)(U � JH)

⌅
. (5)

Exchanges of the same form as the � term were originally
called symmetric anisotropic exchange[32, 33] and can be re-
lated to the truncated dipolar exchange[34, 35] discussed in
other contexts through a reparametrization. We stress that
since this term is allowed by symmetry even in the most ide-
alized cases, the presence of the � term is a generic feature of
je⇤ = 1/2 models with edge-shared octahedra (see the Sup-
plemental material [36] for more information). To confirm
this, the strong coupling expansion was also carried out in the
limit where U, ⌃ ⌅ JH ⌅ t, with the contributions of JH
included in the excited states perturbatively. While energies
of the virtual states involve ⌃ instead of JH , all three terms are
generated, with the dependence of K and � on the hoppings t1,
t2, and t3 unchanged (Supplemental Material [36]). Whereas
the Kitaev limit can be naturally accessed when t2 ⌅ t1, t3,
leaving this regime introduces both J and �making it di⌅cult
to reach the HK limit[37]. Fine tuning could in principle ren-
der � small, but the dominant contributions to t1 ⇤ tdd⌥ and
t3 ⇤ tdd� are of opposite sign making any such tuning implau-
sible. Further applications to wider classes of iridium oxides
are left for future work.

Classical phase diagram.- To understand the e⇤ects of in-
cluding this bond-dependent � term, we first map out the clas-
sical magnetic phases. We parametrize the exchanges using
angles  and ⇧

J = sin ⇧ cos  , K = sin ⇧ sin  , � = cos ⇧, (6)

fixing the energy scale so that
�

J2 + K2 + �2 = 1. By map-
ping ⇣S i ⇧ �⇣S i on one sublattice, we send  ⇧ � and

e.g. In the limit of 

Strong Coupling Limit: Localized Pseudo-Spin Model 6

Supplementary Material A:

Details on ab-initio electronic structure calculations

For the electronic structure calculations with SOC and on-
site Coulomb interaction, OPENMX code[31, 32], which is
based on the linear-combination-of-pseudo-atomic-orbital ba-
sis formalism, was used. A non-collinear DFT scheme and
a fully relativistic j-dependent pseudopotential were used to
treat SOC, and Perdew-Burke-Ernzerhof (PBE) parametriza-
tion of the generalized gradient apporoximation (GGA) was
chosen for the exchange-correlation functional[], (Cite PBE)
which was compared and found to be almost identical with
the results with the Perdew and Zunger local density approx-
imation functional[]. (Cite CA-PZ) 400 Ry of energy cutoff
was used for the real-space sampling, and 9 ⇥ 9 ⇥ 9 k-grid
was adopted for the primitive unit cell. Electron interactions
are treated as on-site Coulomb interactions via a simplified
LDA+U formalism implemented in OPENMX code[33], and

up to 3.0 eV of Ue↵ ⌘ U � JH parameter (JH is Hund’s
coupling) was used for Ir d orbital in our GGA+SOC+U cal-
culations. Maximally-localized Wannier orbital method[34],
which is implemented in OPENMX code[35], were used to
obtain the tight-binding Hamiltonian for Ir t2g atoms.

z

x ydxz

t3
t2

t1 pz

dyz

FIG. 4. (Color online) (Supplementary materials:) The three largest
t2g Wannier orbital hopping amplitudes.
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Extended Data Figure 1 | Resistivity versus temperature 

Insulating temperature dependence of resistivity measured on polycrystalline pellet of 

H3LiIr2O6. The inset shows the Arrhenius plot of the same data, indicating the transport 

activation energy of ~0.1 eV. 

 

  

 

         

Figure 1 | Crystal structure and basic physical properties of H3LiIr2O6.  

a, Kitaev model on honeycomb lattice. S = 1/2 spin moments indicated by arrows are on the 

honeycomb lattice, coupled by bond dependent Ising ferromagnetic interactions. The three 

120 ˚ bonds with orthogonal Ising axes compete with each other and gives rise to a strong 
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Figure 2 | NMR spectral evidences of spin-liquid ground state in H3LiIr2O6- intact 

paramagnetism down to 1.0 K.  

a,b, 7Li/1H-NMR spectra with B parallel to ( || ) the honeycomb plane. No appreciable 

broadening of peak is observed down to 1.0 K, providing evidence for intact paramagnetism 

and hence spin liquid state. Quantitative analysis of line width described in Methods based 

on Extended Data Fig. 3a indicates that H3LiIr2O6 is the cleanest quantum spin liquid 

among those reported so far. The dotted vertical line stands for the spectral positions of 

nuclei without internal fields (K = 0). In 7Li NMR, only one peak, assigned to Li ions in the 

honeycomb layer, is observed, indicating no Li ions left in the interlayer sites after the ion 

exchange process. 

  

Only one peak for Li7  
- all the interlayer Li 

ions are replaced by H

No broadening in Li7 peak 
- No magnetic order



 

Figure 4 | Specific heat evidence for magnetic field induced excitation gap and T/B 

scaling. a, Specific heat C obtained after subtracting the nuclear contribution, plotted as C/T 

vs. T. T-1/2-dependence of C/T at B = 0 implies the presence of intense excitations around E 

= 0. With the application of B, the low temperature C/T below 1/2T*~1/2PBB/kB is 
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Figure 3 | Knight shift and relaxation rate T1
-1 for H3LiIr2O6 - evidence for low lying 

spin excitations and magnetic field induced excitation gap 
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Figure 3 | Knight shift and relaxation rate T1
-1 for H3LiIr2O6 - evidence for low lying 

spin excitations and magnetic field induced excitation gap 
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1) many stacking faults

3) Reduced interlayer spacing c

different stacking patterns coexist

2) enlogated a/b parameters

direct overlap may be suppressed

Kitaev may dominate

Interlayer interaction may be important

Clues for building a theoretical model



2

later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k

0

of the Majorana cones scales as k
0

⇠ B1/4 since the
energy shift is �E ⇠ k4

0

⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
0

⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]

D(E) ⇠ E/v2 ⇠ B�3/2E (3)

which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
consider consists of an ABCA-type stacking of N = 4
honeycomb lattices. Each honeycomb layer hosts a
Kitaev honeycomb model [20] described by H

K

, and the
layers are coupled together by a Heisenberg interaction
(H

g

) (Fig. 1). We will also consider additional in-plane
(H

�

) and interlayer (H
�

0) interactions.

H = H
K

+H
g

+H
�

+H
�

0 (4)

H
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1

A

The summations
P

hi,ji2µ

,
P

BA

hi,ji, and
P···

hhi,jii sum over
the pairs of lattice sites indicated in Fig. 1. We will also
couple the model to a magnetic field B

µ

H
B

= �
X

`,i,µ

B
µ

�µ

`,i

(6)

See Fig. 2 for a mean-field phase diagram for this model.
Notice that H

�

is a next-nearest neighbor, bond and
sublattice dependent, intralayer, Ising coupling. For our
purpose, it will be su�cient to consider this interaction
on the boundary layers, but it could also be present in

(a)

(b)

FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by

P
hi,ji2µ

. The black links denote interlayer Heisenberg

couplings in H
g

and are summed by
PBĀ

hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H

�

and H
�

0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.

every layer. H
�

0 is similar, except it is an interlayer
coupling. Without H

�

or H
�

0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H

�

or H
�

0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B

max

. max(�,�0).
Mean-Field Theory - We now study our model using

mean-field theory. We follow Kitaev and decompose the
spins into four Majorana fermions [20]:

�µ

`i

= i bµ
`i

c
`i

(7)

The physical states (| i) must obey the following Hilbert
space constraint:

bx
`i

by
`i

bz
`i

c
`i

| i = | i (8)

When we decompose the spins using Eq. (7), all of the
terms in our Hamiltonian (Eq. (4)) will be products of
four Majorana fermions. In order to make analytical
progress, we will apply a mean-field theory in order to
produce a solvable quadratic Hamiltonian. For H

K

and

H
g

, we will use the mean-field decomposition: �µ
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j
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heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
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See Fig. 2 for a mean-field phase diagram for this model.
Notice that H

�

is a next-nearest neighbor, bond and
sublattice dependent, intralayer, Ising coupling. For our
purpose, it will be su�cient to consider this interaction
on the boundary layers, but it could also be present in
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FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by

P
hi,ji2µ

. The black links denote interlayer Heisenberg

couplings in H
g

and are summed by
PBĀ

hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H

�

and H
�

0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.
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0 is similar, except it is an interlayer
coupling. Without H
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0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H
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0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B
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Mean-Field Theory - We now study our model using
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k

0

of the Majorana cones scales as k
0

⇠ B1/4 since the
energy shift is �E ⇠ k4

0

⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
0

⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]

D(E) ⇠ E/v2 ⇠ B�3/2E (3)

which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
consider consists of an ABCA-type stacking of N = 4
honeycomb lattices. Each honeycomb layer hosts a
Kitaev honeycomb model [20] described by H

K

, and the
layers are coupled together by a Heisenberg interaction
(H

g

) (Fig. 1). We will also consider additional in-plane
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) and interlayer (H
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0) interactions.
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Notice that H
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sublattice dependent, intralayer, Ising coupling. For our
purpose, it will be su�cient to consider this interaction
on the boundary layers, but it could also be present in
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FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by

P
hi,ji2µ

. The black links denote interlayer Heisenberg

couplings in H
g

and are summed by
PBĀ

hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H

�

and H
�

0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.

every layer. H
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0 is similar, except it is an interlayer
coupling. Without H
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or H
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0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H
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or H
�

0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k

0

of the Majorana cones scales as k
0

⇠ B1/4 since the
energy shift is �E ⇠ k4

0

⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
0

⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]

D(E) ⇠ E/v2 ⇠ B�3/2E (3)

which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
consider consists of an ABCA-type stacking of N = 4
honeycomb lattices. Each honeycomb layer hosts a
Kitaev honeycomb model [20] described by H

K

, and the
layers are coupled together by a Heisenberg interaction
(H

g

) (Fig. 1). We will also consider additional in-plane
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) and interlayer (H
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0) interactions.
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See Fig. 2 for a mean-field phase diagram for this model.
Notice that H
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is a next-nearest neighbor, bond and
sublattice dependent, intralayer, Ising coupling. For our
purpose, it will be su�cient to consider this interaction
on the boundary layers, but it could also be present in
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FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by

P
hi,ji2µ

. The black links denote interlayer Heisenberg

couplings in H
g

and are summed by
PBĀ

hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H

�

and H
�

0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.

every layer. H
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0 is similar, except it is an interlayer
coupling. Without H
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or H
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0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H
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or H
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0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B
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. max(�,�0).
Mean-Field Theory - We now study our model using

mean-field theory. We follow Kitaev and decompose the
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k

0

of the Majorana cones scales as k
0

⇠ B1/4 since the
energy shift is �E ⇠ k4

0

⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
0

⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]

D(E) ⇠ E/v2 ⇠ B�3/2E (3)

which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
consider consists of an ABCA-type stacking of N = 4
honeycomb lattices. Each honeycomb layer hosts a
Kitaev honeycomb model [20] described by H

K

, and the
layers are coupled together by a Heisenberg interaction
(H

g

) (Fig. 1). We will also consider additional in-plane
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) and interlayer (H
�

0) interactions.
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Notice that H
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sublattice dependent, intralayer, Ising coupling. For our
purpose, it will be su�cient to consider this interaction
on the boundary layers, but it could also be present in
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FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by
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. The black links denote interlayer Heisenberg

couplings in H
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and are summed by
PBĀ

hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H
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and H
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0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.

every layer. H
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0 is similar, except it is an interlayer
coupling. Without H
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or H
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0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H
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or H
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0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B
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Mean-Field Theory - We now study our model using
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k

0

of the Majorana cones scales as k
0

⇠ B1/4 since the
energy shift is �E ⇠ k4

0

⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
0

⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]

D(E) ⇠ E/v2 ⇠ B�3/2E (3)

which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
consider consists of an ABCA-type stacking of N = 4
honeycomb lattices. Each honeycomb layer hosts a
Kitaev honeycomb model [20] described by H

K

, and the
layers are coupled together by a Heisenberg interaction
(H

g

) (Fig. 1). We will also consider additional in-plane
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) and interlayer (H
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0) interactions.
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sublattice dependent, intralayer, Ising coupling. For our
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on the boundary layers, but it could also be present in
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FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by

P
hi,ji2µ

. The black links denote interlayer Heisenberg

couplings in H
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and are summed by
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hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H
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and H
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0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.

every layer. H
�

0 is similar, except it is an interlayer
coupling. Without H

�

or H
�

0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H

�

or H
�

0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B

max

. max(�,�0).
Mean-Field Theory - We now study our model using

mean-field theory. We follow Kitaev and decompose the
spins into four Majorana fermions [20]:

�µ

`i

= i bµ
`i

c
`i

(7)

The physical states (| i) must obey the following Hilbert
space constraint:

bx
`i

by
`i

bz
`i

c
`i

| i = | i (8)

When we decompose the spins using Eq. (7), all of the
terms in our Hamiltonian (Eq. (4)) will be products of
four Majorana fermions. In order to make analytical
progress, we will apply a mean-field theory in order to
produce a solvable quadratic Hamiltonian. For H

K

and

H
g

, we will use the mean-field decomposition: �µ

`i

�µ

`

0
j

MF⇡
�hi bµ

`i

bµ
`

0
j

ii c
`i

c
`

0
j

� hi c
`i

c
`

0
j

ii bµ
`i

bµ
`

0
j

+ hi bµ
`i

bµ
`

0
j

ihi c
`i

c
`

0
j

i.



Kitaev Model: Exact Solution

II. HEISENBERG-KITAEV MODEL ON HYPER-HONEYCOMB

Let us consider the following Heisenberg-Kitaev model on the Hyper-honeycomb lattice.

HHK = J
�

⇥ij⇤

Si · Sj �K
�

��links

S�
i S

�
j (1)

We first study the di�erent limits.

A. K=0

This is the limit of the pure antiferromagnetic Heisenberg model. The above lattice is

similar topologically to the lattice in fig. 5. On this lattice, the Neel order is not frustrated.

This is shown in figure 6. The reason that Neel order is not frustrated is that the above

lattice can be seen as a partially deleted cubic lattice where the deletion is done without

introducing new bonds.[7] So the Neel order remains unfrustrated and is the classical ground

state.

B. J=0

This is the pure Kitaev limit. This limit was first studied by Mandal et. al [4] on the

deleted cubic lattice (fig. 5). The Hamiltonian looks like:

HK = �
�

��links

S�
i S

�
j (2)

where the di�erent links are given in fig. 5. The details of this lattice are described in

Appendix A. Using the usual majorana fermion decomposition of the spins, we find that the

Hamiltonian is given by:

HK =
i

2

�

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ) (3)

Now unlike the 2D case here we do not have a clear cut Lieb’s theorem which says that the

ground state belongs to the zero flux sector. So Ref. [4] resorted to some selected numerical

check and found that the ground state indeed belongs to this sector. We shall assume that

this is correct and look for the majorana dispersion in this sector. In this sector, we can set
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

⌥

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
�

loop

u�
ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =

i

2

⌥

ij

cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
K =

⌥

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and

Hk =
i

4

�

⇧⇤

0 1 0 Ak

�1 0 BK 0
0 �B⇤

k 0 1
�A⇤

k 0 �1 0

⇥

⌃⌅ (8)

where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)
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4

y � z and x � z bonds respectively. We would like to re-
emphasize that the word skew indicates that this is essentially
a three dimensional magnetic order as opposed to a stacked
up two dimensional spin order. At this special point there is a
continuous “SU(2)” spin rotation symmetry that ensures that
all the three skew-stripy phases described above have the same
energy.

It is however worthwhile to note that there is a crucial
difference from the honeycomb case away from this special
point. In the honeycomb lattice a two dimensional stripy
phase is obtained for the Heisenberg-Kitaev model at the same
parameter value. There, a C3 symmetry of the lattice along
with concomitant rotation of the spins which is a symmetry
of the HHK Hamiltonian on the honeycomb lattice ensures
that the three stripy ordered phases have the same energy even
away from this special point where there is no “SU(2)” sym-
metry. However on the hyper-honeycomb lattice, there is only
a C2 symmetry between the x and the y bonds, while the z
bonds are not related by any symmetry. So there is no a-priori
reason for the Sz ordered skew-stripy phase to have the same
energy as the other two. Indeed we find that, away from this
point (K = 2J), although the classical energies of the three
states remain the same, quantum corrections coming from the
spin-wave fluctuations lift this accidental classical degener-
acy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al19 showed
that the pure Kitaev model on the deleted cubic lattice which
is topologically similar to the hyper-honeycomb lattice can
be exactly solved using methods originally employed by
Kitaev.18

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual Ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

 

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four Majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (the blue sites in Fig. 1) are given by19

WP =
⌦

loop

u�
ij . (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.

This separation of the Majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.18

The problem then reduces to Majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb
lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al.28 proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice19 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al.19 resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes for several flux configurations and found that the zero-
flux sector has the lowest energy. Thus it is expected that the
zero flux sector corresponds to the ground state in our case as
well. We can then specialize to the zero-flux sector choosing
a gauge where u�

ij = +1 (⇤⌥ij�) to get

H0�flux
K =

i

2

 

ij

cicj . (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation, taking the unit cell as given in Fig. 1 (the lattice
vectors are given in Appendix A). We get

H0�flux
K =

 

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and

Hk =
i

4

⇤

⌥⇧

0 1 0 Ak

�1 0 BK 0
0 �B⇤

k 0 1
�A⇤

k 0 �1 0

⌅

�⌃ (8)

where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)

The spectrum is given by:

Ek = ± 1

2
⌦
2

�
(2 + |Ak|2 + |Bk|2)± (10)

↵
[2 + |Ak|2 + |Bk|2]2 � 4 [1 + |Ak|2|Bk|2 + 2⌅ [AkB⇤

k]]

⇥1/2

(11)

The spectrum for the dispersing Majorana fermion, c, along
the high symmetry lines within the first Brillouin zone is given
in Fig. 5. The lower two bands are occupied while the zero
energy surface describe the contour of the gapless excitation.
We find a fermi surface of co-dimension two, i.e. line nodes.
From Eq. 11, it is easy to see that this is given by the zeros of

WP = ±1⇒

7

We can rewrite the single occupancy constraint for the
complex fermions (eq. 10) in terms of the Majorana
fermions17 as

�0
i�

1
i�

2
i�

3
i =

1

4
. (40)

Using this, we can rewrite the spins in terms of the Ma-
jorana fermions as

Sx
i = i�0

i�
1
i , Sy

i = i�0
i�

2
i , Sz

i = i�0
i�

3
i , (41)

which is the original formulation used by Kitaev in the
solution of his model, with our Majorana fermions nor-
malized such that {�↵

i ,�
�
j } = �ij�

↵� . A set of plaquette
operators,

Wp = 26Sx
1S

y
2S

z
3S

x
4S

y
5S

z
6 , (42)

are defined on the individual plaquettes of the lattice,
where the sites 1� 6 traverse a honeycomb plaquette as
shown in figure 2. (The factor of 26 which is present
in our definition of Wp is due to the plaquette operator
being written in terms of spins, rather than Pauli ma-
trices as in the original formulation of Kitaev.4) These
plaquette operators commute with the original Kitaev
spin Hamiltonian and with one another, which allows the
Hilbert space to be split into eigen-spaces of these oper-
ators, enabling the exact solution. These operators do
not commute with the mean field Hamiltonian; however,
that these operators take the same value in the mean-field
solution as in the exact solution.19

To make a connection with Kitaev’s original solution
we now express our results in terms of the Majorana
fermions. By construction, the Majorana fermions in-
troduced in Eq. 38 are the modes in which the band
structure is diagonal. While �1, �2 and �3 form the flat
bands, the single dispersing band is made up of the �0

fermions.17 In terms of the original solution of Kitaev, the
dispersing fermion is the single gapless Majorana mode,
while the flat band fermions describe the frozen Z2 fluxes,
as we now show. The flat bands arise from the fact that
the mean-field Hamiltonians for �1,�2 and �3 become
disjoint, i.e., the hopping for these fermions are non-zero
only on x, y or z bonds respectively. For the hopping on
the z-link, we have,

⌅(i�3
i�

3
j � i�3

j�
3
i ) (43)

where ⌅ is expressed in terms of the mean field param-
eters and ij are neighbours on a z-link. The eigenvalues
are given by ±|⌅|, independent of ~k, and therefore these
form the flat bands. At half filling, the lower energy state
(lower flat band) is occupied. To compare with the exact
solution, the Majorana bilinear �3

i�
3
j has to be identi-

fied with the Z2 gauge fields defined on the z-links, uz
ij .

4

Indeed, we identify

uz
ij = 2i�3

i�
3
j = i(�3

i�
3
j � �3

j�
3
i ). (44)

In the ground state, clearly the eigenvalues of uz
ij are ±1.

Similarly we can introduce ux
ij and uy

ij on x and y links
respectively. Now we can re-write the flux operators Wp

in Eq. 42 (using 41, 40 and the fact that �↵
i �

↵
i = 1

2 ) as

Wp = 26Sx
1S

y
2S

z
3S

x
4S

y
5S

z
6 = uz

12u
x
23u

y
34u

z
45u

x
56u

z
61 (45)

It is now clear that in the ground state the plaquette
operators Wp have an expectation value of +1. For a
small departure from this Kitaev point, one can still use
the variables up

ij and Wp. However, these are no longer
static, but acquire dynamics as the corresponding Majo-
rana fermions starts dispersing.
The fermionic mean-field theory of this state describes

a Z2 spin liquid, as we will show explicitly in the next
subsection. At the mean field saddle-point, the values of
di↵erent parameters are given by

� iDy
i,x = Ez

i,x = Dx
i,y = Ez

i,y = Dx
i,z = �iDy

i,z = 0.190608i,

Dx
i,x = �iDy

i,y = Ez
i,z = �0.0593918i, (46)

values which have been determined by self-consistent
iteration28, as described above.
The resultant spinon spectrum is given in Figure 4.

There are 8 bands which, characteristic of Bogoliubov
Hamiltonians, are symmetric about zero energy. The flat
bands are threefold degenerate. At half filling for the
spinons the lower four bands (red) are filled while the
upper four bands (blue) are empty. While the flat bands
are gapped, the two dispersing bands meet at the bound-
ary of the hexagonal Brillouin zone with a characteristic
Dirac spectrum. Hence the spin liquid that we are de-
scribing is indeed gapless and matches with the spinon
spectrum obtained in the exact solution of the Kitaev
model. This provides a useful check on the validity of
our mean field solution, as well as a controlled limit from
which we can perturb the model.
The presence of the pairing term indicates that, in

terms of the complex fermions, the spin liquid is a “su-
perconductor” for the spinons. We can analyze the
symmetry of the pairing amplitude. In order to de-
termine the properties of the pairing around the Dirac
node, we isolate the dispersing band by examining the
�0 fermionic modes and returning to the original basis
of Dirac fermions. For the �0 modes, the Hamiltonian is
given by

H0
K =

M

4

X

i

X

p

�0
i�

0
i+p (47)

=
M

8

X

i

X

p

(fi," + f†
i,")(fi+p," + f†

i+p,")

=
1

8

X

k

X

p

(M(fk"Af�k"B + fk"Af
†
k"B)e

�i~k·~Rp

AB + h.c.)

(48)

where M = 0.38122i. From here we can expand the
pairing terms about the K-points in the brillouin zone.
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

⌥

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
�

loop

u�
ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =

i

2

⌥

ij

cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
K =

⌥

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and

Hk =
i

4

�

⇧⇤

0 1 0 Ak

�1 0 BK 0
0 �B⇤

k 0 1
�A⇤

k 0 �1 0

⇥

⌃⌅ (8)

where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)

Four Majorana  
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1
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j
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

⌥

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
�

loop

u�
ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =

i

2

⌥

ij

cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
K =

⌥

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and

Hk =
i

4

�

⇧⇤

0 1 0 Ak

�1 0 BK 0
0 �B⇤

k 0 1
�A⇤

k 0 �1 0

⇥

⌃⌅ (8)

where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)

Ground state is in the zero-flux sector
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FIG. 4: (Color online) Spinon spectrum in the Kitaev limit.
Bands shown in red are occupied, bands shown in blue are
unoccupied.

Defining ~k0 = ~k + ( 2⇡3 , 2⇡p
3
),

�dispersing(k
0) =

M

8
(1 + e

4⇡i

3 e�i~k0·~Rx

AB + e
2⇡i

3 e�i~k0·~Ry
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However, we would like to emphasize that the above
chiral p-wave pairing does not necessarily imply time-
reversal symmetry breaking, which is now implemented
projectively.1 The structure of the pairing terms di↵ers
from the work of Burnell and Nayak19, who found py
pairing about the Dirac points, by choosing a di↵erent
basis for the fermions which is related to the present one
by a gauge transformation.

We can further calculate the spin-spin correlation func-
tions within mean field theory. Using the Majorana rep-
resentation we find that this is given by:
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Since the second correlation function involves absolutely
flat bands, it is only non-zero when ↵ = � and when
i = j or i and j belong to the same unit cell. Hence the
spin correlation are short ranged even if the spin liquid
is gapless. This is a novel feature of the Kitaev spin
liquid, where exact calculations7 also indicate that such
correlations vanish beyond nearest neighbour.

We would like to point out here that, when the model
is perturbed with the Heisenberg term, the gapped flat
bands acquire a weak dispersion, but still remain gapped.
Within perturbation theory, this is expected to lead
to exponentially decaying spin-spin correlation decaying
with a length-scale characteristic of the energy-gap.22

B. The gauge structure

At this point, before actually discussing the results of
our mean-field calculations, we wish to discuss the gauge
structure of the our spin liquid ansatz.
At the outset, it should be noted that the projec-

tive symmetry group (PSG) classification including the
triplet decoupling channels has not been comprehensively
studied. While a comprehensive discussion of these PSGs
is beyond the scope of our present work, we indicate the
relevant issues in the context of the Heisenberg-Kitaev
model by extending the formalism introduced by Shin-
dou and Momoi27.
While the formulation outlined above is more suited

to calculations of the mean field spectrum and self-
consistent solutions, to decipher the nature of the spin
liquid and the gauge transformations we wish to cast the
above decoupling within an SU(2) formalism.
In order to examine the nature of the spin liquid state,

it is worthwhile to formulate this Hamiltonian in another
basis. The transformation into this basis is defined by

~fi ! ~f 0
i = A~fi, Ui,p ! AUi,pA

†, (51)

where the transformation matrix is given by

A =
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64
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0 0 �1 0

3

75 (52)

and ~fi is given by Eq. 28. In the new basis, the ~f 0
i are

given by

~f 0
i
† =

h
f†
i," fi,# f†

i,# �fi,"

i
. (53)

In this basis, we can write the set of gauge transfor-
mations which leave our physical spin degrees of freedom
invariant in a block diagonal form,

Wi =


Vi 0
0 Vi

�
(54)

where the Vi matrices form a two dimensional represen-
tation of SU(2). The spinon Hamiltonian (Eq 31), when
written in the new basis, is invariant under the simulta-
neous gauge transformation

~f 0
i ! Wi

~f 0
i , U 0

i,p ! Wi+pU
0
i,pW

†
i . (55)

where U 0
i,p = AUi,pA

† gives the analog of Bogoliubov-de-
Gennes Hamiltonian in the new basis.
In order to study the low energy degrees of freedom

in this theory, we allow gauge fluctuations of the U 0
i,p

matrices of the form

U 0
i,p = Ū 0

i,pe
ial

i,p

l

, (56)
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FIG. 2. Phase diagram of our model H (Eq. (4)). (red)
When g/K is small and B = 0, our model is in the same
phase as four decoupled layers of Kitaev’s QSL honeycomb
model [20], where each layer can be described by two gapless
Majorana cones coupled to a Z2 gauge field [33]. (yellow)
However, a magnetic field (B) opens up a gap ⇠ B3/K2 and
the resulting phase is four copies of a chiral QSL [20, 34].
(green) According to mean-field theory, for intermediate
g/K and B = 0, our model is described by two Majorana
modes with quartic dispersion [31] coupled to a Z2 gauge field.
(green!blue) When a small magnetic field (B) is applied,
each of the two Majorana modes with quartic dispersion split
into four Majorana cones (eight in total) with linear dispersion
(Fig. 3a). However, our model actually predicts a very small
gap (see Fig. 3b) for these Majorana cones [35]. (white) We
do not know what happens in the white region. For example,
there could be a direct transition between the above phases,
or there could be intermediate phases.

If we only consider just the Kitaev’s honeycomb
model H

K

, then this approximation is actually exact
since it reproduces Kitaev’s exact solution [20]. The
approximation is also exact if we consider only the
Heisenberg Hamiltonian H

g

in the sense that it results
in the expected dimerized ground state (of spin singlet
pairs across the Heisenberg bonds) after projecting into
the physical Hilbert space (Eq. (8)). Thus, we expect
this decomposition to be accurate in the colored regions
in our phase diagram (Fig. 2).
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where ↵ (= A,B) is the sublattice of site i. ±K are
the locations of the gapless points (Fig. 3a) so that k is
the momentum displacement from these points. Since
we are only interested in the low energy physics, we will
expand about small k. Note that although c

`i

and bµ
`i

are
Majorana fermions, c

k`↵

and bµ
k`↵

are complex fermions.
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FIG. 3. (a) Before a magnetic field (B) is applied, our model
has two gapless Majorana modes with quartic dispersion
(green curve) at the ±K points (red and blue dots). (Note
that in the Brillouin zone, the three red dots are equivalent
points.) After a B field is applied, the quartic mode splits
into four Majorana cones (blue cones) which are displaced by
momentum |k0|. (b) The dispersion of the Majorana fermions
along one of the arrows in (a). (green) Quartic dispersion
before a magnetic field (B) is applied. (blue) Majorana cone
after a B field is applied. �E ⇠ B and |k0| ⇠ B1/4. The
Majorana cones have a very small mass gap E0 ⇠ B3 [20].

FIG. 4. A picture of our mean-field Hamiltonian HMF
k

(Eq. (10)). Please see paragraphs below Eq. (10) for an
explanation.

As a result, the gapless point of the complex fermion
c
k`↵

at k = 0 describes the two gapless points ±K of the
Majorana fermions. [36]

After Fourier transforming, we rotate the phase of the c
and b fermions on the B and A sublattices (respectively)
in order to cancel out factors of i in HMF; i.e. c
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and bµ
k`A
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. The mean-field Hamiltonian
then takes the following form (which is depicted in
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k

0

of the Majorana cones scales as k
0

⇠ B1/4 since the
energy shift is �E ⇠ k4

0

⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
0

⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]

D(E) ⇠ E/v2 ⇠ B�3/2E (3)

which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
consider consists of an ABCA-type stacking of N = 4
honeycomb lattices. Each honeycomb layer hosts a
Kitaev honeycomb model [20] described by H

K

, and the
layers are coupled together by a Heisenberg interaction
(H

g

) (Fig. 1). We will also consider additional in-plane
(H

�

) and interlayer (H
�

0) interactions.
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The summations
P

hi,ji2µ

,
P

BA

hi,ji, and
P···

hhi,jii sum over
the pairs of lattice sites indicated in Fig. 1. We will also
couple the model to a magnetic field B

µ

H
B

= �
X

`,i,µ

B
µ

�µ

`,i

(6)

See Fig. 2 for a mean-field phase diagram for this model.
Notice that H

�

is a next-nearest neighbor, bond and
sublattice dependent, intralayer, Ising coupling. For our
purpose, it will be su�cient to consider this interaction
on the boundary layers, but it could also be present in

(a)

(b)

FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by

P
hi,ji2µ

. The black links denote interlayer Heisenberg

couplings in H
g

and are summed by
PBĀ

hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H

�

and H
�

0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.

every layer. H
�

0 is similar, except it is an interlayer
coupling. Without H

�

or H
�

0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H

�

or H
�

0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B

max

. max(�,�0).
Mean-Field Theory - We now study our model using

mean-field theory. We follow Kitaev and decompose the
spins into four Majorana fermions [20]:
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(7)

The physical states (| i) must obey the following Hilbert
space constraint:
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When we decompose the spins using Eq. (7), all of the
terms in our Hamiltonian (Eq. (4)) will be products of
four Majorana fermions. In order to make analytical
progress, we will apply a mean-field theory in order to
produce a solvable quadratic Hamiltonian. For H
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and
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k
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of the Majorana cones scales as k
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⇠ B1/4 since the
energy shift is �E ⇠ k4
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⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
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⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]
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which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
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generic magnetic field dependence of the density of states
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which explains the spin relaxation rate and specific
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“defect” layers contributes only a small fraction of the
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See Fig. 2 for a mean-field phase diagram for this model.
Notice that H

�

is a next-nearest neighbor, bond and
sublattice dependent, intralayer, Ising coupling. For our
purpose, it will be su�cient to consider this interaction
on the boundary layers, but it could also be present in
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FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by

P
hi,ji2µ

. The black links denote interlayer Heisenberg

couplings in H
g

and are summed by
PBĀ

hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H

�

and H
�

0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.

every layer. H
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0 is similar, except it is an interlayer
coupling. Without H

�

or H
�

0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H

�

or H
�

0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B

max

. max(�,�0).
Mean-Field Theory - We now study our model using

mean-field theory. We follow Kitaev and decompose the
spins into four Majorana fermions [20]:
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When we decompose the spins using Eq. (7), all of the
terms in our Hamiltonian (Eq. (4)) will be products of
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k

0

of the Majorana cones scales as k
0

⇠ B1/4 since the
energy shift is �E ⇠ k4

0

⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
0

⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]

D(E) ⇠ E/v2 ⇠ B�3/2E (3)

which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
consider consists of an ABCA-type stacking of N = 4
honeycomb lattices. Each honeycomb layer hosts a
Kitaev honeycomb model [20] described by H

K

, and the
layers are coupled together by a Heisenberg interaction
(H

g

) (Fig. 1). We will also consider additional in-plane
(H
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) and interlayer (H
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0) interactions.
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above, which demonstrates what is meant by ABCA stacking.
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an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
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0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
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which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
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“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.
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all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.
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0 is similar, except it is an interlayer
coupling. Without H
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0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H
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0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B
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Mean-Field Theory - We now study our model using

mean-field theory. We follow Kitaev and decompose the
spins into four Majorana fermions [20]:

�µ

`i

= i bµ
`i

c
`i

(7)

The physical states (| i) must obey the following Hilbert
space constraint:

bx
`i

by
`i

bz
`i

c
`i

| i = | i (8)

When we decompose the spins using Eq. (7), all of the
terms in our Hamiltonian (Eq. (4)) will be products of
four Majorana fermions. In order to make analytical
progress, we will apply a mean-field theory in order to
produce a solvable quadratic Hamiltonian. For H

K

and

H
g

, we will use the mean-field decomposition: �µ

`i

�µ

`

0
j

MF⇡
�hi bµ

`i

bµ
`

0
j

ii c
`i

c
`

0
j

� hi c
`i

c
`

0
j

ii bµ
`i

bµ
`

0
j

+ hi bµ
`i

bµ
`

0
j

ihi c
`i

c
`

0
j

i.



3

FIG. 2. Phase diagram of our model H (Eq. (4)). (red)
When g/K is small and B = 0, our model is in the same
phase as four decoupled layers of Kitaev’s QSL honeycomb
model [20], where each layer can be described by two gapless
Majorana cones coupled to a Z2 gauge field [33]. (yellow)
However, a magnetic field (B) opens up a gap ⇠ B3/K2 and
the resulting phase is four copies of a chiral QSL [20, 34].
(green) According to mean-field theory, for intermediate
g/K and B = 0, our model is described by two Majorana
modes with quartic dispersion [31] coupled to a Z2 gauge field.
(green!blue) When a small magnetic field (B) is applied,
each of the two Majorana modes with quartic dispersion split
into four Majorana cones (eight in total) with linear dispersion
(Fig. 3a). However, our model actually predicts a very small
gap (see Fig. 3b) for these Majorana cones [35]. (white) We
do not know what happens in the white region. For example,
there could be a direct transition between the above phases,
or there could be intermediate phases.

If we only consider just the Kitaev’s honeycomb
model H

K

, then this approximation is actually exact
since it reproduces Kitaev’s exact solution [20]. The
approximation is also exact if we consider only the
Heisenberg Hamiltonian H

g

in the sense that it results
in the expected dimerized ground state (of spin singlet
pairs across the Heisenberg bonds) after projecting into
the physical Hilbert space (Eq. (8)). Thus, we expect
this decomposition to be accurate in the colored regions
in our phase diagram (Fig. 2).
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and H
�

0 are introduced only
to break accidental symmetries of our model, we only
need to choose the simplest decomposition that can break
these symmetries.

After inserting the mean-field decompositions (Eq. ()
and ()), we Fourier transform the Majorana fermions:
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where ↵ (= A,B) is the sublattice of site i. ±K are
the locations of the gapless points (Fig. 3a) so that k is
the momentum displacement from these points. Since
we are only interested in the low energy physics, we will
expand about small k. Note that although c

`i

and bµ
`i

are
Majorana fermions, c

k`↵

and bµ
k`↵

are complex fermions.

(a) Brillouin zone

(b) dispersion

FIG. 3. (a) Before a magnetic field (B) is applied, our model
has two gapless Majorana modes with quartic dispersion
(green curve) at the ±K points (red and blue dots). (Note
that in the Brillouin zone, the three red dots are equivalent
points.) After a B field is applied, the quartic mode splits
into four Majorana cones (blue cones) which are displaced by
momentum |k0|. (b) The dispersion of the Majorana fermions
along one of the arrows in (a). (green) Quartic dispersion
before a magnetic field (B) is applied. (blue) Majorana cone
after a B field is applied. �E ⇠ B and |k0| ⇠ B1/4. The
Majorana cones have a very small mass gap E0 ⇠ B3 [20].
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(Eq. (10)). Please see paragraphs below Eq. (10) for an
explanation.

As a result, the gapless point of the complex fermion
c
k`↵

at k = 0 describes the two gapless points ±K of the
Majorana fermions. [36]

After Fourier transforming, we rotate the phase of the c
and b fermions on the B and A sublattices (respectively)
in order to cancel out factors of i in HMF; i.e. c
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!
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and bµ
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. The mean-field Hamiltonian
then takes the following form (which is depicted in
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

⌥

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
�

loop

u�
ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb
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Since HMF is quadratic and translation invariant, each
momentum component decouples and we so only have to
solve HMF

k

. HMF
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only includes 4 ⇥ (N = 4) ⇥ 2 = 32
(complex) fermion operators, each denoted by a black
dot in Fig. 4: the 4 flavors (c, bx, by, bz) are positioned
along the rows while the N = 4 layers (`) and two
(↵ = A,B) sublattices form the columns. Thus, for a
given momentum k, we can picture HMF
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and g
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the ends of the chain (⇤ and 4) are decoupled and form
zero energy eigenstates. When a small k is introduced, a
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term couples the c fermions across the
dotted pink lines. The c fermion chain then resembles an
SPT chain [37], where the edge modes have a gap that
is exponentially small in the length (2N) of the chain:
E ⇠ kN . Since N = 4, we see that HMF

k

has a quartic
dispersion, which leads to the specific heat in Eq. (1).

A magnetic field B couples the c and b fermions: i.e.
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couples each c fermion to the bµ above it in Fig. 4.
Four examples of B

µ

are shown in Fig. 4 as dotted gray
lines. Although the c fermion chain is an SPT with a very
short correlation length (when k is small), the b fermion
chain is gapped with a correlation length comparable to
the length of the chain (when g
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). Thus, a small
magnetic field perturbation will couple the c fermion edge

modes (⇤ and 4) at second order in perturbation theory
since a fermion at ⇤ will have to hop (vertically in Fig. 4)
across two magnetic field perturbations in order to get to
4. An e↵ective Hamiltonian describing the low energy c
fermion edge modes will thus include a term with energy
coe�cient ⇠ B2. When we back out of the spin chain
picture and think about what happens to the quartic
dispersion, we find that it actually spits into N = 4 Dirac
cones, shifted by momenta |k

0

| ⇠ B1/2 with the velocity
v ⇠ |k

0

|3 ⇠ B3/2 and density of states D(E) ⇠ E/v2 ⇠
B�3E. However, this scaling is not generic; it occurs
because the magnetic field only contributed at second
order in perturbation theory, which resulted because our
model was fine tuned with an accidental symmetry that
is not expected to be present in the material.

To break this accidental symmetry, we need to
introduce an additional term in our Hamiltonian; we
consider H
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and H
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0 (Eq. (5)) as simple examples. These
terms couple the c fermions on the A sublattice to the
bx fermions, and the c fermions on the B sublattice to
the by fermions. A few examples of these couplings are
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. This is important since now the two zero
modes (⇤⌃ and4O) are directly coupled by the magnetic
field B (via the dotted gray lines shown in Fig. 4). Thus,
following the logic of the previous paragraph, the B
field enters at first order in perturbation theory and
introduces a term with energy coe�cient �E ⇠ B to the
e↵ective Hamiltonian describing the low energy modes.
The quartic mode splits into N = 4 Dirac cones shifted
by momenta k
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⇠ B1/4, with velocity v ⇠ B3/4 and
density of states D(E) ⇠ B�3/2E. This is precisely the
scaling seen in the experiment [32].
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For simplicity, we absorbed the mean-field amplitudes
into the coupling constants: K

bb

⌘ Khi bµ
`i

bµ
`j

i, K
cc

⌘
Khi c

`i

c
`j

i, �
cb

⌘ +�hi c
`i

bx
`j

i = ��hi c
`i

by
`j

i for ` = 1, 4,
and �0

cb

⌘ �0hi c
`+1,i

bµ
`j

i = �0hi bµ
`+1,i

c
`j

i for ` = 1, 3. We
are neglecting some anisotropy and layer dependence that
can result from the mean-field amplitudes since these
details will not be important.

Since HMF is quadratic and translation invariant, each
momentum component decouples and we so only have to
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(complex) fermion operators, each denoted by a black
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zero energy eigenstates. When a small k is introduced, a
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term couples the c fermions across the
dotted pink lines. The c fermion chain then resembles an
SPT chain [37], where the edge modes have a gap that
is exponentially small in the length (2N) of the chain:
E ⇠ kN . Since N = 4, we see that HMF
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has a quartic
dispersion, which leads to the specific heat in Eq. (1).
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couples each c fermion to the bµ above it in Fig. 4.
Four examples of B
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chain is gapped with a correlation length comparable to
the length of the chain (when g
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modes (⇤ and 4) at second order in perturbation theory
since a fermion at ⇤ will have to hop (vertically in Fig. 4)
across two magnetic field perturbations in order to get to
4. An e↵ective Hamiltonian describing the low energy c
fermion edge modes will thus include a term with energy
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picture and think about what happens to the quartic
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B�3E. However, this scaling is not generic; it occurs
because the magnetic field only contributed at second
order in perturbation theory, which resulted because our
model was fine tuned with an accidental symmetry that
is not expected to be present in the material.
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modes (⇤⌃ and4O) are directly coupled by the magnetic
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field enters at first order in perturbation theory and
introduces a term with energy coe�cient �E ⇠ B to the
e↵ective Hamiltonian describing the low energy modes.
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4. An e↵ective Hamiltonian describing the low energy c
fermion edge modes will thus include a term with energy
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FIG. 2. Phase diagram of our model H (Eq. (4)). (red)
When g/K is small and B = 0, our model is in the same
phase as four decoupled layers of Kitaev’s QSL honeycomb
model [20], where each layer can be described by two gapless
Majorana cones coupled to a Z2 gauge field [33]. (yellow)
However, a magnetic field (B) opens up a gap ⇠ B3/K2 and
the resulting phase is four copies of a chiral QSL [20, 34].
(green) According to mean-field theory, for intermediate
g/K and B = 0, our model is described by two Majorana
modes with quartic dispersion [31] coupled to a Z2 gauge field.
(green!blue) When a small magnetic field (B) is applied,
each of the two Majorana modes with quartic dispersion split
into four Majorana cones (eight in total) with linear dispersion
(Fig. 3a). However, our model actually predicts a very small
gap (see Fig. 3b) for these Majorana cones [35]. (white) We
do not know what happens in the white region. For example,
there could be a direct transition between the above phases,
or there could be intermediate phases.

If we only consider just the Kitaev’s honeycomb
model H

K

, then this approximation is actually exact
since it reproduces Kitaev’s exact solution [20]. The
approximation is also exact if we consider only the
Heisenberg Hamiltonian H

g

in the sense that it results
in the expected dimerized ground state (of spin singlet
pairs across the Heisenberg bonds) after projecting into
the physical Hilbert space (Eq. (8)). Thus, we expect
this decomposition to be accurate in the colored regions
in our phase diagram (Fig. 2).
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0 we use a di↵erent mean-field decompo-
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i. Since H
�

and H
�

0 are introduced only
to break accidental symmetries of our model, we only
need to choose the simplest decomposition that can break
these symmetries.

After inserting the mean-field decompositions (Eq. ()
and ()), we Fourier transform the Majorana fermions:

✓
c
k`↵

bµ
k`↵

◆
=

X

i2↵

e�i (K+k)·i
✓
c
`i

bµ
`i

◆
(9)

where ↵ (= A,B) is the sublattice of site i. ±K are
the locations of the gapless points (Fig. 3a) so that k is
the momentum displacement from these points. Since
we are only interested in the low energy physics, we will
expand about small k. Note that although c

`i

and bµ
`i

are
Majorana fermions, c

k`↵

and bµ
k`↵

are complex fermions.

(a) Brillouin zone

(b) dispersion

FIG. 3. (a) Before a magnetic field (B) is applied, our model
has two gapless Majorana modes with quartic dispersion
(green curve) at the ±K points (red and blue dots). (Note
that in the Brillouin zone, the three red dots are equivalent
points.) After a B field is applied, the quartic mode splits
into four Majorana cones (blue cones) which are displaced by
momentum |k0|. (b) The dispersion of the Majorana fermions
along one of the arrows in (a). (green) Quartic dispersion
before a magnetic field (B) is applied. (blue) Majorana cone
after a B field is applied. �E ⇠ B and |k0| ⇠ B1/4. The
Majorana cones have a very small mass gap E0 ⇠ B3 [20].
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As a result, the gapless point of the complex fermion
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at k = 0 describes the two gapless points ±K of the
Majorana fermions. [36]

After Fourier transforming, we rotate the phase of the c
and b fermions on the B and A sublattices (respectively)
in order to cancel out factors of i in HMF; i.e. c
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FIG. 2. Phase diagram of our model H (Eq. (4)). (red)
When g/K is small and B = 0, our model is in the same
phase as four decoupled layers of Kitaev’s QSL honeycomb
model [20], where each layer can be described by two gapless
Majorana cones coupled to a Z2 gauge field [33]. (yellow)
However, a magnetic field (B) opens up a gap ⇠ B3/K2 and
the resulting phase is four copies of a chiral QSL [20, 34].
(green) According to mean-field theory, for intermediate
g/K and B = 0, our model is described by two Majorana
modes with quartic dispersion [31] coupled to a Z2 gauge field.
(green!blue) When a small magnetic field (B) is applied,
each of the two Majorana modes with quartic dispersion split
into four Majorana cones (eight in total) with linear dispersion
(Fig. 3a). However, our model actually predicts a very small
gap (see Fig. 3b) for these Majorana cones [35]. (white) We
do not know what happens in the white region. For example,
there could be a direct transition between the above phases,
or there could be intermediate phases.

If we only consider just the Kitaev’s honeycomb
model H

K

, then this approximation is actually exact
since it reproduces Kitaev’s exact solution [20]. The
approximation is also exact if we consider only the
Heisenberg Hamiltonian H

g

in the sense that it results
in the expected dimerized ground state (of spin singlet
pairs across the Heisenberg bonds) after projecting into
the physical Hilbert space (Eq. (8)). Thus, we expect
this decomposition to be accurate in the colored regions
in our phase diagram (Fig. 2).
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where ↵ (= A,B) is the sublattice of site i. ±K are
the locations of the gapless points (Fig. 3a) so that k is
the momentum displacement from these points. Since
we are only interested in the low energy physics, we will
expand about small k. Note that although c
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Majorana fermions, c
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FIG. 3. (a) Before a magnetic field (B) is applied, our model
has two gapless Majorana modes with quartic dispersion
(green curve) at the ±K points (red and blue dots). (Note
that in the Brillouin zone, the three red dots are equivalent
points.) After a B field is applied, the quartic mode splits
into four Majorana cones (blue cones) which are displaced by
momentum |k0|. (b) The dispersion of the Majorana fermions
along one of the arrows in (a). (green) Quartic dispersion
before a magnetic field (B) is applied. (blue) Majorana cone
after a B field is applied. �E ⇠ B and |k0| ⇠ B1/4. The
Majorana cones have a very small mass gap E0 ⇠ B3 [20].
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point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins
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we find that the Hamiltonian (Eq. 1) in this limit is given by:
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with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
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Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get
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This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get
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FIG. 2. Phase diagram of our model H (Eq. (4)). (red)
When g/K is small and B = 0, our model is in the same
phase as four decoupled layers of Kitaev’s QSL honeycomb
model [20], where each layer can be described by two gapless
Majorana cones coupled to a Z2 gauge field [33]. (yellow)
However, a magnetic field (B) opens up a gap ⇠ B3/K2 and
the resulting phase is four copies of a chiral QSL [20, 34].
(green) According to mean-field theory, for intermediate
g/K and B = 0, our model is described by two Majorana
modes with quartic dispersion [31] coupled to a Z2 gauge field.
(green!blue) When a small magnetic field (B) is applied,
each of the two Majorana modes with quartic dispersion split
into four Majorana cones (eight in total) with linear dispersion
(Fig. 3a). However, our model actually predicts a very small
gap (see Fig. 3b) for these Majorana cones [35]. (white) We
do not know what happens in the white region. For example,
there could be a direct transition between the above phases,
or there could be intermediate phases.

If we only consider just the Kitaev’s honeycomb
model H

K

, then this approximation is actually exact
since it reproduces Kitaev’s exact solution [20]. The
approximation is also exact if we consider only the
Heisenberg Hamiltonian H

g

in the sense that it results
in the expected dimerized ground state (of spin singlet
pairs across the Heisenberg bonds) after projecting into
the physical Hilbert space (Eq. (8)). Thus, we expect
this decomposition to be accurate in the colored regions
in our phase diagram (Fig. 2).
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After inserting the mean-field decompositions (Eq. ()
and ()), we Fourier transform the Majorana fermions:
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where ↵ (= A,B) is the sublattice of site i. ±K are
the locations of the gapless points (Fig. 3a) so that k is
the momentum displacement from these points. Since
we are only interested in the low energy physics, we will
expand about small k. Note that although c

`i

and bµ
`i

are
Majorana fermions, c

k`↵

and bµ
k`↵

are complex fermions.

(a) Brillouin zone

(b) dispersion

FIG. 3. (a) Before a magnetic field (B) is applied, our model
has two gapless Majorana modes with quartic dispersion
(green curve) at the ±K points (red and blue dots). (Note
that in the Brillouin zone, the three red dots are equivalent
points.) After a B field is applied, the quartic mode splits
into four Majorana cones (blue cones) which are displaced by
momentum |k0|. (b) The dispersion of the Majorana fermions
along one of the arrows in (a). (green) Quartic dispersion
before a magnetic field (B) is applied. (blue) Majorana cone
after a B field is applied. �E ⇠ B and |k0| ⇠ B1/4. The
Majorana cones have a very small mass gap E0 ⇠ B3 [20].
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As a result, the gapless point of the complex fermion
c
k`↵

at k = 0 describes the two gapless points ±K of the
Majorana fermions. [36]

After Fourier transforming, we rotate the phase of the c
and b fermions on the B and A sublattices (respectively)
in order to cancel out factors of i in HMF; i.e. c
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then takes the following form (which is depicted in
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FIG. 2. Phase diagram of our model H (Eq. (4)). (red)
When g/K is small and B = 0, our model is in the same
phase as four decoupled layers of Kitaev’s QSL honeycomb
model [20], where each layer can be described by two gapless
Majorana cones coupled to a Z2 gauge field [33]. (yellow)
However, a magnetic field (B) opens up a gap ⇠ B3/K2 and
the resulting phase is four copies of a chiral QSL [20, 34].
(green) According to mean-field theory, for intermediate
g/K and B = 0, our model is described by two Majorana
modes with quartic dispersion [31] coupled to a Z2 gauge field.
(green!blue) When a small magnetic field (B) is applied,
each of the two Majorana modes with quartic dispersion split
into four Majorana cones (eight in total) with linear dispersion
(Fig. 3a). However, our model actually predicts a very small
gap (see Fig. 3b) for these Majorana cones [35]. (white) We
do not know what happens in the white region. For example,
there could be a direct transition between the above phases,
or there could be intermediate phases.

If we only consider just the Kitaev’s honeycomb
model H

K

, then this approximation is actually exact
since it reproduces Kitaev’s exact solution [20]. The
approximation is also exact if we consider only the
Heisenberg Hamiltonian H

g

in the sense that it results
in the expected dimerized ground state (of spin singlet
pairs across the Heisenberg bonds) after projecting into
the physical Hilbert space (Eq. (8)). Thus, we expect
this decomposition to be accurate in the colored regions
in our phase diagram (Fig. 2).
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where ↵ (= A,B) is the sublattice of site i. ±K are
the locations of the gapless points (Fig. 3a) so that k is
the momentum displacement from these points. Since
we are only interested in the low energy physics, we will
expand about small k. Note that although c
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and bµ
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are
Majorana fermions, c
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are complex fermions.
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FIG. 3. (a) Before a magnetic field (B) is applied, our model
has two gapless Majorana modes with quartic dispersion
(green curve) at the ±K points (red and blue dots). (Note
that in the Brillouin zone, the three red dots are equivalent
points.) After a B field is applied, the quartic mode splits
into four Majorana cones (blue cones) which are displaced by
momentum |k0|. (b) The dispersion of the Majorana fermions
along one of the arrows in (a). (green) Quartic dispersion
before a magnetic field (B) is applied. (blue) Majorana cone
after a B field is applied. �E ⇠ B and |k0| ⇠ B1/4. The
Majorana cones have a very small mass gap E0 ⇠ B3 [20].
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point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins
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i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:
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The infinite number of conserved quantities are given by
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with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
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over the 10 site loop (see fig. 1) are given by6
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Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get
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formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k

0

of the Majorana cones scales as k
0

⇠ B1/4 since the
energy shift is �E ⇠ k4

0

⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
0

⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]

D(E) ⇠ E/v2 ⇠ B�3/2E (3)

which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
consider consists of an ABCA-type stacking of N = 4
honeycomb lattices. Each honeycomb layer hosts a
Kitaev honeycomb model [20] described by H

K

, and the
layers are coupled together by a Heisenberg interaction
(H

g

) (Fig. 1). We will also consider additional in-plane
(H

�

) and interlayer (H
�

0) interactions.
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The summations
P

hi,ji2µ

,
P

BA

hi,ji, and
P···

hhi,jii sum over
the pairs of lattice sites indicated in Fig. 1. We will also
couple the model to a magnetic field B

µ

H
B

= �
X

`,i,µ

B
µ

�µ

`,i

(6)

See Fig. 2 for a mean-field phase diagram for this model.
Notice that H

�

is a next-nearest neighbor, bond and
sublattice dependent, intralayer, Ising coupling. For our
purpose, it will be su�cient to consider this interaction
on the boundary layers, but it could also be present in

(a)

(b)

FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by

P
hi,ji2µ

. The black links denote interlayer Heisenberg

couplings in H
g

and are summed by
PBĀ

hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H

�

and H
�

0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.

every layer. H
�

0 is similar, except it is an interlayer
coupling. Without H

�

or H
�

0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H

�

or H
�

0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B

max

. max(�,�0).
Mean-Field Theory - We now study our model using

mean-field theory. We follow Kitaev and decompose the
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k

0

of the Majorana cones scales as k
0

⇠ B1/4 since the
energy shift is �E ⇠ k4

0

⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
0

⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]

D(E) ⇠ E/v2 ⇠ B�3/2E (3)

which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
consider consists of an ABCA-type stacking of N = 4
honeycomb lattices. Each honeycomb layer hosts a
Kitaev honeycomb model [20] described by H

K

, and the
layers are coupled together by a Heisenberg interaction
(H

g

) (Fig. 1). We will also consider additional in-plane
(H
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) and interlayer (H
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0) interactions.
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See Fig. 2 for a mean-field phase diagram for this model.
Notice that H

�

is a next-nearest neighbor, bond and
sublattice dependent, intralayer, Ising coupling. For our
purpose, it will be su�cient to consider this interaction
on the boundary layers, but it could also be present in
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FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by

P
hi,ji2µ

. The black links denote interlayer Heisenberg

couplings in H
g

and are summed by
PBĀ

hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H
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and H
�

0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.
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0 is similar, except it is an interlayer
coupling. Without H
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0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H
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or H
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0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B
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. max(�,�0).
Mean-Field Theory - We now study our model using
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k

0

of the Majorana cones scales as k
0

⇠ B1/4 since the
energy shift is �E ⇠ k4

0

⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
0

⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]

D(E) ⇠ E/v2 ⇠ B�3/2E (3)

which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
consider consists of an ABCA-type stacking of N = 4
honeycomb lattices. Each honeycomb layer hosts a
Kitaev honeycomb model [20] described by H

K

, and the
layers are coupled together by a Heisenberg interaction
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) (Fig. 1). We will also consider additional in-plane
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) and interlayer (H
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0) interactions.
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Notice that H

�

is a next-nearest neighbor, bond and
sublattice dependent, intralayer, Ising coupling. For our
purpose, it will be su�cient to consider this interaction
on the boundary layers, but it could also be present in
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FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by

P
hi,ji2µ

. The black links denote interlayer Heisenberg

couplings in H
g

and are summed by
PBĀ

hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H

�

and H
�

0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.

every layer. H
�

0 is similar, except it is an interlayer
coupling. Without H
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or H
�

0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H

�

or H
�

0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B

max

. max(�,�0).
Mean-Field Theory - We now study our model using

mean-field theory. We follow Kitaev and decompose the
spins into four Majorana fermions [20]:
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When we decompose the spins using Eq. (7), all of the
terms in our Hamiltonian (Eq. (4)) will be products of
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k

0

of the Majorana cones scales as k
0

⇠ B1/4 since the
energy shift is �E ⇠ k4

0

⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
0

⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]

D(E) ⇠ E/v2 ⇠ B�3/2E (3)

which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
consider consists of an ABCA-type stacking of N = 4
honeycomb lattices. Each honeycomb layer hosts a
Kitaev honeycomb model [20] described by H

K

, and the
layers are coupled together by a Heisenberg interaction
(H

g

) (Fig. 1). We will also consider additional in-plane
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) and interlayer (H
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0) interactions.
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See Fig. 2 for a mean-field phase diagram for this model.
Notice that H
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is a next-nearest neighbor, bond and
sublattice dependent, intralayer, Ising coupling. For our
purpose, it will be su�cient to consider this interaction
on the boundary layers, but it could also be present in
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FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by

P
hi,ji2µ

. The black links denote interlayer Heisenberg

couplings in H
g

and are summed by
PBĀ

hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H

�

and H
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0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.

every layer. H
�

0 is similar, except it is an interlayer
coupling. Without H
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or H
�

0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H

�

or H
�

0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B

max

. max(�,�0).
Mean-Field Theory - We now study our model using

mean-field theory. We follow Kitaev and decompose the
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k

0

of the Majorana cones scales as k
0

⇠ B1/4 since the
energy shift is �E ⇠ k4

0

⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
0

⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]

D(E) ⇠ E/v2 ⇠ B�3/2E (3)

which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
consider consists of an ABCA-type stacking of N = 4
honeycomb lattices. Each honeycomb layer hosts a
Kitaev honeycomb model [20] described by H

K

, and the
layers are coupled together by a Heisenberg interaction
(H

g

) (Fig. 1). We will also consider additional in-plane
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) and interlayer (H
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0) interactions.
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FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by
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. The black links denote interlayer Heisenberg

couplings in H
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and are summed by
PBĀ

hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H

�

and H
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0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.

every layer. H
�

0 is similar, except it is an interlayer
coupling. Without H
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or H
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0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H
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or H
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0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B
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. max(�,�0).
Mean-Field Theory - We now study our model using

mean-field theory. We follow Kitaev and decompose the
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later, these soft modes are mostly localized in the top
and bottom layers and hence represent two dimensional
states. The density of states due to this four-layer
“defect” stacking pattern is given by D(E) ⇠ E�1/2,
which explains the spin relaxation rate and specific
heat (before magnetic fields are applied) in Eq. (1). In
the presence of a magnetic field, each quartic mode
is split into four Majorana cones in our model. The
momentum shift (from the quartic touching point) k

0

of the Majorana cones scales as k
0

⇠ B1/4 since the
energy shift is �E ⇠ k4

0

⇠ B with the Zeeman coupling.
Therefore the velocity of the Majorana fermions is v ⇠
k3
0

⇠ B3/4, and the Majorana cones (in two spatial
dimensions) have a density of states [32]

D(E) ⇠ E/v2 ⇠ B�3/2E (3)

which produces the scaling in Eq. (2). With only a
small number of ABCA-type stacking between di↵erent
stacking patterns, the magnetic entropy due to these
“defect” layers contributes only a small fraction of the
total entropy, as seen in the experiment.

Model - The Hamiltonian H (Eq. (4)) that we
consider consists of an ABCA-type stacking of N = 4
honeycomb lattices. Each honeycomb layer hosts a
Kitaev honeycomb model [20] described by H

K

, and the
layers are coupled together by a Heisenberg interaction
(H

g

) (Fig. 1). We will also consider additional in-plane
(H

�

) and interlayer (H
�

0) interactions.
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The summations
P

hi,ji2µ

,
P

AB

hi,ji, and
P···

hhi,jii sum over
the pairs of lattice sites indicated in Fig. 1. We will also
couple the model to a magnetic field B

µ

H
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B
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`,i

(6)

See Fig. 2 for a mean-field phase diagram for this model.
Notice that H

�

is a next-nearest neighbor, bond and
sublattice dependent, intralayer, Ising coupling. For our
purpose, it will be su�cient to consider this interaction
on the boundary layers, but it could also be present in

(a)

(b)

FIG. 1. (a) Two of the four layers in our model (Eq. (4)).
Red and blue vertices denote the A and B sublattices,
respectively. The red, green, and blue links correspond to
�x�x, �y�y, �z�z couplings, respectively. The solid colored
links denote Kitaev couplings in H

K

and are summed over
by

P
hi,ji2µ

. The black links denote interlayer Heisenberg

couplings in H
g

and are summed by
PAB̄

hi,ji. The dotted
red and green links denote the �x�x and �y�y couplings,
respectively, in H

�

and H
�

0 . Note that the dotted couplings
are highly anisotropic; all of the dotted couplings for a given
unit cell have been drawn. (A unit cell has two sites per layer.
For drawing clarity, the � and �0 couplings shown above don’t
all belong to the same unit cell.) (b) A hexagon from each
of the four layers (` = 1, 2, 3, 4) when viewed directly from
above, which demonstrates what is meant by ABCA stacking.

every layer. H
�

0 is similar, except it is an interlayer
coupling. Without H

�

or H
�

0 , our model would have
an accidental symmetry which is not expected to be
present in the material and would result in a non-
generic magnetic field dependence of the density of states
(Eq. (3)). H

�

or H
�

0 are just two possible examples of
how this symmetry can be broken (in Appendix A we
consider more general possibilities); and either alone is
su�cient. The underlying lattice distortion may render
the magnitude of their coupling constants (�, �0) as
large as the nearest neighbor coupling g. On the other
hand, Eq. (3) will only hold for su�ciently small magnetic
fields: B . B

max

. max(�,�0).
Mean-Field Theory - We now study our model using

mean-field theory. We follow Kitaev and decompose the
spins into four Majorana fermions [20]:
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space constraint:

bx
`i

by
`i

bz
`i

c
`i

| i = | i (8)

When we decompose the spins using Eq. (7), all of the
terms in our Hamiltonian (Eq. (4)) will be products of
four Majorana fermions. In order to make analytical
progress, we will apply a mean-field theory in order to
produce a solvable quadratic Hamiltonian. For H
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FIG. 2. Phase diagram of our model H (Eq. (4)). (red)
When g/K is small and B = 0, our model is in the same
phase as four decoupled layers of Kitaev’s QSL honeycomb
model [20], where each layer can be described by two gapless
Majorana cones coupled to a Z2 gauge field [33]. (yellow)
However, a magnetic field (B) opens up a gap ⇠ B3/K2 and
the resulting phase is four copies of a chiral QSL [20, 34].
(green) According to mean-field theory, for intermediate
g/K and B = 0, our model is described by two Majorana
modes with quartic dispersion [31] coupled to a Z2 gauge field.
(green!blue) When a small magnetic field (B) is applied,
each of the two Majorana modes with quartic dispersion split
into four Majorana cones (eight in total) with linear dispersion
(Fig. 3a). However, our model actually predicts a very small
gap (see Fig. 3b) for these Majorana cones [35]. (white) We
do not know what happens in the white region. For example,
there could be a direct transition between the above phases,
or there could be intermediate phases.

If we only consider just the Kitaev’s honeycomb
model H

K

, then this approximation is actually exact
since it reproduces Kitaev’s exact solution [20]. The
approximation is also exact if we consider only the
Heisenberg Hamiltonian H

g

in the sense that it results
in the expected dimerized ground state (of spin singlet
pairs across the Heisenberg bonds) after projecting into
the physical Hilbert space (Eq. (8)). Thus, we expect
this decomposition to be accurate in the colored regions
in our phase diagram (Fig. 2).
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and H
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0 are introduced only
to break accidental symmetries of our model, we only
need to choose the simplest decomposition that can break
these symmetries.

After inserting the mean-field decompositions (Eq. ()
and ()), we Fourier transform the Majorana fermions:
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where ↵ (= A,B) is the sublattice of site i. ±K are
the locations of the gapless points (Fig. 3a) so that k is
the momentum displacement from these points. Since
we are only interested in the low energy physics, we will
expand about small k. Note that although c

`i

and bµ
`i

are
Majorana fermions, c

k`↵

and bµ
k`↵

are complex fermions.

(a) Brillouin zone

(b) dispersion

FIG. 3. (a) Before a magnetic field (B) is applied, our model
has two gapless Majorana modes with quartic dispersion
(green curve) at the ±K points (red and blue dots). (Note
that in the Brillouin zone, the three red dots are equivalent
points.) After a B field is applied, the quartic mode splits
into four Majorana cones (blue cones) which are displaced by
momentum |k0|. (b) The dispersion of the Majorana fermions
along one of the arrows in (a). (green) Quartic dispersion
before a magnetic field (B) is applied. (blue) Majorana cone
after a B field is applied. �E ⇠ B and |k0| ⇠ B1/4. The
Majorana cones have a very small mass gap E0 ⇠ B3 [20].
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FIG. 4. A picture of our mean-field Hamiltonian HMF
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(Eq. (10)). Please see paragraphs below Eq. (10) for an
explanation.

As a result, the gapless point of the complex fermion
c
k`↵

at k = 0 describes the two gapless points ±K of the
Majorana fermions. [36]

After Fourier transforming, we rotate the phase of the c
and b fermions on the B and A sublattices (respectively)
in order to cancel out factors of i in HMF; i.e. c

k`B

!
ic
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and bµ
k`A

! �ibµ
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. The mean-field Hamiltonian
then takes the following form (which is depicted in
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:
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where we have put the overall scale K = 1. The {bxi , b
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are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6
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Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get
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This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get
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FIG. 2. Phase diagram of our model H (Eq. (4)). (red)
When g/K is small and B = 0, our model is in the same
phase as four decoupled layers of Kitaev’s QSL honeycomb
model [20], where each layer can be described by two gapless
Majorana cones coupled to a Z2 gauge field [33]. (yellow)
However, a magnetic field (B) opens up a gap ⇠ B3/K2 and
the resulting phase is four copies of a chiral QSL [20, 34].
(green) According to mean-field theory, for intermediate
g/K and B = 0, our model is described by two Majorana
modes with quartic dispersion [31] coupled to a Z2 gauge field.
(green!blue) When a small magnetic field (B) is applied,
each of the two Majorana modes with quartic dispersion split
into four Majorana cones (eight in total) with linear dispersion
(Fig. 3a). However, our model actually predicts a very small
gap (see Fig. 3b) for these Majorana cones [35]. (white) We
do not know what happens in the white region. For example,
there could be a direct transition between the above phases,
or there could be intermediate phases.

If we only consider just the Kitaev’s honeycomb
model H

K

, then this approximation is actually exact
since it reproduces Kitaev’s exact solution [20]. The
approximation is also exact if we consider only the
Heisenberg Hamiltonian H

g

in the sense that it results
in the expected dimerized ground state (of spin singlet
pairs across the Heisenberg bonds) after projecting into
the physical Hilbert space (Eq. (8)). Thus, we expect
this decomposition to be accurate in the colored regions
in our phase diagram (Fig. 2).

ForH
�

andH
�

0 we use a di↵erent mean-field decompo-

sition: �µ

`i

�µ

`

0
j

MF⇡ +hi bµ
`i

c
`

0
j

ii c
`i

bµ
`

0
j

+ hi c
`i

bµ
`

0
j

ii bµ
`i

c
`

0
j

�
hi bµ

`i

c
`

0
j

ihi c
`i

bµ
`

0
j

i. Since H
�

and H
�

0 are introduced only
to break accidental symmetries of our model, we only
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After inserting the mean-field decompositions (Eq. ()
and ()), we Fourier transform the Majorana fermions:
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where ↵ (= A,B) is the sublattice of site i. ±K are
the locations of the gapless points (Fig. 3a) so that k is
the momentum displacement from these points. Since
we are only interested in the low energy physics, we will
expand about small k. Note that although c

`i

and bµ
`i

are
Majorana fermions, c
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and bµ
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are complex fermions.
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FIG. 3. (a) Before a magnetic field (B) is applied, our model
has two gapless Majorana modes with quartic dispersion
(green curve) at the ±K points (red and blue dots). (Note
that in the Brillouin zone, the three red dots are equivalent
points.) After a B field is applied, the quartic mode splits
into four Majorana cones (blue cones) which are displaced by
momentum |k0|. (b) The dispersion of the Majorana fermions
along one of the arrows in (a). (green) Quartic dispersion
before a magnetic field (B) is applied. (blue) Majorana cone
after a B field is applied. �E ⇠ B and |k0| ⇠ B1/4. The
Majorana cones have a very small mass gap E0 ⇠ B3 [20].
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(Eq. (10)). Please see paragraphs below Eq. (10) for an
explanation.

As a result, the gapless point of the complex fermion
c
k`↵

at k = 0 describes the two gapless points ±K of the
Majorana fermions. [36]

After Fourier transforming, we rotate the phase of the c
and b fermions on the B and A sublattices (respectively)
in order to cancel out factors of i in HMF; i.e. c
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FIG. 2. Phase diagram of our model H (Eq. (4)). (red)
When g/K is small and B = 0, our model is in the same
phase as four decoupled layers of Kitaev’s QSL honeycomb
model [20], where each layer can be described by two gapless
Majorana cones coupled to a Z2 gauge field [33]. (yellow)
However, a magnetic field (B) opens up a gap ⇠ B3/K2 and
the resulting phase is four copies of a chiral QSL [20, 34].
(green) According to mean-field theory, for intermediate
g/K and B = 0, our model is described by two Majorana
modes with quartic dispersion [31] coupled to a Z2 gauge field.
(green!blue) When a small magnetic field (B) is applied,
each of the two Majorana modes with quartic dispersion split
into four Majorana cones (eight in total) with linear dispersion
(Fig. 3a). However, our model actually predicts a very small
gap (see Fig. 3b) for these Majorana cones [35]. (white) We
do not know what happens in the white region. For example,
there could be a direct transition between the above phases,
or there could be intermediate phases.

If we only consider just the Kitaev’s honeycomb
model H

K

, then this approximation is actually exact
since it reproduces Kitaev’s exact solution [20]. The
approximation is also exact if we consider only the
Heisenberg Hamiltonian H

g

in the sense that it results
in the expected dimerized ground state (of spin singlet
pairs across the Heisenberg bonds) after projecting into
the physical Hilbert space (Eq. (8)). Thus, we expect
this decomposition to be accurate in the colored regions
in our phase diagram (Fig. 2).
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where ↵ (= A,B) is the sublattice of site i. ±K are
the locations of the gapless points (Fig. 3a) so that k is
the momentum displacement from these points. Since
we are only interested in the low energy physics, we will
expand about small k. Note that although c
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Majorana fermions, c
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FIG. 3. (a) Before a magnetic field (B) is applied, our model
has two gapless Majorana modes with quartic dispersion
(green curve) at the ±K points (red and blue dots). (Note
that in the Brillouin zone, the three red dots are equivalent
points.) After a B field is applied, the quartic mode splits
into four Majorana cones (blue cones) which are displaced by
momentum |k0|. (b) The dispersion of the Majorana fermions
along one of the arrows in (a). (green) Quartic dispersion
before a magnetic field (B) is applied. (blue) Majorana cone
after a B field is applied. �E ⇠ B and |k0| ⇠ B1/4. The
Majorana cones have a very small mass gap E0 ⇠ B3 [20].
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ABCA would be a small fraction of possible stacking patterns

Why four layers ?

This spin liquid state would make up a small fraction of the 
total magnetic entropy

ABCAC
ABCACB E ⇠ k4

E ⇠ kE ⇠ k4

E ⇠ k2

Other choices are possible

But the coherence should be maintained at least 
for four layers
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This is consistent with

1) The singular entropy is only about 5% percent 
of the total magnetic entropy

2) The singular part of the magnetic entropy is related to  
the bulk susceptibility via

(@S/@B)T = (@M/@T )B

3) The Knight shift is not 
dominated by this “spin” 
contribution (spin-orbit) 

[Knight shift insensitive to 
the “impurity” contribution]
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Figure 1 | Structure and bulk properties of 2D layered ↵-RuCl3. a–c, The structure of ↵-RuCl3 (space group no. 151, P3112). a, In-plane honeycomb structure
showing edge-sharing RuCl6 octahedra and the unit cell of the honeycomb lattice. b, View along the c axis showing the stacking of honeycomb layers in the
unit cell, with Ru atoms in each layer denoted by the colours red, blue or green. The di�erent intralayer Ru–Ru bonds, corresponding to the index ‘m’ in
equation (1), are labelled in the red layer as ↵, � , or � , each with distance a/

p
3. The 2D zigzag magnetic structure is illustrated by the black spins on the

red layer. c, Side view of the unit cell showing the o�sets along the c axis. Values noted are for room-temperature lattice constants. d, Specific heat of
powder ↵-RuCl3. The solid red line is a fit of the data following the 2D Debye model Cp(T)=ANk(T/✓D)2 R ✓D/T

0 (x2/ex � 1)dx for T > 16 K, and for T < 16 K an
empirical function describing the anomaly associated with magnetic order. The inset in d shows a close-up of the anomaly associated with the
low-temperature magnetic ordering transition at TN ⇡ 14 K in powder samples. (See Supplementary Fig. 1 for more details of thermodynamic
measurements.) The error bars include statistical and systematic uncertainties of the physical property measurement system (PPMS) measurement.
e, Order parameter plot of the (1/2 0 3/2) magnetic Bragg peak (Q=0.81 Å�1) in powder samples measured using neutron di�raction (see Methods). The
solid blue line is a power-law fit to the data above 9 K, yielding TN = 14.6(3) K, with � =0.37(3). f, Similar plot for single crystals showing two coexisting
ordering wavevectors (1/2 0 1), with TN1 =7.6(2) K (green), and (1/2 0 3/2), with TN2 = 14.2(8) K (blue). Note that the (1/2 0 1) peak loses intensity
sharply, as compared to the (1/2 0 3/2) peak. Inset: picture of the single crystal (22.5 mg) used in these measurements. Signals in e,f, are normalized to
counts s�1 and the error bars represent 1 s.d. (� ), assuming Poisson counting statistics.

The focus so far has centred largely on Ir4+ compounds13–19;
however, attempts to measure the dynamical response15 by means
of inelastic neutron scattering (INS) have met with limited success,
owing to the unfavourable magnetic form factor and strong
absorption cross-section of the Ir ions. Resonant inelastic X-ray
scattering (RIXS) has provided important information concerning
higher-energy excitations in the iridates18, but cannot provide the
meV energy resolution necessary to provide a robust experimental
signature of collective fractional excitations that are expected to
occur at energy scales of the order of 1–10meV (ref. 15).

An alternative approach is to explore materials with Ru3+

ions20. The realization that the material ↵-RuCl3 (refs 20–22)
also has the requisite honeycomb lattice and strong spin–orbit
coupling has stimulated a groundswell of recent investigations23–29.
Although these studies lend support to the material as a potential
Kitaev material, conflicting results centring on the low-temperature
magnetic properties have hindered progress. To resolve this, we
undertake a comprehensive evaluation of the magnetic and spin–
orbit properties of ↵-RuCl3, and further measure the dynamical
response, establishing this material as proximate to the widely
sought QSL.

We begin by investigating the crystal and magnetic structure of
↵-RuCl3. Samples were synthesized and characterized as described
in Methods. The layered structure of the material is shown in
Fig. 1a. Figure 1b,c shows the ABCABC stacking arrangement of
the layers expected in the trigonal structure (space group P3112).
That the layers are weakly bonded to each other, similar to graphite,

is demonstrated by the lattice specific heat (shown for a powder
in Fig. 1d). This exhibits a tell-tale T2 behaviour characteristic of
highly 2D bonded systems30, rather than the usual T3 observed in
conventional 3D solids. Because the 2D layers are weakly coupled,
the interlayer magnetic exchanges will also be rather weak. In
addition, stacking faults are formed easily and significant regions
of the sample can crystallize in alternative stacking structures, for
example ABAB (ref. 25) (see Supplementary Fig. 2).

Neutron di�raction (see Methods) shows low-temperature
magnetic order. The temperature dependence of the strongest
magnetic powder peak, with TN ⇡ 14K, is shown in Fig. 1e.
Figure 1f shows the temperature dependence of magnetic peaks in
one 22.5mg single crystal, revealing two ordered phases. The first,
which orders below TN ⇡ 14K, is characterized by a wavevector
q1 = (1/2 0 3/2) (indexed according to the trigonal structure),
whereas the other phase (q2 = (1/2 0 1)) orders below 8K
(see also Supplementary Fig. 3). These temperatures correspond
precisely to anomalies observed in the specific heat and magnetic
susceptibility25,26,29 (Supplementary Fig. 1). This is readily explained,
as the observed L= 3/2 phase corresponds naturally to a stacking
order of ABAB type along the c-axis, and the L= 1 corresponds
to ABCABC stacking. Indeed, the di�erence in 3D transitions
is a residual e�ect of di�erent interlayer bonding influencing
the ordering. Further, a comparison of intensities at (1/2 0 L)
with (3/2 0 L)16 shows both phases share identical zigzag (ZZ)
spin ordering in the honeycomb layers; a phase of the H–K
model adjacent to the spin liquid11 (see Supplementary Table 1).
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FIG. 1. (Color Online) (a) The in-plane structure of layered
compound ↵-RuCl3 viewed perpendicular to the layers along
the c

⇤ axis showing the positions of the Ru3+ ions (red) and
Cl� ions (blue) in C2/m space group symmetry. Two types of
Ru3+�Ru3+ distances are highlighted with blue (3.454(1)Å)
and green (3.449(2) Å) lines (b) ABC-stacking: the out-of-
plane structure viewed along the b axis, showing the layered
structure as well as the octahedra tilted along c. Every layer
is translated by a/3, such that every fourth layer falls on top
of the first layer when viewed along c

⇤ (dotted line). The blue
dashed line along the c-axis indicates the perfect stacking for
this ABC-stacking. Details of the monoclinic structure are in
the text as well as in Table 1. (c) ABAB-stacking viewed in
the same orientation as that in (b), with the top two layers
twinned 120o with respect to the bottom two layers. The
neighboring layer is translated back and forth by a/3, guided
by the dotted grey line (details in text). The blue dashed
line along the c-axis indicates the ABAB stacking is faulty
stacking (orange dashed line showing the layer at which the
fault occurs). (d) [0KL] cut of the reciprocal space measured
by single crystal x-ray di↵raction at 60 K. (e) the observed
squared structure factors versus the calculated ones from the
single crystal x-ray data refinement.
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FIG. 2. (Color Online) (a) The heat capacity of an as-
grown single crystal of ↵-RuCl3 from 2-20 K shows the low-
temperature region exhibiting one sharp Néel transition at
T

N1 = 7 K. As determined by the neutron di↵raction reported
here the in-plane magnetic order is zig-zag with out of plane
order corresponding to ABC stacking of the layers. The inset
shows the data in the large temperature range of 2-200 K.
The data excluding 5-10 K transition region can be fit to a
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=209(2) K, similar to powder [21]. (b) The thermal evolu-
tion of the intensity of the magnetic peak (0, 1, 1/3)(trigonal
(1/2, 0, 1)

T

) as measured at HB-3A shows a rapid fall-o↵ near
T

N1 =7 K. A crystal from the same batch as shown in (c)-
inset with similar dimensions was used for the single crystal
neutron di↵raction at HB-3A. (c)The heat capacity data on
the same single crystal when subject to artificial deformation.
The violet curve-1 represents the marginally deformed crystal
and shows a rather suppressed anomaly at T

N1 as compared
to an as-grown crystal. When this crystal is manually de-
formed, the green curve-2 is obtained. Additional transitions,
most prominently at T

N2 =14 K, appear, while the anomaly
at the T

N1 transition loses strength. When deformed fur-
ther, the anomaly at T

N1 completely vanishes leaving behind
a broad anomaly T

N2 as the only strong feature (brown curve-
3). The heat-capacity of the deformed crystal resembles that
of powder ↵-RuCl3 (blue curve-4). The inset is a picture of
the as-grown crystal against a grid of 1 mm2.

+ 2 (n = integer) locations. At these locations di↵use
scattering rods along L are characteristic of occasional
±b/3 shifts in the ab-plane, and have been referred to
by Johnson et al. as stacking faults of type “a” [20].
In fact, at room temperature, and also at 250 K, our
di↵raction pattern was free from any observable di↵use
scattering. Upon cooling to 100 K, the pattern shows a
faint di↵use scattering present along the L-direction in
the reflections (H,K,L) with K = 3n. The appearance
of these new di↵use scattering rods at low temperature
is qualitatively similar to the observations of type “b”
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FIG. 5. (Color online) (a) Schematic figure representing the zigzag
magnetic order in the Ru honeycomb plane. Note that, the moments
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the results are obtained from interpolation between the three struc-
tures, marked as empty symbols.

P3112 C2/m P 3̄1m P 3̄1c Cmc21
Lattce constants
a/a0 0.984 0.981 0.986 0.985 0.984
b/a0 0.984 0.986 0.986 0.985 0.983
c/c0 1.014 1.013 1.005 1.007 1.014

�E / f.u.
(in meV) 1.4 1.4 0.0 2.8 2.5

DOS at Ef

(in states / eV / f.u.) 9.2 7.9 6.0 10.8 8.5

TABLE II. Optimized lattice constants, relative total energies (�E)
per formula unit (f.u.), and densities of states (DOS) at the Fermi
level for five stacking unit cells. Values are obtained using PBEsol
functional and including SOC, but without electron interactions.

to experimentally reported lattice constants a0 = 5.96Å and
c0 = 17.2Å and their relative total energies. Note that, struc-
tures without threefold symmetry — monoclinic C2/m and
orthorhombic Cmc21 — shows slightly different a/a0 and
b/b0. Among the five different structures, the P 3̄1m structure
yields the lowest energy. The P3112 and C2/m structures
are closer in energy by 1.4 meV / f.u., and for the other phases

P3112 C2/m P 3̄1m P 3̄1c Cmc21
Lattice constants
a/a0 1.011 1.011 1.010 1.011 1.010
b/b0 1.006 1.006 1.006 1.006 1.006
c/c0 1.041 1.043 1.067 1.039 1.056

�E / f.u. (meV)
cFM 0.4 0.1 3.7 0.8 0.0
cAF 0.4 0.2 4.1 0.9 0.4

TABLE III. Optimized lattice constants for five stacking unit cells
with using PBEsol functional and including SOC, Ue↵ and mag-
netism. a, b, and c are the optimized monoclinic lattice constants
(shown in Fig. 1) with a0, b0, and c0 being their experimentally
observed values, respectively3.

energy differences are less than 3 meV / f.u. compared to the
the P 3̄1m structure. The lowest energy of the P 3̄1m struc-
ture can be attributed to the lager kinetic energy gain originat-
ing from the larger band dispersion along the c-direction com-
pared to other structures. This is reflected in the lower DOS
of the P 3̄1m cell at the Fermi level compared to other struc-
tures, as shown in Table II and Fig. 7. Fig. 7 presents total
DOS for the five structures in the presence of SOC. Compared
to the single-layer result depicted as grey shade in the figure,
layer stacking yields pronounced peaks near the Fermi level
except the P 3̄1m structure in the results without SOC (not
shown) due to the presence of flat bands along the c-direction
at the Fermi level. Inclusion of SOC smoothes the peaks, but
the gross feature remains the same as shown in Fig. 7, so
resulting in higher DOS at the Fermi level except the P 3̄1m
structure as shown in Table II. Note that, Stoner-type ferro-
magnetic (FM) instability is also observed, but in this study
we concentrate on the experimentally observed zigzag mag-
netic order as discussed in the next section.

V. STACKING WITH ZIGZAG MAGNETIC ORDER

Now we present the stacking results that include the on-
site Coulomb interaction and magnetism. Fig. 8 shows 10
trial structural and magnetic configurations, where the direc-
tion of magnetic moments in each layer is the same with the
single-layer result in Sec. III. Fixing the in-plane zigzag or-
der, we chose two interlayer magnetic configurations that we
denote as cFM and cAF hereafter. As shown in Fig. 8, in
the cFM configuration the zigzag-ordered layers are stacked
along the c-direction so that the FM zigzag chains in adjacent
layers become closer in distance, while in the cAF configura-
tion the moments on one Ru layer are flipped. Note that, there
can be additional magnetic stacking orders due to the three-
fold rotational degree of freedom for each single-layer zigzag
order, — three different direction for FM zigzag chains —
and in this work we chose the simplest configuration com-
mensurate to the monoclinic unit cell (shown in Fig. 2(a))
for each structure. Structural optimizations were done first
by varying c-axis with fixing a-lattice constants determined in
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Figure 1 | Structure and bulk properties of 2D layered ↵-RuCl3. a–c, The structure of ↵-RuCl3 (space group no. 151, P3112). a, In-plane honeycomb structure
showing edge-sharing RuCl6 octahedra and the unit cell of the honeycomb lattice. b, View along the c axis showing the stacking of honeycomb layers in the
unit cell, with Ru atoms in each layer denoted by the colours red, blue or green. The di�erent intralayer Ru–Ru bonds, corresponding to the index ‘m’ in
equation (1), are labelled in the red layer as ↵, � , or � , each with distance a/

p
3. The 2D zigzag magnetic structure is illustrated by the black spins on the

red layer. c, Side view of the unit cell showing the o�sets along the c axis. Values noted are for room-temperature lattice constants. d, Specific heat of
powder ↵-RuCl3. The solid red line is a fit of the data following the 2D Debye model Cp(T)=ANk(T/✓D)2 R ✓D/T

0 (x2/ex � 1)dx for T > 16 K, and for T < 16 K an
empirical function describing the anomaly associated with magnetic order. The inset in d shows a close-up of the anomaly associated with the
low-temperature magnetic ordering transition at TN ⇡ 14 K in powder samples. (See Supplementary Fig. 1 for more details of thermodynamic
measurements.) The error bars include statistical and systematic uncertainties of the physical property measurement system (PPMS) measurement.
e, Order parameter plot of the (1/2 0 3/2) magnetic Bragg peak (Q=0.81 Å�1) in powder samples measured using neutron di�raction (see Methods). The
solid blue line is a power-law fit to the data above 9 K, yielding TN = 14.6(3) K, with � =0.37(3). f, Similar plot for single crystals showing two coexisting
ordering wavevectors (1/2 0 1), with TN1 =7.6(2) K (green), and (1/2 0 3/2), with TN2 = 14.2(8) K (blue). Note that the (1/2 0 1) peak loses intensity
sharply, as compared to the (1/2 0 3/2) peak. Inset: picture of the single crystal (22.5 mg) used in these measurements. Signals in e,f, are normalized to
counts s�1 and the error bars represent 1 s.d. (� ), assuming Poisson counting statistics.

The focus so far has centred largely on Ir4+ compounds13–19;
however, attempts to measure the dynamical response15 by means
of inelastic neutron scattering (INS) have met with limited success,
owing to the unfavourable magnetic form factor and strong
absorption cross-section of the Ir ions. Resonant inelastic X-ray
scattering (RIXS) has provided important information concerning
higher-energy excitations in the iridates18, but cannot provide the
meV energy resolution necessary to provide a robust experimental
signature of collective fractional excitations that are expected to
occur at energy scales of the order of 1–10meV (ref. 15).

An alternative approach is to explore materials with Ru3+

ions20. The realization that the material ↵-RuCl3 (refs 20–22)
also has the requisite honeycomb lattice and strong spin–orbit
coupling has stimulated a groundswell of recent investigations23–29.
Although these studies lend support to the material as a potential
Kitaev material, conflicting results centring on the low-temperature
magnetic properties have hindered progress. To resolve this, we
undertake a comprehensive evaluation of the magnetic and spin–
orbit properties of ↵-RuCl3, and further measure the dynamical
response, establishing this material as proximate to the widely
sought QSL.

We begin by investigating the crystal and magnetic structure of
↵-RuCl3. Samples were synthesized and characterized as described
in Methods. The layered structure of the material is shown in
Fig. 1a. Figure 1b,c shows the ABCABC stacking arrangement of
the layers expected in the trigonal structure (space group P3112).
That the layers are weakly bonded to each other, similar to graphite,

is demonstrated by the lattice specific heat (shown for a powder
in Fig. 1d). This exhibits a tell-tale T2 behaviour characteristic of
highly 2D bonded systems30, rather than the usual T3 observed in
conventional 3D solids. Because the 2D layers are weakly coupled,
the interlayer magnetic exchanges will also be rather weak. In
addition, stacking faults are formed easily and significant regions
of the sample can crystallize in alternative stacking structures, for
example ABAB (ref. 25) (see Supplementary Fig. 2).

Neutron di�raction (see Methods) shows low-temperature
magnetic order. The temperature dependence of the strongest
magnetic powder peak, with TN ⇡ 14K, is shown in Fig. 1e.
Figure 1f shows the temperature dependence of magnetic peaks in
one 22.5mg single crystal, revealing two ordered phases. The first,
which orders below TN ⇡ 14K, is characterized by a wavevector
q1 = (1/2 0 3/2) (indexed according to the trigonal structure),
whereas the other phase (q2 = (1/2 0 1)) orders below 8K
(see also Supplementary Fig. 3). These temperatures correspond
precisely to anomalies observed in the specific heat and magnetic
susceptibility25,26,29 (Supplementary Fig. 1). This is readily explained,
as the observed L= 3/2 phase corresponds naturally to a stacking
order of ABAB type along the c-axis, and the L= 1 corresponds
to ABCABC stacking. Indeed, the di�erence in 3D transitions
is a residual e�ect of di�erent interlayer bonding influencing
the ordering. Further, a comparison of intensities at (1/2 0 L)
with (3/2 0 L)16 shows both phases share identical zigzag (ZZ)
spin ordering in the honeycomb layers; a phase of the H–K
model adjacent to the spin liquid11 (see Supplementary Table 1).
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Scattering Continuum and Possible Fractionalized Excitations in α-RuCl3
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The combination of electronic correlation and spin-orbit coupling is thought to precipitate a variety of
highly unusual electronic phases in solids, including topological and quantum spin liquid states. We report
a Raman scattering study that provides evidence for unconventional excitations in α-RuCl3, a spin-orbit
coupled Mott insulator on the honeycomb lattice. In particular, our measurements reveal unusual magnetic
scattering, typified by a broad continuum. The temperature dependence of this continuum is evident over a
large scale compared to the magnetic ordering temperature, suggestive of frustrated magnetic interactions.
This is confirmed through an analysis of the phonon linewidths, which show a related anomaly due to spin-
phonon coupling. These observations are in line with theoretical expectations for the Heisenberg-Kitaev
model and suggest that α-RuCl3 may be close to a quantum spin liquid ground state.

DOI: 10.1103/PhysRevLett.114.147201 PACS numbers: 75.10.Kt, 78.30.-j

The quantum spin liquid, where quantum fluctuations
obstruct long-range order at low temperatures, is one of
the most elusive and intriguing states of matter [1,2].
These states have been suggested to play a crucial role
in high-temperature superconductivity [3] and could lead to
topologically protected excitations useful for quantum
computation [4]. The elementary excitations of these
systems are fractionalized, reflecting the peculiar nature
of the quantum spin liquid (QSL) ground state, and can be
identified in scattering experiments where they manifest
themselves as broad continua, in contrast to the sharp
magnon modes characteristic of ordered magnets [5–8].
While QSLs have been extensively studied theoretically,
the experimental picture is limited due to the small number
of candidate material systems [1].
In this context, it was recently suggested [9,10] that

strongly spin-orbit coupled Mott insulators on the honey-
comb lattice might manifest a two-dimensional QSL
ground state. In such a material, strong spin-orbit coupling
can lead to the formation of jeff ¼ 1=2 pseudospins [9–11],
local moments of mixed spin and orbital character, whose
bond-dependent exchange interactions map onto the Kitaev
Hamiltonian,HK ¼ −JK

P
γ−linksS

γ
i S

γ
j. Here S

γ
i refers to the

γ component of effective moment at the ith lattice site and
the sums are performed over the three different types of
links of the honeycomb lattice γ ¼ x, y, z. For a given site,
the exchange interactions along all three links cannot be
simultaneously satisfied. These bond-dependent inter-
actions are therefore intrinsically frustrated, in a manner
distinct from geometric frustration, and lead to an exotic,
spin-disordered ground state and fractionalized Majorana
fermion excitations [12]. Experimental efforts in this
direction have so far focused on the honeycomb lattice

iridates [13–15], although these compounds are structurally
complex [16,17] and the applicability of Kitaev physics has
also been questioned [17–19].
To experimentally explore spin liquid behavior driven by

spin-orbit coupling, we have investigated the elementary
excitations of α-RuCl3 using polarized Raman scattering.
α-RuCl3 is a recently identified spin-orbit-assisted Mott
insulator [20] which crystallizes in a layered structure
with planes of edge-sharing RuCl6 octahedra arranged in
a honeycomb lattice [21] [Fig. 1(a)]) and is therefore an
excellent candidate for realizing the Heisenberg-Kitaev
model in the solid state [9,10]. The magnetic properties
of α-RuCl3 have been subject to a number of previous
studies [21–23]. Magnetic susceptibility and specific heat
measurements suggest a pair of magnetic phase transitions
near 8 K and 14 K [24,25]. Intriguingly, a recent single-
crystal neutron diffraction experiment suggests a zigzag or
stripy-type magnetic ordering with a small ordered moment
[25], as expected for a Heisenberg-Kitaev magnet close to a
QSL ground state [26,27]. However, no spectroscopic
information exists regarding the spin excitations of
α-RuCl3 and the possibility of spin fractionalization driven
by spin-orbit coupling, a defining feature of the Kitaev QSL
state, therefore remains an open question. Raman spec-
troscopy is an excellent tool for studying this possibility, as
it can simultaneously probe spin, lattice, and electronic
excitations [28,29].
Our measurements reveal anomalous magnetic light

scattering in α-RuCl3, typified by a broad continuum
below 100 K that persists in the magnetically ordered
state(s) below 14 K. This behavior is not easily explained
by conventional two-magnon scattering or structural dis-
order, but is consistent with theoretical predictions for the
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Proximate Kitaev quantum spin liquid behaviour in
a honeycomb magnet
A. Banerjee1*, C. A. Bridges2, J.-Q. Yan3,4, A. A. Aczel1, L. Li5, M. B. Stone1, G. E. Granroth1,6,
M. D. Lumsden1, Y. Yiu5, J. Knolle7, S. Bhattacharjee8,9, D. L. Kovrizhin7, R. Moessner8, D. A. Tennant10,
D. G. Mandrus3,4 and S. E. Nagler1,11*

Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable properties such as the capacity to
protect quantum information from decoherence.Whereas their featureless ground states have precluded their straightforward
experimental identification, excited states are more revealing and particularly interesting owing to the emergence of
fundamentally new excitations such as Majorana fermions. Ideal probes of these excitations are inelastic neutron scattering
experiments. These we report here for a ruthenium-based material, ↵-RuCl3, continuing a major search (so far concentrated
on iridium materials) for realizations of the celebrated Kitaev honeycomb topological QSL. Our measurements confirm the
requisite strong spin–orbit coupling and low-temperature magnetic order matching predictions proximate to the QSL. We
find stacking faults, inherent to the highly two-dimensional nature of the material, resolve an outstanding puzzle. Crucially,
dynamical response measurements above interlayer energy scales are naturally accounted for in terms of deconfinement
physics expected for QSLs. Comparing these with recent dynamical calculations involving gauge flux excitations andMajorana
fermions of the pure Kitaev model, we propose the excitation spectrum of ↵-RuCl3 as a prime candidate for fractionalized
Kitaev physics.

Exotic physics associated with frustrated quantum magnets
is an enduring theme in condensed matter research. The
formation of quantum spin liquids (QSLs) in such systems can

give rise to topological states of matter with fractional excitations1–4.
Fractionalization describes the counterintuitive phenomenon
where an electron breaks apart into well-defined independent
quasiparticles. The realization of this physics in real materials is
an exciting prospect that may provide a path to a robust quantum
computing technology5. Fractional excitations in the form of pairs
of S = 1/2 spinons are observed in quasi-one-dimensional (1D)
materials containing S=1/2 Heisenberg antiferromagnetic chains6.
Recent evidence for the 2D QSL state, in the form of possible
spinon excitations, has been found in quantum antiferromagnets
on triangular3 and Kagome7 lattices. The exactly solvable Kitaev
model on the honeycomb lattice8 represents a class of 2D QSL
that supports two di�erent emergent fractionalized excitations:
Majorana fermions and gauge fluxes9,10. The comparatively simple
gauge flux can be visualized as a spin–orbit coupled version of
a plaquette observable like a resonance energy. The Majorana
fermions, by contrast, do not have a straightforward real-space
representation because they are not associated with any real-space
spin or charge density. At best, an idea of their nature can be gleaned
in the strongly anisotropic limit of weakly coupled Ising dimers,
where they can be thought of as excitations taking the form of a
misaligned nearest-neighbour spin pair on top of a ground state

consisting of a coherent superposition of satisfied dimers. How to
observe such ephemeral entities is one of the central challenges of
condensed matter and materials physics today. It has turned out
that the signature of the Majorana fermion in the response function
measured by means of inelastic neutron scattering is perhaps one
of the most direct ways of pinning down the excitation’s existence10.
This manuscript reports precisely such a measurement.

The Kitaev model consists of a set of spin-1/2 moments {Si}
arrayed on a honeycomb lattice. The Kitaev couplings, of strength
K in equation (1), are highly anisotropic with a di�erent spin
component interacting for each of the three bonds of the honeycomb
lattice. In actual materials, a Heisenberg interaction (J ) is also
generally expected to be present, giving rise to the Heisenberg–
Kitaev (H–K) Hamiltonian11,12.

H =
X

i,j

⇣
KSmi S

m
j + JSi·Sj

⌘
(1)

where m is the component of the spin directed along the bond
connecting spins (i,j). The QSL phase of the pure Kitaev model
(J = 0), for both ferromagnetic and antiferromagnetic K , is stable
for weak Heisenberg perturbations.

Remarkably, the Hamiltonian (1) has been proposed to
accurately describe edge-shared octahedrally coordinated magnetic
systems, shown in Fig. 1a, with dominant spin–orbit coupling11,12.
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Abstract: 

Quantum matter provides an effective vacuum out of which arise emergent particles not 
corresponding to any experimentally detected elementary particle. Topological quantum 
materials in particular have become a focus of intense research in part because of the 
remarkable possibility to realize Majorana fermions, with their potential for new, 
decoherence-free quantum computing architectures. In this paper we undertake a study on 
high-quality single crystal of D-RuCl3 which has been identified as a material realizing a 
proximate Kitaev state, a topological quantum state with magnetic Majorana fermions. 
Four-dimensional tomographic reconstruction of dynamical correlations measured using 
neutrons is uniquely powerful for probing such magnetic states. We discover unusual 
signals, including an unprecedented column of scattering over a large energy interval 
around the Brillouin zone center which is remarkably stable with temperature. This is 
straightforwardly accounted for in terms of the Majorana excitations present in Kitaev's 
topological quantum spin liquid. Other, more delicate, features in the scattering can be 
transparently associated with perturbations to an ideal model. This opens a window on 
emergent magnetic Majorana fermions in correlated materials.  
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Fig. 3: Detailed features of the * point scattering (see text): (a),(b) The energy dependence of 
the scattering integrated over the constant momentum volume defined by the following 
integration ranges: L = [-2.5,2.5]:  [],0] {� (K,-K,0) over the range ] = [-√3/10,√3/10]:  [[,0] {� 
(H,H,0) over the range [ =  [-0.1,0.1], at temperatures (a) 5 K, and (b) 10 K.  The solid lines are 
guides to the eye composed of fits to Gaussian peaks: “E” represents an elastic contribution, “S” 
spin wave peaks appearing below TN, and “C” the continuum. (c) Scattering symmetrized in the 
(H,H,L) plane and over positive and negative L, integrated over the intervals ]�=[-√3/10,√3/10], 
and E=[4.5,7.5] meV.   (d) Scattering in the (K,-K, L) plane integrated over [�= [-0.1,0.1] and 
E=[4.5,7.5] meV.  (e) Representative low-energy spin wave scattering expected for a zigzag 
ordered phase.  (f) Scattering at a temperature 5 K integrated over L=[-2.5,2.5] and E=[2,3] meV. 
(The white regions lack detector coverage.) 
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Fig. 2: Momentum and temperature dependence of the scattering continuum:  Neutron 
scattering measurements using fixed incident energy Ei = 40 meV, projected on the reciprocal 
honeycomb plane defined by the perpendicular directions (H,H,0) and  (K,-K,0), integrated over 
the interval L=[-2.5, 2.5]. Intensities are denoted by color as indicated in the scale at right.  
Measurements integrated over the energy range [4.5, 7.5] meV are shown on the top row at 
temperatures (a) 5 K, (b) 10 K, and (c) 120 K.   The corresponding measurements integrated over 
the interval [7.5, 12.5] meV are shown in panels (d), (e), and (f).  (The white regions lack 
detector coverage.)  
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(a) (b)
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FIG. 3: Magnetic heat capacity as a function of temperature
and in-plane magnetic field (a) below the 8 T transition and
(c) above 8 T. The phonon contribution was removed by sub-
tracting the heat capacity of isostructural ↵-IrCl3. The solid
lines in (c) are fits to an exponential expression for a gapped
system (Ae��/T ). (b) Magnetization divided by magnetic
field as a function of temperature for magnetic fields rang-
ing from 5.2 to 7.4 T in steps of 0.2 T. (d) Magnetization as
a function of temperature for magnetic fields above the 8 T
transition.

field in an antiferromagnet [30]. In our experiment, the
direction perpendicular to the applied field corresponds
to the hexagonal (1,0,0) direction, which is not one of
the easy-axes. We also note that a spin-flop transition
still preserves the magnetic ordering wave vector, even
though magnetic Bragg peak intensities will be modi-
fied. Therefore, spin-flop transition is not compatible
with our observation of the disappearance of all mag-
netic Bragg peaks in the H0L plane. This unexpected
finding can be explained as a result of a change in mag-
netic domain population. Zigzag magnetic order can be
described as ferromagnetic zigzag chains, running along
the so-called zigzag direction of a honeycomb lattice, cou-
pled antiferromagnetically. Due to the 3-fold symmetry
of the lattice, zigzag magnetic order may occur in one
of three possible directions, resulting in three magnetic
domains that contribute to di↵raction intensity in di↵er-
ent regions of reciprocal space as shown in Fig. 2. The
disappearance of the peaks in the H0L plane is well ex-

plained by the disappearance of domain 1 as shown in
Fig. 2. The increase in intensity for the (0,0.5,2) magnetic
peak belonging to domain 2 is expected for a redistribu-
tion of domain population from domain 1 into domains
2 and 3. We confirmed that the domain 3 population in-
creases with field as well (not shown). We note that this
“domain-reorientation” occurs gradually with field, and
reaches equilibrium above about 2 T. The observed grad-
ual field-dependence is also consistent with this change
coming from domain population change as spin-flop tran-
sitions tend to be first order when the field is parallel to
the spin direction. Above this “domain-reorientation”
transition, the magnetic Bragg peak shows little change
in intensity up to 6 T. Above 6 T the intensity begins to
decrease and disappears entirely above µ

o

H
c

⇡ 8 T, di-
rectly confirming that zigzag magnetic order disappears
above a critical in-plane field of approximately 8 T. This
transition is continuous as a function of magnetic field.
The zigzag order parameter,

p
I, where I is the inten-

sity of the (0,0.5,2) peak, exhibits power law behaviorp
I ⇠ (H � H

c

)�
⇤
with �⇤ = 0.28 ± 0.05. This power

law behavior seems to hold for higher temperature data
as well, although the critical field H

c

shifts to lower field
with increasing temperature.

Heat capacity and magnetization data collected at zero
magnetic field both show signatures of the zigzag mag-
netic ordering at low temperature. The heat capacity at
zero magnetic field shows a sharp feature at 6.5 K and
a second, smaller feature around 9 K [Fig. 3(a)]. The
magnetic Bragg peaks observed by neutron di↵raction in
our samples show an ordering temperature of about 7-
8 K [24], so we attribute the lower temperature feature
to this zigzag ordering. The nature of the 9 K feature
seen in our samples is not known, but Cao et al. re-
ported that stacking disorder in ↵-RuCl3 can increase
the ordering temperature to approximately 14 K [25, 27]
and it is plausible to suppose that the 9 K transition ob-
served in our sample arises from a grain with a di↵erent
stacking order.

As field is increased, the sharp feature in the heat
capacity decreases in size before shifting to lower tem-
perature and becoming di�cult to resolve as shown in
Fig. 3(a). Magnetization data at low field show a sharp
drop upon decreasing temperature below 7 K as the crys-
tal enters the ordered phase. Figure 3(b) shows that
this drop becomes smaller in size and eventually disap-
pears at high field once the zigzag magnetic ordering has
disappeared. In the high field phase the heat capacity
no longer shows any sharp feature, but instead shows a
broad feature that increases in temperature with increas-
ing magnetic field [Fig. 3(c)]. The low temperature heat
capacity data were fit using an expression for activated
behavior (Ae��/T ) to extract the magnetic excitation
gap �. The magnetization in the high field phase shown
in Fig. 3(d) increases gradually with decreasing temper-
ature, reaching field-dependent saturation values at low
temperature.

The experimental results are summarized in Fig. 4,

2

(a) (b)

FIG. 1: (a) Low field magnetic peak intensity at 2 K as a function of the in-plane component of magnetic field (µ
o

H̃). The
intensity is normalized to the value at zero field. The inset shows individual scans of (0.5,0,1) and (0,0.5,2) Bragg peaks at 0,
1, and 1.6 T (in-plane field) and 2 K. (b) High field intensity of the (0,0.5,2) peak at 2 K, 5 K, and 6 K. Solid lines are fits
with ⇠ (H � H

c

)2�
⇤
to extract the critical field. Same critical exponent �⇤ = 0.28 was used for all three curves. Error bars

where indicated represent one standard deviation.

a*

b*

H

Domain 1 Domain 2 Domain 3

FIG. 2: Magnetic structures and Bragg peak positions in the
first Brillouin zone for each of the three possible zigzag mag-
netic domains. In a vertical magnetic field the intensities due
to Domain 1 disappeared and intensities due to Domain 2
increased. Note that the moments are shown pointing along
the zigzag direction for illustrative purposes only. Drawings
of magnetic structure were done in VESTA 3 [34].

tion data were collected using a crystal array of 60 crys-
tals, with a mass of 100 mg. The incident neutron energy
was 14.7 meV, and measurements were conducted in the
(H0L) plane as well as the plane containing the (0, 0.5,
2) and (-0.5, 0.5, 2) magnetic Bragg peaks. In both cases
magnetic fields up to 15 T were applied perpendicular to
the scattering plane using either a 10 T or a 15 T verti-
cal field superconducting magnet. In order to gain access
to the (0,0.5,2) magnetic peak it was necessary to rotate

the sample such that the angle between the magnetic
field and and the honeycomb plane was approximately
35�. In this case, we quote the in-plane component of the
field, H̃, rather than the total field applied. For all the
other measurements, magnetic field was applied within
the honeycomb plane.

Magnetization and heat capacity was measured as a
function of temperature using a Physical Property Mea-
surement System (PPMS) with fields up to 14 T. The
magnetization measurements were conducted on a collec-
tion of six crystals mounted with the field applied along
the in-plane (-1,2,0) direction. The heat capacity mea-
surements were done with a single crystal mounted ver-
tically on an aluminum oxide mount in the same orien-
tation as that used for the magnetization measurements.
The phonon contribution to heat capacity was subtracted
using the non-magnetic isostructural ↵-IrCl3 [36].

We have investigated the magnetic transitions directly
by measuring the magnetic Bragg peak intensity as a
function of field. When the magnetic field was applied
perpendicular to the H0L plane, all the magnetic peaks
in this plane – (±0.5, 0, l) with l = 1, 2, 4 – decreased
in intensity and disappeared at the relatively low mag-
netic field of 2 T. The sample was then rotated to gain
access to the (0,0.5,2) magnetic peak, which was found
to increase in intensity over this field range, as shown
in Fig. 1(a). The critical field for this transition is in
rough correspondence with the low field transition ob-
served in bulk measurements and previously interpreted
as a spin-flop type transition, which traditionally refers
to a re-orientation of spins perpendicular to the applied
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though magnetic Bragg peak intensities will be modi-
fied. Therefore, spin-flop transition is not compatible
with our observation of the disappearance of all mag-
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zero magnetic field shows a sharp feature at 6.5 K and
a second, smaller feature around 9 K [Fig. 3(a)]. The
magnetic Bragg peaks observed by neutron di↵raction in
our samples show an ordering temperature of about 7-
8 K [24], so we attribute the lower temperature feature
to this zigzag ordering. The nature of the 9 K feature
seen in our samples is not known, but Cao et al. re-
ported that stacking disorder in ↵-RuCl3 can increase
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tion data were collected using a crystal array of 60 crys-
tals, with a mass of 100 mg. The incident neutron energy
was 14.7 meV, and measurements were conducted in the
(H0L) plane as well as the plane containing the (0, 0.5,
2) and (-0.5, 0.5, 2) magnetic Bragg peaks. In both cases
magnetic fields up to 15 T were applied perpendicular to
the scattering plane using either a 10 T or a 15 T verti-
cal field superconducting magnet. In order to gain access
to the (0,0.5,2) magnetic peak it was necessary to rotate

the sample such that the angle between the magnetic
field and and the honeycomb plane was approximately
35�. In this case, we quote the in-plane component of the
field, H̃, rather than the total field applied. For all the
other measurements, magnetic field was applied within
the honeycomb plane.

Magnetization and heat capacity was measured as a
function of temperature using a Physical Property Mea-
surement System (PPMS) with fields up to 14 T. The
magnetization measurements were conducted on a collec-
tion of six crystals mounted with the field applied along
the in-plane (-1,2,0) direction. The heat capacity mea-
surements were done with a single crystal mounted ver-
tically on an aluminum oxide mount in the same orien-
tation as that used for the magnetization measurements.
The phonon contribution to heat capacity was subtracted
using the non-magnetic isostructural ↵-IrCl3 [36].

We have investigated the magnetic transitions directly
by measuring the magnetic Bragg peak intensity as a
function of field. When the magnetic field was applied
perpendicular to the H0L plane, all the magnetic peaks
in this plane – (±0.5, 0, l) with l = 1, 2, 4 – decreased
in intensity and disappeared at the relatively low mag-
netic field of 2 T. The sample was then rotated to gain
access to the (0,0.5,2) magnetic peak, which was found
to increase in intensity over this field range, as shown
in Fig. 1(a). The critical field for this transition is in
rough correspondence with the low field transition ob-
served in bulk measurements and previously interpreted
as a spin-flop type transition, which traditionally refers
to a re-orientation of spins perpendicular to the applied

4

FIG. 4: In-plane field – temperature phase diagram. ZZ3:
zigzag magnetic order with three equal domain populations;
ZZ2: zigzag magnetic order with redistributed (two) domain
population; QPM: quantum disordered phase with gapped
magnetic excitations; PM: paramagnetic phase. The phase
boundary between ZZ2 and PM is the transition temperature
T
c

obtained from heat capacity and neutron measurements.
The thick solid line is from the transverse field Ising model,
and the thin solid line is fit with a power law as described in
the text. The value of � found from the heat capacity data
is also shown (right-hand axis) and the dashed line is a linear
fit to the gap size �.

which combines neutron and bulk measurements to de-
termine the phase diagram. The low field transition was
found to be a change in magnetic domain population,
separating phases made up of 3 and 2 magnetic domains
(phases ZZ3 and ZZ2 respectively). The loss of magnetic
order above the high field transition was also confirmed,
although the nature of the high field phase remains to be
clarified. The magnetic excitation gap in the high field
phase was characterized by fitting low temperature heat
capacity data. The gap size scales with magnetic field,
going to zero at finite field rather than at zero field as
would be expected for a simple polarized paramagnetic
state. This finding is consistent with the NMR measure-
ments reported previously [32], but contrasts with the
results of thermal conductivity measurements which sug-
gested the presence of gapless excitations [33].

The observation of vanishing energy scales towards a
critical field in both high and low field regimes is strongly
suggestive of quantum critical behavior. Although de-
tailed analysis of the spin Hamiltonian of ↵-RuCl3 is be-
yond the scope of this paper, the phase diagram could be
understood heuristically by comparing our results with
one of the simplest models that goes through a quan-

tum phase transition: the transverse-field Ising model
(TFIM). There is also physical motivation for our choice
of transverse field Ising model. ↵-RuCl3 does show a
large uniaxial anisotropy and the magnetic field in our
experimental setup has a large component transverse to
the easy axis. This is a result of the domain-reorientation
transition which favors domains in which the zigzag chain
directions are perpendicular to the field direction. The
moment direction has been found to point along the
zigzag direction (neglecting a small out-of-plane compo-
nent) [27], resulting in a phase with magnetic field nearly
perpendicular to the moment directions.

In Fig. 4, we compare the phase boundary with the
TFIM mean field result and find that they are in good
agreement in the region close to H

c

. We could also fit
T
c

(H) using a power law with T
c

(H) ⇠ (H
c

�H)0.18 as
shown in the figure. Above the critical field, the gap fol-
lows a power law scaling � ⇠ (H �H⇤

c

)z⌫ with z⌫ ⇡ 1.
Note that the critical field value extrapolated from this
scaling H⇤

c

⇡ 6.5 T is slightly di↵erent from the criti-
cal field µ

o

H
c

⇡ 8 T. This discrepancy may be due to
the complex nature of the Hamiltonian of the real mate-
rial, or indicates the necessity of another parameter that
needs to be tuned to reach the quantum critical point
that exists away from the T � H plane. We note that
the critical exponent relation z⌫ = 1 is consistent with
the d = 2 Ising model [37]. In addition, in Fig. 1(b), the
magnetic order parameter could be fitted well using the
critical exponent �⇤ = 0.28, which is close to the theo-
retical value of 0.32 [38]. Finally, the low-temperature
saturation behavior observed in Fig. 3(d) is naturally ex-
plained by the temperature dependence of the transverse
magnetization in the TFIM.

In conclusion, we have determined the high field phase
diagram for ↵-RuCl3 using neutron di↵raction, magneti-
zation, and heat capacity measurements. We have con-
firmed the loss of zigzag order in the high field phase and
found that the material enters into a phase with gapped
magnetic excitations. The experimentally determined
energy scales represented by the magnetic ordering tem-
perature for fields below the critical field and the energy
gap above the critical field, both show power law scaling
behavior and vanish towards the critical field, indicat-
ing a field-driven quantum phase transition. We found
that the phase diagram and the critical behavior is qual-
itatively similar to that expected for the transverse field
Ising model.
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TABLE IV. Complete magnetic interactions in meV for the
C2/m structure of ↵-RuCl3 from Ref. 14 obtained by exact
diagonalization on six-site bridge and hexagon clusters em-
ploying U = 3.0, JH = 0.6, � = 0.15 eV, and full crystal field
terms �

n

. The largest terms are bolded. Site labels for D
ij

refer to Fig. 1(a).

Bond J

n

K

n

⇠

n

�
n

�0
n

⇣

n

X1, Y1 -1.4 -7.5 +0.2 +5.9 -0.8 +0.2

Z1 -2.2 -5.0 � +8.0 -1.0 �
X2, Y2 -0.1 -0.6 +0.1 +0.6 +0.6 +0.1

Z2 +0.1 -0.9 � +0.6 +0.3 �
X3,Y3 +3.0 -0.1 0.0 -0.1 -0.1 -0.1

Z3 +2.4 +0.3 � -0.1 -0.1 �

Bond Sites (i, j) D
ij

X2 (1, 3) , (4, 6) (-0.3, -0.5, -0.5)

Y2 (5, 1) , (2, 4) (-0.5, -0.3, -0.5)

Z2 (6, 2) , (3, 5) (-0.4, -0.4, -0.1)

t2g � eg mixing, which enhances the K > 0 and J < 0.54

It is worth noting, however, that the latter conclusion
was reached after neglecting Coulomb repulsion between
the t2g and eg orbitals, and therefore deserves reevalua-
tion. Subsequent analysis was also performed on theoret-
ical C2/m structures for ↵-RuCl3 obtained by relaxation
within DFT.53 This analysis found instead ferromagnetic
Kitaev coupling K1 < 0, placing emphasis on the struc-
tural dependence of such interactions. In this section,
we provide a detailed reanalysis of the magnetic interac-
tions for the original P3112 and new experimental C2/m
structure of Ref. 14 in order to address the possible vari-
ations to the in-plane interactions that might occur due
to structural distortions.

2. Calculations and Discussion

We show in Table IV the nearest neighbour interac-
tions extracted from calculations on 6-site bridge clus-
ters for the C2/m structure. In order to avoid discussion
of the local symmetry-allowed interactions for the P3112
structure, we present only the bond-averaged values com-
puted on the six-site bridge clusters: (J1,K1,�1,�0

1)
= (-5.5, +7.6, +8.4, +0.2) meV, respectively. In con-
trast, the C2/m structure displays a somewhat smaller
Heisenberg coupling, and a ferromagnetic Kitaev term:
(J1,K1,�1,�0

1) = (-1.7, -6.7, +6.6, -0.9) meV, respec-
tively. For both structures, we find a ferromagnetic
Heisenberg coupling J1 < 0, and a dominant �1 > 0
interaction, which results from the large metal-metal
hopping t1, t3, consistent with the previous studies.32,53

We also note a somewhat significant bond-anisotropy for

FIG. 6. (a) Phase diagram of the minimal model of Eq. (40)
obtained by ED on 16-site cluster in the parameter region
relevant to the C2/m structure of ↵-RuCl3; F = bulk ferro-
magnetic order. The white dashed line indicates the classical
phase boundary. (b,c) Predicted zigzag ground state and ori-
entation of the ordered moments for the C2/m structure of
↵-RuCl3, viewed (b) along the cubic [111] direction, and (c)
the cubic [1̄10] direction. The moments are found to be ? b-
axis, nearly directly along the x̂+ ŷ direction, but tilted 106�

from the cubic z-axis.

the C2/m structure of Ref. 14, with K

xy
1 < K

z
1 and

�xy
1 < �z

1, which results primarily from anisotropy in the
t3, t

0
3 hopping integrals. As with Na2IrO3, we find no

large second neighbour interactions, with all terms < 1
meV. However, both the P3112 and C2/m structures of
↵-RuCl3 display significant third neighbour Heisenberg
coupling arising from high-order processes: J3 ⇠ 2.3 meV
for P3112 and J3 ⇠ 2.7 meV for C2/m structures. These
values are a full order of magnitude larger than previ-
ous 2OPT estimates.32 We note that consideration of the
C2/m structure of Ref. 47 suggests a somewhat reduced
bond-anisotropy, but no significant modification of the
computed interactions of Table IV.

3. Minimal Model and Comparison to Experiment

On the basis of the computed interactions, we identify
the relevant terms as: (J1,K1,�1, J3), with bond aver-
aged values (�1.7,�6.7,+6.6,+2.7) meV. This finding
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The K � � Hamiltonian can be written as

H =
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, (1)

where, for hiji a z-type bond,

K↵�

ij

=

8
<

:

K ↵ = � = z
� ↵ 6= � 6= z
0 otherwise

. (2)

Similar definitions follow for x and y-type bonds.
Throughout the following, K and � are parameterized
using � such thatK = � cos� and � = sin�. In order to
compare with recent inelastic neutron scattering exper-
iments in ↵-RuCl3, we calculated this model’s dynamic
structure factor, defined as

S(q,!) =
1

N

X

ij,↵

Z
dt h�↵

i

(t)�↵

j

(t = 0)i e�iq·(ri�rj)+i!t,

(3)
for a 24-site cluster using an exact diagonalization (ED)
algorithm. According to this calculation, most of the
signal appears at low frequencies, 0 < ! . 0.6. Fur-
thermore, the momentum dependence of S(q,!) is no-
tably di↵erent for low and high frequencies. In Figure
1 we show the relative intensity of S(q,!), integrated
over low and high frequency ranges. In the Kitaev limit,
� = 0, S(q,!) is rather featureless. As � is increased,
the low energy intensity at the K points is reduced com-
pared to the M points. The intensity at the zone center
is reduced as well. As a result, S(q,!), integrated over
a low frequency range, shows a star shaped pattern,
similar to the pattern seen in the experiments at low
energies. In contrast, integrating over a range of high
frequencies, shows a featureless momentum dependence
even for finite �.

Previous numerical results indicate that the ground
states of the Kitaev limit, � = 0, and � limit, � = ⇡/2,
are adiabatically connected spin liquids. Motivated by
this conjecture, we would like to formulate a fermionic
mean-field theory which closely resembles the exact so-
lution of the Kitaev model. Therefore, following Kitaev,
we replace the spin operators in the Hamiltonian with
products of Majorana fermion operators, �↵

i

! ib↵
i

c
i

,

H̃ = �
X

hiji↵�

K↵�

ij
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i

b�
j

ic
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c
j

. (4)

Here, the Majorana fermion operators are normalized
such that {b↵

i

, b�
j

} = 2�
ij

�
↵�

and {c
i

, c
j

} = 2�
ij

. The
physical Hilbert space of the spin Hamiltonian is then
obtained by projecting the Hamiltonian onto the sub-
space of states | i which obey D
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| i ⌘ ibx
i

by
i

bz
i
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FIG. 1. Dynamical structure factor, S(q,!), integrated over

low (top) and high (bottom) frequencies, as obtained from

exact diagonalization. Pseudo-color indicates relative inten-

sity(blue - low, red - high). The discrete set of peaks in

momentum space, resulting from the finite size of the stud-

ied cluster, was broadened in order to improve the visual-

ization of the obtained pattern. The black lines depict the

boundaries of the first and second Brillouin zones.

| i. Within a mean-field approach, we can approximate
H̃ with
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where the fields A

ij

and B
ij

obey the mean-field self-
consistency equations on each bond,

A
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, (6)
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ij
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Given the ground state | 0i
MF

of H
MF

, it is possible
to construct an approximate ground state for H by pro-
jection onto the physical Hilbert space

| 0i ⇡
Y

i

1 +D
i

2
| 0i

MF

. (8)

Before solving equations (6) and (7), it is important to
characterize the behavior of the Majorana fermions un-
der any configuration of A

ij

and B
ij

. The c
i

operators
describe fermions which move about the whole lattice
with hopping amplitudes given by A

ij

. Similarly, the
b↵
i

operators describe fermion hopping with amplitudes

B
ij

K↵�

ij

. Most importantly, the structure of K↵�

ij

, given
in Eq. (2), separates the b↵

i

fermions into three inde-
pendent, uncorrelated sectors. Each sector is associated
with one of the three sublattices of hexagons. Within
each sector, the hopping amplitude is B

ij

� around a
hexagon of the corresponding sublattice, and B

ij

K be-
tween neighboring hexagons. When � = 0, b↵

i
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even for finite �.
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ent colors (see Fig. 7). Here we use the demonstrated
correspondence16 between the complex eigenvalues of
the transfer matrix and the excitation spectrum, E(k).
Namely, given a TM eigenvalue �

i

= e�✏i+i�i , the cor-
responding momentum (along the infinite dimension) is
given by k

i

⇠ �
i

= arg�
i

, while the corresponding en-
ergy is given by E

i

⇠ ✏
i

= � ln |�
i

| (see appendix A
for details). The Kitaev model is exactly solvable in
terms of Majorana fermions, and therefore it is possi-
ble to readily identify the features in Fig. 3 with the
known Majorana excitations. The most prominent fea-
ture of the Majorana spectrum, "

c

(k), in the Kitaev
model is the existence of two gapless Dirac nodes at
the corners of the Brillouin zone, K = (2⇡/3, �2⇡/3)
and K 0 = (�2⇡/3, 2⇡/3) (see Fig. 4a). Thus, sin-
gle Majorana excitations can account for one of the
gapless points in Fig. 3a (green pillar), but not for
the other. To account for the gapless point at (0, 0),
we must assume that, at least, two-particle excitations,
⌦(k1+k2) = "(k1)+"(k2), show up in the TM spectrum
as well (Fig. 4b). Note, however, that in the isotropic
Kitaev model, the locations of the gapless single particle
excitations in momentum space coincide with locations
of the gapless two-particle excitations. To verify that
the TM spectrum can also depicts single particle exci-
tations, we studied the TM for an anisotropic Kitaev
model, where the gapless Dirac nodes move from their
original positions at K and K 0, but with an anisotropy
such that the nodes still sit on the cylinder’s allowed
momenta cuts. Fig. 3b shows that the gapless single
particle and two particle excitations at K split, appear-
ing exactly where they are expected according to the
Kitaev solution, Fig. 4c,d, clearly showing that both
show up in the TM spectrum, as stated in Ref. 16. As
a minimal interpretation of the TM spectrum we there-
fore suggest that the pillars indicate the positions of
minima in the single and two-Majorana spectra. Thus,
returning to the isotropic case, Fig. 3a, and in accor-
dance with the Kitaev solution, the pillar at (⇡/3, 2⇡/3)
is associated with a gapped minimum in the two-particle
spectrum, whereas the pillar at (⇡, 0) is associated with
a gapped minimum in the single particle spectrum.

B. The K � � model

Moving away from the exactly solvable Kitaev limit,
we now turn to analyze the TM spectrum of the K � �
model, Fig. 5, which shows the transfer matrix spec-
trum, E(k

x

, k
y

), for various values of �. Similarly to the
Kitaev limit, minima in the continuum of excitations are
clearly identified at (0, 0), (⇡/3, 2⇡/3), (2⇡/3, �2⇡/3),
and (⇡, 0). All, however, are gapped. This can be un-
derstood in the context of Majorana fermions by noting

FIG. 6. Energy density per bond, as obtained using iDMRG.

that the cylindrical geometry breaks the symmetry be-
tween x bonds and y, z bonds, which in turn can lead,
for � > 0, to anisotropic hopping amplitudes, and the
gapping out of the fermions. To corroborate this point,
Fig. 6 depicts the energy density per bond as a func-
tion of �, displaying that indeed the symmetry between
bonds is broken for � > 0.

Several additional minima continuously move as � is
tuned from the Kitaev limit, � = 0, to the � limit
at � = ⇡/2. For example, close to the Kitaev limit,
� = 0.02⇡, there is a k

y

= 0 minimum near k
x

= 2⇡/3,
but as � increases, it moves towards k

x

= ⇡/3 at
� = 0.03⇡, and then turns back, crossing k

x

= 2⇡/3
near � = 0.35⇡. Similar evolutions can be seen for
minima at k

y

= ±2⇡/3. It is natural to suggest that
these additional minima are associated with single par-
ticle excitations, since under some conditions they seem
to have the lowest energy. However, their positions seem
to be related to each-other by addition of K or K 0.
For example, for � = 0.05⇡, there is a minimum at
(⇡/3 < k

x

< ⇡/2, 0), which by pairing with a soft exci-
tation at K, and inversion, k ! �k, gives a two-particle
minimum at (2⇡/3� k

x

, �2⇡/3), which is also observed
in the TM spectrum. The minimum at (⇡ � k

x

, 2⇡/3)
is similarly obtained by pairing with a soft excitation
at K 0 followed by inversion. Therefore, the positions of
these minima do not rule out the possibility that for fi-
nite � > 0, only two-particle excitations are observed in
the TM spectrum. Figure 7 shows the coinciding posi-
tions of the soft single and two-particle excitations, for
� = 0.03⇡ and � = 0.2⇡.

Whether we interpret the TM spectrum as being
associated only with two-particle excitations, or with
the single-particle spectrum as well, we can still reach
the following conclusions: (i) The TM excitation spec-
trum evolves without any qualitative change through
� = 0.025⇡, suggesting that the fundamental nature of
the ground state is likely to remain the same. Support-

�i = e�✏i+i⌘i

ki ⇠ ⌘i = arg�i

E
lowest

⇠ ⇠�1

2

FIG. 2. Quasi-energies ✏
i

of the anisotropic Kitaev model with
K

x

= �1.135, K
y

= �1.2, and K
z

= �1.0. Lowest energy
excitations for a single particle are expected at (k

x

/⇡, k
y

/⇡) =
(0.716, 2/3) (dashed line), and for two particles at (0, 0) and
(0.567, 2/3) (dash-dotted).

the TM spectrum recovers single-, three-, etc. particle
excitations as well as two-, four-, etc. particle excitation.

(Here would be some place for speculations, why we
do see single particle excitations in the spectrum of the
regular TM contrary to the XY-chain.)

The interested reader may find a more rigorous and
detailed explanation as well as more examples in Zauner
et al.[? ].

We turn now to the technical realization of obtain-
ing the momentum resolved TM spectrum. Let �

i

be
the eigenvalues of the transfer matrix with the ordering
|�0| > |�1| � |�2| � ... . By definition the dominant
eigenvalue is |�0| = 1. Generally, �

i

are complex and can
be decomposed as �

i

= |�
i

|ei⌘. The angle ⌘ is connected
to the momentum k

x

along the chain or cylinder. Ex-
ploiting the rotational invariance of the Hamiltonian on
the cylinder geometry yields the transverse momentum
k

y

as will be explained now. In the following, we require
the iMPS to be in canonical form[? ]. A translation
with a lattice vector along the circumference keeps the
Hamiltonian invariant and as such k

y

can be treated as
a regular quantum number. We extract k

y

by comput-
ing the dominant eigenvector ⇤̃0 of the mixed transfer
matrix constructed out of the ground state iMPS and a
iMPS with the translation applied, see also Fig. 3b). We
like to remark, that the translation along the circumfer-
ence is simply given by a permutation of sites within a
ring. If the iMPS is su�ciently converged and the ap-
plied translation is indeed a symmetry, then the domi-
nant eigenvalue �̃0 of the mixed TM is 1. Its eigenvector
⇤̃0 has a diagonal form with eigenvalues |�̃

i

|eiq and q be-
ing discretized in steps 2⇡/n, where n is the number of
unit cells around the cylinder. If Schmidt values are de-
generate, the diagonal form becomes block diagonal with
blocks for each set of degenerate Schmidt values. Each
block can be diagonalized separately by a unitary trans-
formation which is then applied to the non-translated
iMPS. The momentum quantum number q

i

are associ-
ated with the entries i along a bond leg in the same way

a)
T : ⇤

i

= �
i

⇤
i

b)

T T : T ⇤̃
i

= �̃
i

⇤̃
i

c)
⇤̃0 = �

i,j

eiqi

q
i

q
j

FIG. 3. Schematic representation of a) the regular and b)
the mixed transfer matrix T with translation T applied. c)

Dominant eigenvector ⇤̃0 of T T determines the q quantum
numbers associated with each bond leg.

as Schmidt values are. The TM connects states i and j
with corresponding q

i

and q
j

, hence the transverse mo-
mentum is given by k

y,(i,j) = q
j

� q
i

. The k
y

label of �
i

can be read o↵ from its eigenvector ⇤
i

due to the fact,
that ⇤

i

has only non-zero entries with the same change
of the quantum number q

i

� q
j

.
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where � is the label {x, y, z} of the bond hi, ji.

II. METHOD

We use the infinte Density Matrix Renormalization
Group [? ? ]. Initially developed for 1D system, it
has been successfully used for 2D systems by wrapping
the lattice on a cylinder and mapping the cylinder to a
chain. Furthermore employing translational invariance,
allows to study (quasi-)infinite cylinders [? ]. Due to
the cylinder geometry, one dimension of the lattice is fi-
nite and leads to a discretization of the corresponding
reciprocal vector. The accessible momenta lie on lines in
reciprocal space. Cylinder geometries, i.e. circumference
L

circ

and unit cell, are chosen such that the correspond-
ing lines of accessible momenta contain the gapless Majo-
rana modes of the isotropic Kitaev spin liquid, which are
located at the K-points of the first Brillouin zone. The
following unit cells are used at least for a part of the full
range of �: i) rhombic unit cell with L

circ

= 6, 12 sites,
ii) rhombic-2 with L

circ

= 10, and iii) rectangular with
L

circ

= 8, 12. See Fig. ?? for an illustration of the unit
cells and the accessible momenta.

FIG. 3. Accessible momenta for ‘rhombic-2’ Lcirc = 10

III. PHASE DIAGRAM OBTAINED USING
IDMRG

Collecting the result using the di↵erent geometries, the
following phases are observed: i) �/⇡ < 0.015...0.045:
ferromagnetic Kitaev spin liquid (KSL) phase. ii)
0.015...0.045 < �/⇡ < 0.58...0.6: extended quantum
paramagnetic / spin liquid phase. iii) 0.58...0.6 < �/⇡ <
0.96: vortex ordered state around Klein point at �/⇡ =
3/4 [? ]. iv) 0.96 < �/⇡: antiferromagnetic KSL phase.

Now, a detailed discussion of each phase follows.
i) Ferromagnetic Kitaev Spin Liquid. The first phase

is known to contain gapless fermions and gapped vortex
excitations[? ]. Introducing a small � coupling allows
vortices to hop and also creates or annihilates vortices.
Thus the plaquette fluxes are not conserved (only con-
served mod2) and di↵erent flux sectors mix.

On a cylinder, the KSL has two topological sectors:
One being gapless (if accessible momenta go through K-
points) and corresponding to periodic boundary condi-
tions and the second being gapped and corresponding to
antiperiodic boundary of the fermions. The sectors are
identified by a Wilson loop operator winding around the
cylinder W

l

=
Q

j2C �x

j

= ±1. W
l

= �1 corresponds
to the gapless sector and is metastable. As such it is
only accessible by starting with an initial state close to
the metastable state. Introducing a perturbation with a
small � term leads to swap into the gapped sector.

The transition into the second phase ii) is marked by
a divergent correlation length ⇠ (cf. data for rhombic
with L

circ

= 6: Fig. 4 and 5) together with a drop of
the flux or plaquette operator W

p

=
Q

i2C
p

��

i

and W
l

(cf. all geometries). The spectrum of the transfer matrix
is connected to the energy gap [? ], and the decrease
of the gap seems to appear simultaneously at 0K1 and
2/3K1 (Fig. 7). Even though the component of k in
along K2 is not known, the former results suggest the
gap closing/decrease at the �- and K-point. The static
structure factor does exhibit small cusps or kinks, but
only minor shifting of weights (cf. Fig. 6 and Fig. 11).

An additional feature of the transition for the rhombic
unit cells (rhombic and rhombic-2) is, that the entangle-
ment spectrum (ES) changes from a doubly degenerate
to a non-degenerate lowest eigenvalue (cf. Fig. 6). This
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FIG. 2. Staggered magnetization (top) and static spin struc-
ture factor (bottom), calculated using iDMRG. Inset: Bril-
louin zone with labeled positions of symmetry points.

ground state of this model on a narrow infinite cylin-
der with a three unit cell circumference (L = 6). In
Fig. 1 we plot the ground state energy density, E

GS

,
as a function of the parameter 0 < � < ⇡. Starting
from the ferromagnetic Kitaev limit, � = 0, E

GS

evolves
smoothly through the � limit, � = ⇡/2. A discontinu-
ity appears at � ⇡ 0.6⇡ and again slightly before the
anti-ferromagnetic Kitaev limit, � = ⇡. The two dis-
continuities are associated with a transition into, and
out of, a magnetically ordered vortex state, which be-
comes an exact product state for � = 3⇡/4. This is
evident in a plot of the entanglement entropy, S

E

, also
in Fig. 1, showing a vanishing S

E

at this point. No-
tice that the entanglement entropy remains as high as
that of the ferro-like Kitaev limit in the entire region
of 0 < � < 0.6⇡. Furthermore iDMRG shows a finite
staggered magnetization in 0.6⇡ < � < 0.96⇡, as well
as an enhanced spin structure factor, Fig. 2, all con-
sistent with a magnetically ordered phase. The main
question we want to address here is: what is the nature
of the ground state outside of the magnetically ordered
state? The large entanglement and lack of magnetic
order suggest that the ground state in this region is oc-
cupied by quantum spin liquid phases. However, a small
discontinuity at � ⇡ 0.025⇡ in both the entanglement
entropy and the spin structure factor, raises the question
whether there exists a subtle transition between di↵er-
ent kinds of spin liquid phases. To address this issue,
and to gain insight into the low energy physics of the
K � � model as � is tuned from the Kitaev to � limits,
we turn to a detailed examination of the transfer ma-
trix spectrum, obtained from the ground state matrix
product state (MPS).
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III. TRANSFER MATRIX SPECTRUM

A. The Kitaev limit

We begin by analyzing the transfer matrix spectrum,
E(k

x

, k
y

), of the pure Kitaev model, shown in Fig. 3,
as a function of the momentum along the cylinder, k

x

.
We were also able to resolve the transverse momentum
k

y

= 0, ±2⇡/3, which are depicted in the figure by di↵er-
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where � is the label {x, y, z} of the bond hi, ji.

II. METHOD

We use the infinte Density Matrix Renormalization
Group [? ? ]. Initially developed for 1D system, it
has been successfully used for 2D systems by wrapping
the lattice on a cylinder and mapping the cylinder to a
chain. Furthermore employing translational invariance,
allows to study (quasi-)infinite cylinders [? ]. Due to
the cylinder geometry, one dimension of the lattice is fi-
nite and leads to a discretization of the corresponding
reciprocal vector. The accessible momenta lie on lines in
reciprocal space. Cylinder geometries, i.e. circumference
L

circ

and unit cell, are chosen such that the correspond-
ing lines of accessible momenta contain the gapless Majo-
rana modes of the isotropic Kitaev spin liquid, which are
located at the K-points of the first Brillouin zone. The
following unit cells are used at least for a part of the full
range of �: i) rhombic unit cell with L

circ

= 6, 12 sites,
ii) rhombic-2 with L

circ

= 10, and iii) rectangular with
L

circ

= 8, 12. See Fig. ?? for an illustration of the unit
cells and the accessible momenta.
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III. PHASE DIAGRAM OBTAINED USING
IDMRG

Collecting the result using the di↵erent geometries, the
following phases are observed: i) �/⇡ < 0.015...0.045:
ferromagnetic Kitaev spin liquid (KSL) phase. ii)
0.015...0.045 < �/⇡ < 0.58...0.6: extended quantum
paramagnetic / spin liquid phase. iii) 0.58...0.6 < �/⇡ <
0.96: vortex ordered state around Klein point at �/⇡ =
3/4 [? ]. iv) 0.96 < �/⇡: antiferromagnetic KSL phase.

Now, a detailed discussion of each phase follows.
i) Ferromagnetic Kitaev Spin Liquid. The first phase

is known to contain gapless fermions and gapped vortex
excitations[? ]. Introducing a small � coupling allows
vortices to hop and also creates or annihilates vortices.
Thus the plaquette fluxes are not conserved (only con-
served mod2) and di↵erent flux sectors mix.

On a cylinder, the KSL has two topological sectors:
One being gapless (if accessible momenta go through K-
points) and corresponding to periodic boundary condi-
tions and the second being gapped and corresponding to
antiperiodic boundary of the fermions. The sectors are
identified by a Wilson loop operator winding around the
cylinder W

l

=
Q

j2C �x

j

= ±1. W
l

= �1 corresponds
to the gapless sector and is metastable. As such it is
only accessible by starting with an initial state close to
the metastable state. Introducing a perturbation with a
small � term leads to swap into the gapped sector.

The transition into the second phase ii) is marked by
a divergent correlation length ⇠ (cf. data for rhombic
with L

circ

= 6: Fig. 4 and 5) together with a drop of
the flux or plaquette operator W
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=
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and W
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(cf. all geometries). The spectrum of the transfer matrix
is connected to the energy gap [? ], and the decrease
of the gap seems to appear simultaneously at 0K1 and
2/3K1 (Fig. 7). Even though the component of k in
along K2 is not known, the former results suggest the
gap closing/decrease at the �- and K-point. The static
structure factor does exhibit small cusps or kinks, but
only minor shifting of weights (cf. Fig. 6 and Fig. 11).

An additional feature of the transition for the rhombic
unit cells (rhombic and rhombic-2) is, that the entangle-
ment spectrum (ES) changes from a doubly degenerate
to a non-degenerate lowest eigenvalue (cf. Fig. 6). This
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ground state of this model on a narrow infinite cylin-
der with a three unit cell circumference (L = 6). In
Fig. 1 we plot the ground state energy density, E

GS

,
as a function of the parameter 0 < � < ⇡. Starting
from the ferromagnetic Kitaev limit, � = 0, E

GS

evolves
smoothly through the � limit, � = ⇡/2. A discontinu-
ity appears at � ⇡ 0.6⇡ and again slightly before the
anti-ferromagnetic Kitaev limit, � = ⇡. The two dis-
continuities are associated with a transition into, and
out of, a magnetically ordered vortex state, which be-
comes an exact product state for � = 3⇡/4. This is
evident in a plot of the entanglement entropy, S

E

, also
in Fig. 1, showing a vanishing S

E

at this point. No-
tice that the entanglement entropy remains as high as
that of the ferro-like Kitaev limit in the entire region
of 0 < � < 0.6⇡. Furthermore iDMRG shows a finite
staggered magnetization in 0.6⇡ < � < 0.96⇡, as well
as an enhanced spin structure factor, Fig. 2, all con-
sistent with a magnetically ordered phase. The main
question we want to address here is: what is the nature
of the ground state outside of the magnetically ordered
state? The large entanglement and lack of magnetic
order suggest that the ground state in this region is oc-
cupied by quantum spin liquid phases. However, a small
discontinuity at � ⇡ 0.025⇡ in both the entanglement
entropy and the spin structure factor, raises the question
whether there exists a subtle transition between di↵er-
ent kinds of spin liquid phases. To address this issue,
and to gain insight into the low energy physics of the
K � � model as � is tuned from the Kitaev to � limits,
we turn to a detailed examination of the transfer ma-
trix spectrum, obtained from the ground state matrix
product state (MPS).
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III. TRANSFER MATRIX SPECTRUM

A. The Kitaev limit

We begin by analyzing the transfer matrix spectrum,
E(k
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, k
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), of the pure Kitaev model, shown in Fig. 3,
as a function of the momentum along the cylinder, k
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.
We were also able to resolve the transverse momentum
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= 0, ±2⇡/3, which are depicted in the figure by di↵er-
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where � is the label {x, y, z} of the bond hi, ji.

II. METHOD

We use the infinte Density Matrix Renormalization
Group [? ? ]. Initially developed for 1D system, it
has been successfully used for 2D systems by wrapping
the lattice on a cylinder and mapping the cylinder to a
chain. Furthermore employing translational invariance,
allows to study (quasi-)infinite cylinders [? ]. Due to
the cylinder geometry, one dimension of the lattice is fi-
nite and leads to a discretization of the corresponding
reciprocal vector. The accessible momenta lie on lines in
reciprocal space. Cylinder geometries, i.e. circumference
L

circ

and unit cell, are chosen such that the correspond-
ing lines of accessible momenta contain the gapless Majo-
rana modes of the isotropic Kitaev spin liquid, which are
located at the K-points of the first Brillouin zone. The
following unit cells are used at least for a part of the full
range of �: i) rhombic unit cell with L
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= 6, 12 sites,
ii) rhombic-2 with L

circ

= 10, and iii) rectangular with
L

circ

= 8, 12. See Fig. ?? for an illustration of the unit
cells and the accessible momenta.

FIG. 3. Accessible momenta for ‘rhombic-2’ Lcirc = 10

III. PHASE DIAGRAM OBTAINED USING
IDMRG

Collecting the result using the di↵erent geometries, the
following phases are observed: i) �/⇡ < 0.015...0.045:
ferromagnetic Kitaev spin liquid (KSL) phase. ii)
0.015...0.045 < �/⇡ < 0.58...0.6: extended quantum
paramagnetic / spin liquid phase. iii) 0.58...0.6 < �/⇡ <
0.96: vortex ordered state around Klein point at �/⇡ =
3/4 [? ]. iv) 0.96 < �/⇡: antiferromagnetic KSL phase.

Now, a detailed discussion of each phase follows.
i) Ferromagnetic Kitaev Spin Liquid. The first phase

is known to contain gapless fermions and gapped vortex
excitations[? ]. Introducing a small � coupling allows
vortices to hop and also creates or annihilates vortices.
Thus the plaquette fluxes are not conserved (only con-
served mod2) and di↵erent flux sectors mix.

On a cylinder, the KSL has two topological sectors:
One being gapless (if accessible momenta go through K-
points) and corresponding to periodic boundary condi-
tions and the second being gapped and corresponding to
antiperiodic boundary of the fermions. The sectors are
identified by a Wilson loop operator winding around the
cylinder W
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=
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= ±1. W
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= �1 corresponds
to the gapless sector and is metastable. As such it is
only accessible by starting with an initial state close to
the metastable state. Introducing a perturbation with a
small � term leads to swap into the gapped sector.

The transition into the second phase ii) is marked by
a divergent correlation length ⇠ (cf. data for rhombic
with L
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= 6: Fig. 4 and 5) together with a drop of
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(cf. all geometries). The spectrum of the transfer matrix
is connected to the energy gap [? ], and the decrease
of the gap seems to appear simultaneously at 0K1 and
2/3K1 (Fig. 7). Even though the component of k in
along K2 is not known, the former results suggest the
gap closing/decrease at the �- and K-point. The static
structure factor does exhibit small cusps or kinks, but
only minor shifting of weights (cf. Fig. 6 and Fig. 11).

An additional feature of the transition for the rhombic
unit cells (rhombic and rhombic-2) is, that the entangle-
ment spectrum (ES) changes from a doubly degenerate
to a non-degenerate lowest eigenvalue (cf. Fig. 6). This
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ent colors (see Fig. 7). Here we use the demonstrated
correspondence26 between the complex eigenvalues of

the transfer matrix and the excitation spectrum, E(k).
Namely, given a TM eigenvalue �

i

= e�✏i+i⌘i , the cor-
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responding momentum (along the infinite dimension) is
given by k

i

⇠ ⌘
i

= arg�
i

, while the corresponding en-
ergy is given by E

i

⇠ ✏
i

= � ln |�
i

| (see appendix A
for details). The Kitaev model is exactly solvable in
terms of Majorana fermions, and therefore it is possi-
ble to readily identify the features in Fig. 3 with the
known Majorana excitations. The most prominent fea-
ture of the Majorana spectrum, "

c

(k), in the Kitaev
model is the existence of two gapless Dirac nodes at the
corners of the Brillouin zone, K = (2⇡/3, �2⇡/3) and
K 0 = (�2⇡/3, 2⇡/3) (see Fig. 4a). A continuum of
excitations may thus be obtained if multiple Majorana
fermions are excited. Fig. 4b shows the minimum exci-
tation energies for the two particle excitation spectrum,
as defined by

⌦min.

(q) = min
k

(|"
c

(q � k)| + |"
c

(k)|) . (2)

Minima in ⌦min.

(q
x

, q
y

), as a function of q
x

, in the
two particle spectrum, appear at (0, 0), (⇡/3, 2⇡/3) and
(2⇡/3, �2⇡/3), which are consistent with the blue, red,
and green pillars shown in Fig. 3a at these momenta.
We note, however, that, at least in the pure Kitaev
model, single-particle excitations seem to appear in the
TM spectrum as well (see Appendix A for details).

B. The K � � model

Moving away from the exactly solvable Kitaev limit,
we now turn to analyze the TM spectrum of the K � �
model, Fig. 5, which shows the transfer matrix spec-
trum, E(k

x

, k
y

), for various values of �. Similarly to the
Kitaev limit, minima in the continuum of excitations are
clearly identified at (0, 0), (⇡/3, 2⇡/3), (2⇡/3, �2⇡/3),
and (⇡, 0). All, however, are gapped. This can be un-
derstood in the context of Majorana fermions by noting

that the cylindrical geometry breaks the symmetry be-
tween x bonds and y, z bonds, which in turn can lead,
for � > 0, to anisotropic hopping amplitudes, and the
gapping out of the fermions. To corroborate this point,
Fig. 6 depicts the energy density per bond as a func-
tion of �, displaying that indeed the symmetry between
bonds is broken for � > 0.

Several additional minima appear for � > 0, with
their momentum position moving as � is increased.
Strikingly, these additional minima seem to obey an un-
derlying symmetry, i.e., a considerable number of eigen-
values obey E(k

x

, k
y

) = E(k
x

+2⇡/3, k
y

�2⇡/3). For in-
stance, the � = 0.1⇡ panel in Fig. 5 has a minimum near
(⇡/6, �2⇡/3) (green +), which has a symmetric counter-
part near (5⇡/6, 2⇡/3) (red x), i.e., shifted in momen-
tum by (2⇡/3, �2⇡/3). An additional counterpart is
located near (⇡/2, 0) (blue circle), which can be reached
by inversion k ! �k, followed by the same shift in mo-
mentum. Interpreting the TM spectrum as being asso-
ciated with two-particle excitations, the above symme-
try suggests the existence of single-particle excitations
which, in addition to inversion symmetry "(�k) = "(k),
obey also "(k) = "(k±K), where ±K are the momenta
at the Brillouin zone corners, K and K 0, respectively.
Figure 7 shows the positions of the soft two-particle ex-
citations, for � = 0.03⇡ and � = 0.2⇡, further demon-
strating the above symmetry.

In summary, the features of the TM spectrum
strongly indicate that the paramagnetic phase of the
K � � model harbours coherent excitations commonly
associated with quantum spin liquids. However, it is dif-
ficult to determine the nature of this spin liquid phase,
based on the iDMRG data alone. On the one hand, the
TM features suggest that in the region 0 < � < 0.6⇡ the
K � � model harbours Majorana fermion excitations,
sharing basic properties with the ground state of the
ferromagnetic Kitaev model. On the other hand, the
apparent transition at � = 0.025⇡ may indicate that
there are two distinct spin liquid phases with a sharp
transition between them. In the next section we intro-
duce a mean-field approximation, which can be used to
elucidate the above results.

IV. MAJORANA MEAN-FIELD THEORY

A. Majorana spectrum

Motivated by the iDMRG results of the previous sec-
tion, we would like to formulate a Fermionic mean-field
theory which closely resembles the exact solution of the
Kitaev model. Therefore, following Kitaev6, we replace
the spin operators in the Hamiltonian with products of
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B. Two-Majorana spectrum

We have suggested that the TM spectrum can be
associated with two-particle continua of fractionalized
excitations, some of which obey a symmetry relation
E(k

x

, k
y

) = E(k
x

+ 2⇡/3, k
y

� 2⇡/3). Interestingly, the
Majorana mean-field Hamiltonian, Eq. (5), exhibits this
symmetry for the b fermion spectrum, "

b

(k) = "
b

(k±K)
(see Appendix B for details), inducing the same symme-
try in the two-particle spectrum, ⌦

b+c

(q,k) = |"(q �
k)| + |"(k)|, as well. We note that this symmetry,
⌦

b+c

(q±K,k) = ⌦
b+c

(q,k), holds irrespectively of the
properties of the c-fermion spectrum. In Appendix A,
we show that this is consistent with the iDMRG results,
which exhibit this symmetry in the TM spectrum even
when the K � � coupling are anisotropic such that the
minima in the c spectrum move away from the K, K 0

points.
Thus, the form of H

MF

may give a good description
of the fractionalized excitations, as probed by iDMRG.
However, due to the strongly interacting nature of the
K � � model, the actual amplitudes A

ij

and B
ij

which
should be used for such a description, as well as the
value of � itself, will most likely be very di↵erent from
their values as determined by MFT. Nevertheless, we
may still compare the MF spectra with the TM spec-
tra, demonstrating the usefulness of H

MF

. To do so we
study the same cylindrical geometry considered above
using iDMRG. As in the iDMRG calculation where the
cylindrical geometry breaks the symmetry between x
and y, z bonds, also here we choose di↵erent amplitudes
A

ij

, B
ij

for di↵erent bonds. In Fig. 9 we plot the mini-
mal energies required to excite two Majorana fermions,
as given by

⌦min.

(q) = min
k

(|"
b,c

(q � k)| + |"
c

(k)|) , (8)

where "
b,c

(k) is the Majorana spectrum of H
MF

. For
finite anisotropy, "

b,c

(k) opens a gap at all allowed mo-
menta, and consequently, also in ⌦min.

(q). Neverthe-
less, the K and K 0 points remain soft, as in the TM
spectrum. Furthermore, additional soft modes appear
at finite � in the b+c spectrum, which obeys the symme-
try ⌦min.

(q±K) = ⌦min.

(q). For example, shifting the
solid green curve (q

y

= �2⇡/3) in Fig. 9 by q
x

= 2⇡/3,
yields the solid red curve (q

y

= 2⇡/3). By demonstrat-
ing this symmetry, we conclude that H

MF

may give a
good description of the low energy excitations of the
K � � model, as seen in the TM spectrum.

V. DYNAMIC STRUCTURE FACTOR

A. Zero magnetic field

Next, we turn to spectral signatures of the K � �
spin liquid, which can be observed in experiments. The
dynamic structure factor, which is probed in inelastic
neutron scattering experiments, is defined as

S(q, !) =
X

j,↵

Z
dt hS↵

j

(t)S↵

0 (t = 0)i e�iq·(rj�r0)+i!t.

(9)
We calculated S(q, !) using an ED method for a 24-
site cluster, see appendix C for details. Fig. 10 shows
S(q, !) for several values of �. The first evident feature
is the existence of a broad excitation continuum at high
frequencies. In the Kitaev limit, � = 0, most of the
spectral weight is found at relatively low energies. As
� is increased, the low frequency spectral weight at the
Brillouin zone center (� point) is pushed towards higher
frequencies, while a low ! signal remains at the M, Y
and K/2 (midway between K and �) points. The di↵er-
ence in momentum dependence between high and low
frequencies is clearly evident by integrating over di↵er-
ent ranges of !. In Fig. 11 we show the relative inten-
sity of S(q, !), integrated over low and high frequency
ranges. In the Kitaev limit, � = 0, S(q, !) is rather
featureless. As � is increased, S(q, !), integrated over a
low frequency range, shows a star shaped pattern, sim-
ilar to the pattern seen in the ↵-RuCl3 neutron scatter-
ing experiments at low energies. In contrast, integrating
over a range of higher frequencies, shows an almost fea-
tureless momentum dependence even for finite �, again,
in qualitative agreement with the experiments.

To calculate the dynamic spin structure factor in the
context of the Majorana MFT, one must consider Z2

flux excitations with respect to the ground state, since
each spin operator inserts a flux28,29. Technically, this
requires solutions to Eqns. (6) and (7) which go beyond
the uniform ansatz considered here. It is however still
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B. Two-Majorana spectrum

We have suggested that the TM spectrum can be
associated with two-particle continua of fractionalized
excitations, some of which obey a symmetry relation
E(k

x

, k
y

) = E(k
x

+ 2⇡/3, k
y

� 2⇡/3). Interestingly, the
Majorana mean-field Hamiltonian, Eq. (5), exhibits this
symmetry for the b fermion spectrum, "

b

(k) = "
b

(k±K)
(see Appendix B for details), inducing the same symme-
try in the two-particle spectrum, ⌦

b+c

(q,k) = |"(q �
k)| + |"(k)|, as well. We note that this symmetry,
⌦

b+c

(q±K,k) = ⌦
b+c

(q,k), holds irrespectively of the
properties of the c-fermion spectrum. In Appendix A,
we show that this is consistent with the iDMRG results,
which exhibit this symmetry in the TM spectrum even
when the K � � coupling are anisotropic such that the
minima in the c spectrum move away from the K, K 0

points.
Thus, the form of H

MF

may give a good description
of the fractionalized excitations, as probed by iDMRG.
However, due to the strongly interacting nature of the
K � � model, the actual amplitudes A

ij

and B
ij

which
should be used for such a description, as well as the
value of � itself, will most likely be very di↵erent from
their values as determined by MFT. Nevertheless, we
may still compare the MF spectra with the TM spec-
tra, demonstrating the usefulness of H

MF

. To do so we
study the same cylindrical geometry considered above
using iDMRG. As in the iDMRG calculation where the
cylindrical geometry breaks the symmetry between x
and y, z bonds, also here we choose di↵erent amplitudes
A

ij

, B
ij

for di↵erent bonds. In Fig. 9 we plot the mini-
mal energies required to excite two Majorana fermions,
as given by

⌦min.

(q) = min
k

(|"
b,c

(q � k)| + |"
c

(k)|) , (8)

where "
b,c

(k) is the Majorana spectrum of H
MF

. For
finite anisotropy, "

b,c

(k) opens a gap at all allowed mo-
menta, and consequently, also in ⌦min.

(q). Neverthe-
less, the K and K 0 points remain soft, as in the TM
spectrum. Furthermore, additional soft modes appear
at finite � in the b+c spectrum, which obeys the symme-
try ⌦min.

(q±K) = ⌦min.

(q). For example, shifting the
solid green curve (q

y

= �2⇡/3) in Fig. 9 by q
x

= 2⇡/3,
yields the solid red curve (q

y

= 2⇡/3). By demonstrat-
ing this symmetry, we conclude that H

MF

may give a
good description of the low energy excitations of the
K � � model, as seen in the TM spectrum.

V. DYNAMIC STRUCTURE FACTOR

A. Zero magnetic field

Next, we turn to spectral signatures of the K � �
spin liquid, which can be observed in experiments. The
dynamic structure factor, which is probed in inelastic
neutron scattering experiments, is defined as

S(q, !) =
X

j,↵

Z
dt hS↵

j

(t)S↵

0 (t = 0)i e�iq·(rj�r0)+i!t.

(9)
We calculated S(q, !) using an ED method for a 24-
site cluster, see appendix C for details. Fig. 10 shows
S(q, !) for several values of �. The first evident feature
is the existence of a broad excitation continuum at high
frequencies. In the Kitaev limit, � = 0, most of the
spectral weight is found at relatively low energies. As
� is increased, the low frequency spectral weight at the
Brillouin zone center (� point) is pushed towards higher
frequencies, while a low ! signal remains at the M, Y
and K/2 (midway between K and �) points. The di↵er-
ence in momentum dependence between high and low
frequencies is clearly evident by integrating over di↵er-
ent ranges of !. In Fig. 11 we show the relative inten-
sity of S(q, !), integrated over low and high frequency
ranges. In the Kitaev limit, � = 0, S(q, !) is rather
featureless. As � is increased, S(q, !), integrated over a
low frequency range, shows a star shaped pattern, sim-
ilar to the pattern seen in the ↵-RuCl3 neutron scatter-
ing experiments at low energies. In contrast, integrating
over a range of higher frequencies, shows an almost fea-
tureless momentum dependence even for finite �, again,
in qualitative agreement with the experiments.

To calculate the dynamic spin structure factor in the
context of the Majorana MFT, one must consider Z2

flux excitations with respect to the ground state, since
each spin operator inserts a flux28,29. Technically, this
requires solutions to Eqns. (6) and (7) which go beyond
the uniform ansatz considered here. It is however still



Mean-field theory on Cylinder

two-particle spectrum

7

⌦
m
in
.

(q
)

q

x

/⇡

q

y

/⇡ = 0
2/3

�2/3

�/⇡ = 0.275

FIG. 9. b+c (solid) and c+c (dashed) two-Majorana fermion
spectrum plotted along the three momentum cuts allowed on
a cylinder with a three unit cell circumference (see fig. 7)

B. Two-Majorana spectrum
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excitations, some of which obey a symmetry relation
E(k

x

, k
y

) = E(k
x

+ 2⇡/3, k
y

� 2⇡/3). Interestingly, the
Majorana mean-field Hamiltonian, Eq. (5), exhibits this
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(see Appendix B for details), inducing the same symme-
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we show that this is consistent with the iDMRG results,
which exhibit this symmetry in the TM spectrum even
when the K � � coupling are anisotropic such that the
minima in the c spectrum move away from the K, K 0
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Thus, the form of H
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may give a good description
of the fractionalized excitations, as probed by iDMRG.
However, due to the strongly interacting nature of the
K � � model, the actual amplitudes A
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which
should be used for such a description, as well as the
value of � itself, will most likely be very di↵erent from
their values as determined by MFT. Nevertheless, we
may still compare the MF spectra with the TM spec-
tra, demonstrating the usefulness of H

MF

. To do so we
study the same cylindrical geometry considered above
using iDMRG. As in the iDMRG calculation where the
cylindrical geometry breaks the symmetry between x
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, B
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as given by
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where "
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. For
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menta, and consequently, also in ⌦min.
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II. METHOD
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the lattice on a cylinder and mapping the cylinder to a
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the cylinder geometry, one dimension of the lattice is fi-
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circ

= 6, 12 sites,
ii) rhombic-2 with L

circ

= 10, and iii) rectangular with
L

circ

= 8, 12. See Fig. ?? for an illustration of the unit
cells and the accessible momenta.

FIG. 3. Accessible momenta for ‘rhombic-2’ Lcirc = 10

III. PHASE DIAGRAM OBTAINED USING
IDMRG
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following phases are observed: i) �/⇡ < 0.015...0.045:
ferromagnetic Kitaev spin liquid (KSL) phase. ii)
0.015...0.045 < �/⇡ < 0.58...0.6: extended quantum
paramagnetic / spin liquid phase. iii) 0.58...0.6 < �/⇡ <
0.96: vortex ordered state around Klein point at �/⇡ =
3/4 [? ]. iv) 0.96 < �/⇡: antiferromagnetic KSL phase.

Now, a detailed discussion of each phase follows.
i) Ferromagnetic Kitaev Spin Liquid. The first phase

is known to contain gapless fermions and gapped vortex
excitations[? ]. Introducing a small � coupling allows
vortices to hop and also creates or annihilates vortices.
Thus the plaquette fluxes are not conserved (only con-
served mod2) and di↵erent flux sectors mix.

On a cylinder, the KSL has two topological sectors:
One being gapless (if accessible momenta go through K-
points) and corresponding to periodic boundary condi-
tions and the second being gapped and corresponding to
antiperiodic boundary of the fermions. The sectors are
identified by a Wilson loop operator winding around the
cylinder W

l

=
Q

j2C �x

j

= ±1. W
l

= �1 corresponds
to the gapless sector and is metastable. As such it is
only accessible by starting with an initial state close to
the metastable state. Introducing a perturbation with a
small � term leads to swap into the gapped sector.

The transition into the second phase ii) is marked by
a divergent correlation length ⇠ (cf. data for rhombic
with L

circ

= 6: Fig. 4 and 5) together with a drop of
the flux or plaquette operator W

p

=
Q

i2C
p

��

i

and W
l

(cf. all geometries). The spectrum of the transfer matrix
is connected to the energy gap [? ], and the decrease
of the gap seems to appear simultaneously at 0K1 and
2/3K1 (Fig. 7). Even though the component of k in
along K2 is not known, the former results suggest the
gap closing/decrease at the �- and K-point. The static
structure factor does exhibit small cusps or kinks, but
only minor shifting of weights (cf. Fig. 6 and Fig. 11).

An additional feature of the transition for the rhombic
unit cells (rhombic and rhombic-2) is, that the entangle-
ment spectrum (ES) changes from a doubly degenerate
to a non-degenerate lowest eigenvalue (cf. Fig. 6). This

S↵
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1

2
ib↵i ci



6

FIG. 8. Energy density per bond, as obtained using iDMRG.
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etry. Symbols indicate the coinciding positions of the soft
single and two-particle excitations, as deduced from the TM
spectrum. • indicate the leading soft modes at K, K0 and M
points. Additional soft modes are plotted for � = 0.03⇡ (N)
and � = 0.2⇡ (⌅). As � is tuned between these values, we
expect that these minima smoothly move from the ⌅s to the
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the ground state is likely to remain the same. Support-
ing this conclusion is the fact that at � = 0.025⇡ there
is a sudden increase in bond anisotropy (see figure 8),
which is a result of the cylindrical geometry with finite
circumference. Hence the discontinuity can be inter-
preted as a “Fermi surface topology” change in quasi-
particle spectrum. (ii) The positions of the excitation
continuum minima, and their evolution as a function of
�, strongly indicate that the paramagnetic phase of the
K � � model harbours coherent excitations commonly
associated with quantum spin liquids. Thus, it is reason-
able to conclude that in the entire region 0 < � < 0.6⇡,
the K��model has a quantum spin liquid ground state,
which shares basic properties with the ground state of
the ferromagnetic Kitaev model.

IV. MAJORANA MEAN-FIELD THEORY

Motivated by the iDMRG results of the previous sec-
tion, we would like to formulate a Fermionic mean-field
theory which closely resembles the exact solution of the
Kitaev model. Therefore, following Kitaev4, we replace
the spin operators in the Hamiltonian with products of
Majorana fermion operators, 2S↵

i
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,
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0 otherwise

. (3)

Similar definitions follow for x and y-type bonds. Here,
the Majorana fermion operators are normalized such
that {b↵
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j

} = 2�
ij
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↵�

and {c
i

, c
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} = 2�
ij

. The phys-
ical Hilbert space of the spin Hamiltonian H is then
obtained by projecting the Majorana Hamiltonian H̃
onto the subspace of states | i which obey D
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| i = | i. Within a mean-field approach, we
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where the fields A

ij

and B
ij

obey the mean-field self-
consistency equations on each bond,

A
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K↵�

ij
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B

, (5)

B
ij

= hic
i

c
j
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A

. (6)

Given the ground state | 0i
MF

of H
MF

, it is possi-
ble to construct an approximate ground state for H
by projection onto the physical Hilbert space, | 0i ⇡Q

i

(1 + D
i

)/2 | 0i
MF

.
It is straightforward to obtain a uniform, Z2-flux-

free, solution of Equations (5) and (6), in the two-
dimensional thermodynamic limit. In the following we
use the convention that in A

ij

, B
ij

etc., the subscript i
indicates a site on the odd sublattice and j a site on the
even sublattice. Assuming that A

ij

⌘ A on all bonds,
we obtain B

ij

⌘ B = 0.5248, which is independent of
A. Similarly, A is independent of B, but it does de-
pend on the ratio K/�. The mean-field ground state
energy per bond is given by E

MF

= �AB. By solv-
ing H

MF

, it is possible to obtain the Majorana fermion
spectrum, shown in Fig. 10 along high symmetry lines
in the Brillouin zone, for several values of �. In the Ki-
taev limit, � = 0, one finds a single dispersing c-fermion
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FIG. 16. Magnetization and second derivative of the energy
as a function of magnetic field, parallel , h||c⇤ , and perpen-
dicular, h?c

⇤ , to c⇤ = (1, 1, 1).

seen both in experiments and in the ED calculation.

B. J3 terms and finite magnetic field

Zig-zag magnetic ordering, similar to the magnetically
ordered state observed in ↵-RuCl3 at low temperatures,
can be stabilized by adding a third neighbor Heisenberg
term, J3

P
↵,hiji23rdn.n.

S↵

i

S↵

j

to the Hamiltonian, Eq.
(1). Furthermore, it is possible to suppress this order-
ing tendency by applying a magnetic field, �P

i↵

h↵S↵

i

.
This is evident in Fig 15, which displays S(q, !) for
�/⇡ = 0.2, J3 = 0.05 and several values of the in-
plane magnetic field h?c

⇤ ⇠ (�1, 1, 0), perpendicular
to c⇤ = (1, 1, 1), which corresponds to the out-of-plane

direction. With h?c

⇤ = 0 the low ! spectral weight is
increased at the M and Y points, but not at K/2. No-
tice, however, that the higher energy parts of the spec-
tra are relatively unchanged with finite J3, compared to
Fig. 12 with �/⇡ = 0.2 and J3 = 0. Specifically, most
of the zone center (� point) spectral weight is found
at relatively high energies. When h?c

⇤ is increased be-
yond h?c

⇤ ⇠ 0.1, the zone center spectral weight shifts
towards lower energies, and a continuum of excitations
emerges.

Fig. 16 shows magnetization curves as obtained with
ED, for magnetic fields pointing parallel, h||c⇤ , and per-
pendicular, h?c

⇤ , to c⇤. A peak at h?c

⇤ ⇠ 0.1 in
the second derivative of the energy �d2E/dh2

?c

⇤ , in-
dicates an apparent transition away from zig-zag or-
der. In addition, the magnetization curves display
an easy axis anisotropy, also consistent with ↵-RuCl3
experiments9,10. A simple mean-field analysis qualita-
tively explains the easy-plane as follows: If a ferromag-
netically ordered moment ~m is assumed as a classical
Weiss field, the mean-field energy Emf is obtained as

Emf/N = �K � 3J3

2
(m2

x

+ m2
y

+ m2
z

)

+�(m
y

m
z

+ m
z

m
x

+ m
x

m
y

)

= �K + � � 3J3

2
(m2

x

+ m2
y

+ m2
z

)

+
�

2
(m

x

+ m
y

+ m
z

)2, (10)

which is minimized, for finite � > 0, when m
x

+ m
y

+
m

z

= 0 is satisfied, i.e., when the magnetic moments
are in-plane.

VI. CONCLUSIONS

In this work, we investigated a spin model with both
the Kitaev (K) and symmetric-anisotropic (�) interac-
tions on the honeycomb lattice using iDMRG, exact di-
agonalization, and Majorana mean-field theory. This
model is strongly motivated by recent experiments on
↵-RuCl3, where K and � are likely to be the dominant
exchange interactions.

We found strong numerical evidence for the existence
of a quantum spin liquid for arbitrary ratio of �/K for
ferro-like Kitaev interactions in iDMRG. In particular,
the entanglement entropy remains very high in this en-
tire region while we do not see any sign of magnetic
order in iDMRG computations. In contrast, we found
a magnetically ordered state with very small entangle-
ment entropy on the antiferro-like Kitaev side. More-
over, we demonstrated the existence of coherent two-
dimensional multi-particle excitations using the corre-
spondence between transfer-matrix eigenvalues and the

Effect of Magnetic Field

For the in-plane field, the transition occurs at about 
1/10 of the exchange energy scale

9

FIG. 5. (Color online) a) Magnetic phase diagram for single crystal ↵-RuCl3 in magnetic field H ? c⇤. Solid points mark the
maxima in the di↵erential susceptibility dM/dH derived from data shown in panel b) (upper traces). Open symbols mark the
maximum in M(T ) VSM temperature sweeps, as shown in the pane inset for constant magnetic field values close to the phase
boundary. The dashed line is a guide to the eye phase boundary between the zigzag antiferromagnetic phase (yellow shading)
and paramagnetic (PM, blue shading). b) M(H,T ) data recorded in the rising part of 15 T field pulses at a series of constant
temperatures. At lower temperatures, the steep rise in M(H) is strongly suggestive of a field-induced phase transition near
8 T. c) M(H,T ) data recorded in the rising part of 60 T field pulses in both the antiferromagnetic and paramagnetic phases.

FIG. 6. (Color online) The zigzag magnetic structure of ↵-
RuCl3. The magnetic moments of ruthenium atoms colored
red and blue are aligned antiparallel and oriented within the
ac-plane. Ru-Ru connections are drawn in thick black lines
to illustrate the honeycomb layers, and the C2/m monoclinic
unit cell is drawn in thin gray lines.

The two magnetic reflections observed in the di↵er-
ence di↵raction data in Fig. 7 at d = 3.88 and 7.67 Å
are indexed as (-1,2,0.5) and (0,1,0.5), respectively. The
peak at higher d-spacing was found to be significantly
broader than that at 3.88 Å. We assign this broaden-
ing to the e↵ects of stacking faults, as discussed above.
Without a fully quantitative model of the stacking faults
we cannot rule out the possible existence of otherwise un-

observed weak magnetic reflections close to background
levels. However, all statistically significant reflections can
be fit using a peak specific broadening model, hence al-
lowing for the zigzag and stripy models, and the moment
direction, to be tested.

FIG. 7. (Color online) Neutron powder di↵raction data mea-
sured at 6 K, with the 20 K paramagnetic data subtracted.
The di↵raction pattern for both zigzag (black solid line) and
stripy (brown dashed line) models are calculated and plotted
for a moment oriented along c⇤, a similar level of agreement
for the zigzag structure could be obtained for a general mo-
ment direction in the ac plane. Inset: fit to the (001) nuclear
Bragg reflection, una↵ected by stacking faults, used for cali-
brating the magnetic di↵raction intensities.
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for a moment oriented along c⇤, a similar level of agreement
for the zigzag structure could be obtained for a general mo-
ment direction in the ac plane. Inset: fit to the (001) nuclear
Bragg reflection, una↵ected by stacking faults, used for cali-
brating the magnetic di↵raction intensities.
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Conclusion
K-Γ model gives quantum spin liquid phases in an extended 

region of phase diagram when K < 0

Other perturbations such as J3 give the Zig-Zag order

The “phase transition” is a result of the change in 
anisotropy of the bond energy: 

Meta-nematic transition ? 
Survives in 2D limit or not ?

There are coherent 2D excitations while there is 
no magnetic order for K < 0, Γ > 0

Transfer matrix spectra can be interpreted as  
lower boundary of two-spinon excitations



Large Intrinsic Spin Hall 
Effect in Iridate Semimetal

SrIrO3

A. S. Patri, K. Hwang, H.-W. Lee, YBK, arXiv:1711.00861



Orthorhombic Perovskite SrIrO3 2

FIG. 1. Crystal structure and electron energy bands of orthorhombic perovskite SrIrO3. (a) Orthorhombic unit cell with four
Ir sublattices (numbered) and oxygen octahedra surrounding the Ir sites. (b) Brillouin zone, with labelled points Y=(⇡,0,0),
X=(0,⇡,0), Z=(0,0,⇡), R=(⇡,⇡,⇡), U=(0, ⇡,⇡) in the coordinate of (k

a

, k
b

, k
c

) [=(k · a,k · b,k · c) where {a,b, c} are the
orthorhombic lattice vectors]. (c) Electron energy bands at the k

b

= ⇡ plane (R-U-X-S) of the Brillouin zone. (d) Fermi surface
cross sections within the k

b

= ⇡ plane for various Fermi energies.

(010)c thin film of SrIrO3, where pseudo-cubic coordi-
nate system is used to describe the thin film direction,
which enables a more direct connection to the recent ex-
perimental work.

Our computations predict the spin Hall conductiv-
ity in the bulk system to be remarkably large [�bulk

SH ⇠
104(~/e)(⌦m)�1], comparable to the spin Hall conduc-
tivity in the heavy elemental metal family. Moreover, we
demonstrate that the bulk spin Hall conductivity is ro-
bust and stable despite the introduction of various sym-
metry breaking terms, as well as lifting of the gapless
nodal line, due to the persisting nearly degenerate elec-
tronic spectra. Our thin film calculations predict a large
film spin Hall conductivity [�film

SH ⇠ 104(~/e)(⌦m)�1] in
the configuration corresponding to the experiment, which
is at least one order of magnitude greater than the same
configuration in the bulk system. We attribute this sur-
prising enhancement to the significant modification of the
bulk-like eigenstates in the film (due to the restricted ge-
ometry breaking certain lattice symmetries). The enor-
mity of the spin Hall conductivity predicted in this study
for both the bulk and thin film systems, as well as the
robustness of their response, promises a bright and ex-
citing future for the family of 5d transition metal oxides
in the field of spintronics.

The rest of the paper is organized as follows. In Sec.
II, we describe the important properties of the tight bind-
ing Hamiltonian (including the Pbnm space group that
it belongs to), as well as the key features in the band
structure. In Sec. III, we present the Kubo formula used
to compute the spin Hall conductivity, and the spin Hall
conductivity as a function of the Fermi level for di↵erent

directions. We also elucidate on which regions contribute
the most to the spin Hall conductivity, to explain the un-
expectedly large values, and discuss the role of the nodal
line in the spin Hall conductivity. In Sec. IV, we in-
corporate various types of symmetry breaking terms into
our bulk model calculation, and study the reasons for the
small (less than order of magnitude) change despite the
introduction of these terms. In Sec. V, we examine the
spin Hall conductivity in the (010)c thin film configura-
tion. Lastly, in Sec. VI, we summarize our results and
discuss their relevance, as well as provide direction for
future work.

II. MODEL HAMILTONIAN

We employ the tight-binding model constructed in
Refs. 28 and 29 to describe the electronic structure
of SrIrO3. Due to the significant tilting and rotation
of oxygen octahedra, the system has the orthorhombic
perovskite crystal structure with four Ir sublattices and
Pbnm nonsymmorphic space group (Fig. 1). In the basis
of the je↵ = 1/2 states for Ir4+ electrons, the model in-
corporates various electron hopping channels allowed in
the orthorhombic perovskite SrIrO3 with the following
form of Hamiltonian.

H =
X

k

 †
kHk k. (1)

Here,  = ( 1", 2", 3", 4", 1#, 2#, 3#, 4#)T are
electron operators with the subscripts referring to the Ir
sublattice (1,2,3,4) and je↵ = 1/2 pseudo-spin (", #), and
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prising enhancement to the significant modification of the
bulk-like eigenstates in the film (due to the restricted ge-
ometry breaking certain lattice symmetries). The enor-
mity of the spin Hall conductivity predicted in this study
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robustness of their response, promises a bright and ex-
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line in the spin Hall conductivity. In Sec. IV, we in-
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our bulk model calculation, and study the reasons for the
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introduction of these terms. In Sec. V, we examine the
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TABLE I. Pbnm space group symmetry and remaining symmetries in various symmetry-broken systems. In the second column,
the symmetry operations are defined by the transformation rules of the position vector (R = aâ+bb̂+cĉ ! R0 = a0â+b0b̂+c0ĉ).
The last four columns represent the remaining symmetries in the symmetry-broken bulk systems (Sec. IV) and (010)

c

thin film
(Sec. V) with checkmarks.

Symmetry R0 H + h
gap

[Bulk] H + h
xz

[Bulk] H + h
xx

[Bulk] (010)
c

[Film]
n-glide (G

n

) a+ 1
2 , �b+ 1

2 , c+
1
2

b-glide (G
b

) �a+ 1
2 , b+

1
2 , c X X

Mirror (m) a, b, �c+ 1
2 X X

Inversion (Ī) �a, �b, �c X X X X
a-screw (S

a

) a+ 1
2 , �b+ 1

2 , �c X X
b-screw (S

b

) �a+ 1
2 , b+

1
2 , �c+ 1

2
c-screw (S

c

) �a, �b, c+ 1
2 X X

k is crystal momentum. The matrix Hk contains ten dif-
ferent hopping channels up to the next nearest neighbor.
Depending on whether the pseudo-spin changes during
hopping processes or not, the hopping channels are clas-
sified into spin-dependent hopping {t0p, to1p, to2p, toz, tod} and
spin-independent hopping {tp, tz, txy, td, t0d}. The oxy-
gen octahedron tilting and rotation generate the spin-
dependent hopping which is crucial for the SHE in
SrIrO3. Such spin-dependent hopping is not allowed in
the perfect cubic perovskite. For the hopping parame-
ters, we use the values obtained in Ref. 28 based on ab

initio calculations. The explicit form of Hk and values of
the hopping parameters are presented in Appendix A.

The Pbnm space group symmetry, discussed above,
dictates the relations between the components of the spin
Hall conductivity tensor, as well as protects various fea-
tures of the band structure. To aid in the discussion
to follow in the upcoming sections, we present in Table
I a summary of the Pbnm space group, as well as the
remaining symmetries in various symmetry-broken bulk
systems (Sec. IV) and thin film (Sec. V).

Figure 1 depicts the electron band structure of the sys-
tem at the particular kb = ⇡ plane (R-U-X-S) in the
Brillouin zone. There are four doubly degenerate bands
on account of four sublattices and Kramers degeneracy.
One remarkable feature is the band crossing occurring
along a ring about the U point.28,29 This “nodal ring”
is quite small, but protected by nonsymmorphic symme-
tries compatible with the kb = ⇡ plane.33 Another inter-
esting point is the “near-degeneracy” of the four bands
found at the kb = ⇡ plane and ka = ⇡ plane (T-R-S-Y)
as highlighted by cyan in Fig. 3. It must be noted both
features appear by spin-dependent electron hopping in
the system. Interestingly, the nearly degenerate struc-
ture and the size of the nodal ring are correlated and
controlled by the same hopping parameter tod. In fact,
this intimate correlation between the two features pre-
vails in a wide window of permissible values of tod, so
that the ring appears concurrently with the presence of
the nearly degenerate structure (provided the necessary
nodal ring symmetry is intact). Even when the ring is
gently gapped out (as will be seen) the nearly degener-
ate structure is preserved. Such a correlated structure,

however, will eventually be suppressed by a large per-
turbation which may significantly modify the underlying
band structure.

A. Symmetry-Protected Nodal Line

Before we move on to the next section, we briefly re-
view the mechanism of the symmetry-protected nodal
line33 for self-containedness in our discussions. The nodal
line band crossing (or nodal ring) occurs by the interplay
of the three nonsymmorphic symmetries, n-glide plane
(Gn), b-glide plane (Gb), and a-screw axis (Sa), and its
symmetry protection can be understood by investigating
the little group of the Hamiltonian matrix Hk.

TABLE II. Elements of the little group of Hk at various high
symmetry locations in the Brillouin zone. In each case, little
group elements are denoted with checkmarks.
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TABLE I. Pbnm space group symmetry and remaining symmetries in various symmetry-broken systems. In the second column,
the symmetry operations are defined by the transformation rules of the position vector (R = aâ+bb̂+cĉ ! R0 = a0â+b0b̂+c0ĉ).
The last four columns represent the remaining symmetries in the symmetry-broken bulk systems (Sec. IV) and (010)
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thin film
(Sec. V) with checkmarks.
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k is crystal momentum. The matrix Hk contains ten dif-
ferent hopping channels up to the next nearest neighbor.
Depending on whether the pseudo-spin changes during
hopping processes or not, the hopping channels are clas-
sified into spin-dependent hopping {t0p, to1p, to2p, toz, tod} and
spin-independent hopping {tp, tz, txy, td, t0d}. The oxy-
gen octahedron tilting and rotation generate the spin-
dependent hopping which is crucial for the SHE in
SrIrO3. Such spin-dependent hopping is not allowed in
the perfect cubic perovskite. For the hopping parame-
ters, we use the values obtained in Ref. 28 based on ab

initio calculations. The explicit form of Hk and values of
the hopping parameters are presented in Appendix A.

The Pbnm space group symmetry, discussed above,
dictates the relations between the components of the spin
Hall conductivity tensor, as well as protects various fea-
tures of the band structure. To aid in the discussion
to follow in the upcoming sections, we present in Table
I a summary of the Pbnm space group, as well as the
remaining symmetries in various symmetry-broken bulk
systems (Sec. IV) and thin film (Sec. V).

Figure 1 depicts the electron band structure of the sys-
tem at the particular kb = ⇡ plane (R-U-X-S) in the
Brillouin zone. There are four doubly degenerate bands
on account of four sublattices and Kramers degeneracy.
One remarkable feature is the band crossing occurring
along a ring about the U point.28,29 This “nodal ring”
is quite small, but protected by nonsymmorphic symme-
tries compatible with the kb = ⇡ plane.33 Another inter-
esting point is the “near-degeneracy” of the four bands
found at the kb = ⇡ plane and ka = ⇡ plane (T-R-S-Y)
as highlighted by cyan in Fig. 3. It must be noted both
features appear by spin-dependent electron hopping in
the system. Interestingly, the nearly degenerate struc-
ture and the size of the nodal ring are correlated and
controlled by the same hopping parameter tod. In fact,
this intimate correlation between the two features pre-
vails in a wide window of permissible values of tod, so
that the ring appears concurrently with the presence of
the nearly degenerate structure (provided the necessary
nodal ring symmetry is intact). Even when the ring is
gently gapped out (as will be seen) the nearly degener-
ate structure is preserved. Such a correlated structure,

however, will eventually be suppressed by a large per-
turbation which may significantly modify the underlying
band structure.

A. Symmetry-Protected Nodal Line

Before we move on to the next section, we briefly re-
view the mechanism of the symmetry-protected nodal
line33 for self-containedness in our discussions. The nodal
line band crossing (or nodal ring) occurs by the interplay
of the three nonsymmorphic symmetries, n-glide plane
(Gn), b-glide plane (Gb), and a-screw axis (Sa), and its
symmetry protection can be understood by investigating
the little group of the Hamiltonian matrix Hk.

TABLE II. Elements of the little group of Hk at various high
symmetry locations in the Brillouin zone. In each case, little
group elements are denoted with checkmarks.
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FIG. 1. Crystal structure and electron energy bands of orthorhombic perovskite SrIrO3. (a) Orthorhombic unit cell with four
Ir sublattices (numbered) and oxygen octahedra surrounding the Ir sites. (b) Brillouin zone, with labelled points Y=(⇡,0,0),
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(010)c thin film of SrIrO3, where pseudo-cubic coordi-
nate system is used to describe the thin film direction,
which enables a more direct connection to the recent ex-
perimental work.

Our computations predict the spin Hall conductiv-
ity in the bulk system to be remarkably large [�bulk

SH ⇠
104(~/e)(⌦m)�1], comparable to the spin Hall conduc-
tivity in the heavy elemental metal family. Moreover, we
demonstrate that the bulk spin Hall conductivity is ro-
bust and stable despite the introduction of various sym-
metry breaking terms, as well as lifting of the gapless
nodal line, due to the persisting nearly degenerate elec-
tronic spectra. Our thin film calculations predict a large
film spin Hall conductivity [�film

SH ⇠ 104(~/e)(⌦m)�1] in
the configuration corresponding to the experiment, which
is at least one order of magnitude greater than the same
configuration in the bulk system. We attribute this sur-
prising enhancement to the significant modification of the
bulk-like eigenstates in the film (due to the restricted ge-
ometry breaking certain lattice symmetries). The enor-
mity of the spin Hall conductivity predicted in this study
for both the bulk and thin film systems, as well as the
robustness of their response, promises a bright and ex-
citing future for the family of 5d transition metal oxides
in the field of spintronics.

The rest of the paper is organized as follows. In Sec.
II, we describe the important properties of the tight bind-
ing Hamiltonian (including the Pbnm space group that
it belongs to), as well as the key features in the band
structure. In Sec. III, we present the Kubo formula used
to compute the spin Hall conductivity, and the spin Hall
conductivity as a function of the Fermi level for di↵erent

directions. We also elucidate on which regions contribute
the most to the spin Hall conductivity, to explain the un-
expectedly large values, and discuss the role of the nodal
line in the spin Hall conductivity. In Sec. IV, we in-
corporate various types of symmetry breaking terms into
our bulk model calculation, and study the reasons for the
small (less than order of magnitude) change despite the
introduction of these terms. In Sec. V, we examine the
spin Hall conductivity in the (010)c thin film configura-
tion. Lastly, in Sec. VI, we summarize our results and
discuss their relevance, as well as provide direction for
future work.

II. MODEL HAMILTONIAN

We employ the tight-binding model constructed in
Refs. 28 and 29 to describe the electronic structure
of SrIrO3. Due to the significant tilting and rotation
of oxygen octahedra, the system has the orthorhombic
perovskite crystal structure with four Ir sublattices and
Pbnm nonsymmorphic space group (Fig. 1). In the basis
of the je↵ = 1/2 states for Ir4+ electrons, the model in-
corporates various electron hopping channels allowed in
the orthorhombic perovskite SrIrO3 with the following
form of Hamiltonian.

H =
X

k

 †
kHk k. (1)

Here,  = ( 1", 2", 3", 4", 1#, 2#, 3#, 4#)T are
electron operators with the subscripts referring to the Ir
sublattice (1,2,3,4) and je↵ = 1/2 pseudo-spin (", #), and
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configuration in the bulk system. We attribute this sur-
prising enhancement to the significant modification of the
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nate system is used to describe the thin film direction,
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ity in the bulk system to be remarkably large [�bulk
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104(~/e)(⌦m)�1], comparable to the spin Hall conduc-
tivity in the heavy elemental metal family. Moreover, we
demonstrate that the bulk spin Hall conductivity is ro-
bust and stable despite the introduction of various sym-
metry breaking terms, as well as lifting of the gapless
nodal line, due to the persisting nearly degenerate elec-
tronic spectra. Our thin film calculations predict a large
film spin Hall conductivity [�film

SH ⇠ 104(~/e)(⌦m)�1] in
the configuration corresponding to the experiment, which
is at least one order of magnitude greater than the same
configuration in the bulk system. We attribute this sur-
prising enhancement to the significant modification of the
bulk-like eigenstates in the film (due to the restricted ge-
ometry breaking certain lattice symmetries). The enor-
mity of the spin Hall conductivity predicted in this study
for both the bulk and thin film systems, as well as the
robustness of their response, promises a bright and ex-
citing future for the family of 5d transition metal oxides
in the field of spintronics.

The rest of the paper is organized as follows. In Sec.
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ing Hamiltonian (including the Pbnm space group that
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structure. In Sec. III, we present the Kubo formula used
to compute the spin Hall conductivity, and the spin Hall
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the most to the spin Hall conductivity, to explain the un-
expectedly large values, and discuss the role of the nodal
line in the spin Hall conductivity. In Sec. IV, we in-
corporate various types of symmetry breaking terms into
our bulk model calculation, and study the reasons for the
small (less than order of magnitude) change despite the
introduction of these terms. In Sec. V, we examine the
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tion. Lastly, in Sec. VI, we summarize our results and
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(010)c thin film of SrIrO3, where pseudo-cubic coordi-
nate system is used to describe the thin film direction,
which enables a more direct connection to the recent ex-
perimental work.

Our computations predict the spin Hall conductiv-
ity in the bulk system to be remarkably large [�bulk

SH ⇠
104(~/e)(⌦m)�1], comparable to the spin Hall conduc-
tivity in the heavy elemental metal family. Moreover, we
demonstrate that the bulk spin Hall conductivity is ro-
bust and stable despite the introduction of various sym-
metry breaking terms, as well as lifting of the gapless
nodal line, due to the persisting nearly degenerate elec-
tronic spectra. Our thin film calculations predict a large
film spin Hall conductivity [�film

SH ⇠ 104(~/e)(⌦m)�1] in
the configuration corresponding to the experiment, which
is at least one order of magnitude greater than the same
configuration in the bulk system. We attribute this sur-
prising enhancement to the significant modification of the
bulk-like eigenstates in the film (due to the restricted ge-
ometry breaking certain lattice symmetries). The enor-
mity of the spin Hall conductivity predicted in this study
for both the bulk and thin film systems, as well as the
robustness of their response, promises a bright and ex-
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nate system is used to describe the thin film direction,
which enables a more direct connection to the recent ex-
perimental work.

Our computations predict the spin Hall conductiv-
ity in the bulk system to be remarkably large [�bulk

SH ⇠
104(~/e)(⌦m)�1], comparable to the spin Hall conduc-
tivity in the heavy elemental metal family. Moreover, we
demonstrate that the bulk spin Hall conductivity is ro-
bust and stable despite the introduction of various sym-
metry breaking terms, as well as lifting of the gapless
nodal line, due to the persisting nearly degenerate elec-
tronic spectra. Our thin film calculations predict a large
film spin Hall conductivity [�film

SH ⇠ 104(~/e)(⌦m)�1] in
the configuration corresponding to the experiment, which
is at least one order of magnitude greater than the same
configuration in the bulk system. We attribute this sur-
prising enhancement to the significant modification of the
bulk-like eigenstates in the film (due to the restricted ge-
ometry breaking certain lattice symmetries). The enor-
mity of the spin Hall conductivity predicted in this study
for both the bulk and thin film systems, as well as the
robustness of their response, promises a bright and ex-
citing future for the family of 5d transition metal oxides
in the field of spintronics.

The rest of the paper is organized as follows. In Sec.
II, we describe the important properties of the tight bind-
ing Hamiltonian (including the Pbnm space group that
it belongs to), as well as the key features in the band
structure. In Sec. III, we present the Kubo formula used
to compute the spin Hall conductivity, and the spin Hall
conductivity as a function of the Fermi level for di↵erent

directions. We also elucidate on which regions contribute
the most to the spin Hall conductivity, to explain the un-
expectedly large values, and discuss the role of the nodal
line in the spin Hall conductivity. In Sec. IV, we in-
corporate various types of symmetry breaking terms into
our bulk model calculation, and study the reasons for the
small (less than order of magnitude) change despite the
introduction of these terms. In Sec. V, we examine the
spin Hall conductivity in the (010)c thin film configura-
tion. Lastly, in Sec. VI, we summarize our results and
discuss their relevance, as well as provide direction for
future work.
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TABLE I. Pbnm space group symmetry and remaining symmetries in various symmetry-broken systems. In the second column,
the symmetry operations are defined by the transformation rules of the position vector (R = aâ+bb̂+cĉ ! R0 = a0â+b0b̂+c0ĉ).
The last four columns represent the remaining symmetries in the symmetry-broken bulk systems (Sec. IV) and (010)
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k is crystal momentum. The matrix Hk contains ten dif-
ferent hopping channels up to the next nearest neighbor.
Depending on whether the pseudo-spin changes during
hopping processes or not, the hopping channels are clas-
sified into spin-dependent hopping {t0p, to1p, to2p, toz, tod} and
spin-independent hopping {tp, tz, txy, td, t0d}. The oxy-
gen octahedron tilting and rotation generate the spin-
dependent hopping which is crucial for the SHE in
SrIrO3. Such spin-dependent hopping is not allowed in
the perfect cubic perovskite. For the hopping parame-
ters, we use the values obtained in Ref. 28 based on ab

initio calculations. The explicit form of Hk and values of
the hopping parameters are presented in Appendix A.

The Pbnm space group symmetry, discussed above,
dictates the relations between the components of the spin
Hall conductivity tensor, as well as protects various fea-
tures of the band structure. To aid in the discussion
to follow in the upcoming sections, we present in Table
I a summary of the Pbnm space group, as well as the
remaining symmetries in various symmetry-broken bulk
systems (Sec. IV) and thin film (Sec. V).

Figure 1 depicts the electron band structure of the sys-
tem at the particular kb = ⇡ plane (R-U-X-S) in the
Brillouin zone. There are four doubly degenerate bands
on account of four sublattices and Kramers degeneracy.
One remarkable feature is the band crossing occurring
along a ring about the U point.28,29 This “nodal ring”
is quite small, but protected by nonsymmorphic symme-
tries compatible with the kb = ⇡ plane.33 Another inter-
esting point is the “near-degeneracy” of the four bands
found at the kb = ⇡ plane and ka = ⇡ plane (T-R-S-Y)
as highlighted by cyan in Fig. 3. It must be noted both
features appear by spin-dependent electron hopping in
the system. Interestingly, the nearly degenerate struc-
ture and the size of the nodal ring are correlated and
controlled by the same hopping parameter tod. In fact,
this intimate correlation between the two features pre-
vails in a wide window of permissible values of tod, so
that the ring appears concurrently with the presence of
the nearly degenerate structure (provided the necessary
nodal ring symmetry is intact). Even when the ring is
gently gapped out (as will be seen) the nearly degener-
ate structure is preserved. Such a correlated structure,

however, will eventually be suppressed by a large per-
turbation which may significantly modify the underlying
band structure.

A. Symmetry-Protected Nodal Line

Before we move on to the next section, we briefly re-
view the mechanism of the symmetry-protected nodal
line33 for self-containedness in our discussions. The nodal
line band crossing (or nodal ring) occurs by the interplay
of the three nonsymmorphic symmetries, n-glide plane
(Gn), b-glide plane (Gb), and a-screw axis (Sa), and its
symmetry protection can be understood by investigating
the little group of the Hamiltonian matrix Hk.

TABLE II. Elements of the little group of Hk at various high
symmetry locations in the Brillouin zone. In each case, little
group elements are denoted with checkmarks.
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FIG. 2. Schematic illustration of the mechanism of the
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cle represents the nodal ring on the k
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-eigenvalue structure of the en-
ergy bands changes along paths connecting the U point with
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tries compatible with the kb = ⇡ plane.33 Another inter-
esting point is the “near-degeneracy” of the four bands
found at the kb = ⇡ plane and ka = ⇡ plane (T-R-S-Y)
as highlighted by cyan in Fig. 3. It must be noted both
features appear by spin-dependent electron hopping in
the system. Interestingly, the nearly degenerate struc-
ture and the size of the nodal ring are correlated and
controlled by the same hopping parameter tod. In fact,
this intimate correlation between the two features pre-
vails in a wide window of permissible values of tod, so
that the ring appears concurrently with the presence of
the nearly degenerate structure (provided the necessary
nodal ring symmetry is intact). Even when the ring is
gently gapped out (as will be seen) the nearly degener-
ate structure is preserved. Such a correlated structure,

however, will eventually be suppressed by a large per-
turbation which may significantly modify the underlying
band structure.

A. Symmetry-Protected Nodal Line

Before we move on to the next section, we briefly re-
view the mechanism of the symmetry-protected nodal
line33 for self-containedness in our discussions. The nodal
line band crossing (or nodal ring) occurs by the interplay
of the three nonsymmorphic symmetries, n-glide plane
(Gn), b-glide plane (Gb), and a-screw axis (Sa), and its
symmetry protection can be understood by investigating
the little group of the Hamiltonian matrix Hk.

TABLE II. Elements of the little group of Hk at various high
symmetry locations in the Brillouin zone. In each case, little
group elements are denoted with checkmarks.
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sified into spin-dependent hopping {t0p, to1p, to2p, toz, tod} and
spin-independent hopping {tp, tz, txy, td, t0d}. The oxy-
gen octahedron tilting and rotation generate the spin-
dependent hopping which is crucial for the SHE in
SrIrO3. Such spin-dependent hopping is not allowed in
the perfect cubic perovskite. For the hopping parame-
ters, we use the values obtained in Ref. 28 based on ab

initio calculations. The explicit form of Hk and values of
the hopping parameters are presented in Appendix A.

The Pbnm space group symmetry, discussed above,
dictates the relations between the components of the spin
Hall conductivity tensor, as well as protects various fea-
tures of the band structure. To aid in the discussion
to follow in the upcoming sections, we present in Table
I a summary of the Pbnm space group, as well as the
remaining symmetries in various symmetry-broken bulk
systems (Sec. IV) and thin film (Sec. V).

Figure 1 depicts the electron band structure of the sys-
tem at the particular kb = ⇡ plane (R-U-X-S) in the
Brillouin zone. There are four doubly degenerate bands
on account of four sublattices and Kramers degeneracy.
One remarkable feature is the band crossing occurring
along a ring about the U point.28,29 This “nodal ring”
is quite small, but protected by nonsymmorphic symme-
tries compatible with the kb = ⇡ plane.33 Another inter-
esting point is the “near-degeneracy” of the four bands
found at the kb = ⇡ plane and ka = ⇡ plane (T-R-S-Y)
as highlighted by cyan in Fig. 3. It must be noted both
features appear by spin-dependent electron hopping in
the system. Interestingly, the nearly degenerate struc-
ture and the size of the nodal ring are correlated and
controlled by the same hopping parameter tod. In fact,
this intimate correlation between the two features pre-
vails in a wide window of permissible values of tod, so
that the ring appears concurrently with the presence of
the nearly degenerate structure (provided the necessary
nodal ring symmetry is intact). Even when the ring is
gently gapped out (as will be seen) the nearly degener-
ate structure is preserved. Such a correlated structure,

however, will eventually be suppressed by a large per-
turbation which may significantly modify the underlying
band structure.

A. Symmetry-Protected Nodal Line

Before we move on to the next section, we briefly re-
view the mechanism of the symmetry-protected nodal
line33 for self-containedness in our discussions. The nodal
line band crossing (or nodal ring) occurs by the interplay
of the three nonsymmorphic symmetries, n-glide plane
(Gn), b-glide plane (Gb), and a-screw axis (Sa), and its
symmetry protection can be understood by investigating
the little group of the Hamiltonian matrix Hk.
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First, we specify the little group for the kb = ⇡ plane
where the nodal line appears. Under a space group sym-
metry operation, Bloch states (momentum eigenstates)
generally move from a k point to another in the Brillouin
zone unless the operation is a pure translation. Neverthe-
less, at high symmetry points of the Brillouin zone, the
momentum of Bloch states can be invariant under certain
symmetry operations. Such symmetry operations define
the little group of Hk at a given high symmetry point.
In the case of the Pbnm space group, the entire kb = ⇡
plane is invariant under Gn. Moreover, high symmetry
points on that plane such as the U point and RS and SX
lines have further little group elements (Gb and/or Sa)
as summarized in Table II. One can check this from the
transformation rules of electron operators:

Gn :  k ! ip
2
ei

ka�kb+kc
2 (�x � �y)⌫x⌧x (ka,�kb,kc),

Gb :  k ! � ip
2
ei

�ka+kb
2 (�x + �y)⌧x (�ka,kb,kc),

Sa :  k ! � ip
2
ei

ka�kb
2 (�x + �y)⌧x (ka,�kb,�kc),

(2)
where �, µ, ⌧ represent Pauli matrices acting on spin
and sublattice degrees of freedom (see Appendix A for
the definitions). Using these transformation rules, one
can show that G2

n = �Ta+c, G2
b = �Tb, S2

a = �Ta

(where Tr represents a translation by a lattice vector r,
and the minus sign in each case arises due to a 2⇡-rotation
of je↵ = 1/2 spin). This tells us the eigenvalues of
{Gn, Gb, Sa}: n± ⌘ ±iei(ka+kc)/2 for Gn, b± ⌘ ±ieikb/2

for Gb, and a± ⌘ ±ieika/2 for Sa. Here it is important to
notice that Gn(= n±) serves as a good quantum number
to specify Bloch states over the whole kb = ⇡ plane.

Now we consider the commutation relations of the little
group elements listed in Table II. By using Eq. 2, we can
find the commutation relations for the U point and RS
and SX lines as follows.

(U) [Gn, Gb] = [Gn, Sa] = {Gb, Sa} = 0,
(RS) {Gn, Gb} = 0,
(SX) {Gn, Sa} = 0.

(3)

The anti-commutation relations impose constraints on
electron band structure: energy levels at the high symme-
try point and lines must be at least fourfold-degenerate
due to the anti-commutativeness and the Kramers de-
generacy. The minimal fourfold degeneracy is actually
observed in the band structure shown in Fig. 3 (two
fourfold-degenerate bands at the U point and along the
RS and XS lines).

More importantly, the anti-commutation relations de-
termine theGn-eigenvalue structure within each fourfold-
degenerate energy level. As illustrated in Fig. 2, the
two levels at the U point are characterized by the dif-
ferent eigenvalues: n+ for the upper and n� for the
lower. The upper level consists of four states {|n+, a+i,
|n+, a�i, ⇥|n+, a+i, ⇥|n+, a�i} which are simultaneous
eigenstates of Gn and Sa. Here ⇥ is the product of time-
reversal and spatial-inversion, and it satisfies [⇥, Gn] = 0.
These states form a four dimensional representation with

the little group structure stated in Eq. 3. In this repre-
sentation, both a+ and a� eigenstates are required by the
relation {Gb, Sa} = 0; under the Gb operation, a+ state is

mapped into a� state and vice versa (|a+i Gb$ |a�i). Sim-
ilarly, the lower level is formed by four states {|n�, a+i,
|n�, a�i, ⇥|n�, a+i, ⇥|n�, a�i} which realize another
four dimensional representation of the little group. How-
ever, there is no symmetry requirement that n+ and n�
eigenstates must coexist in each of the two energy levels
at the U point.
Along the SX line, each level comprises four states

{|n+i, |n�i, ⇥|n+i, ⇥|n�i} due to the relation

{Gn, Sa} = 0 () |n+i Sa$ |n�i). Here we stress that both
n+ and n� eigenstate appear in each level, in contrast to
the case at the U point. This means that there must be
Gn-partner exchange between the upper and lower levels
and thereby band crossing between the two bands in-
volved in the partner exchange, along any path from the
U point to the SX line (see Fig. 2). Similar argument
works for any path connecting the U point with the RS
line, in which case the relation {Gn, Gb} = 0 leads to
the coexistence of n+ and n� states in each of two en-
ergy levels. Consequently, band crossing occurs along a
ring centered around the U point, and the nodal ring
is protected so long as the nonsymmorphic symmetries
{Gn,Gb,Sa} are preserved in the system.

Although breaking of the n-glide symmetry gaps out
the nodal ring, the presence of additional nonsymmorphic
symmetries can tune the nodal ring into Weyl or Dirac
point nodes.29,38 This situation occurs when the n-glide
andm symmetries are broken while preserving the b-glide
symmetry. To completely gap out the nodal ring at all
points, requires both the n-glide and b-glide symmetries
to be broken. In the next sections, we discuss the spin
Hall e↵ect in the bulk and film systems.

III. SPIN HALL EFFECT IN BULK SYSTEM

Intrinsic spin Hall e↵ect in SrIrO3 is investigated with
a linear response theory. We compute the spin Hall con-
ductivity (SHC) tensor �⇢

µ⌫ using the Kubo formula:1,12

�⇢
µ⌫ =

2e~
V

X

k

X

✏nk<✏F<✏mk

Im

 hmk|J ⇢
µ |nkihnk|J⌫ |mki
(✏mk � ✏nk)2

�
.

(4)
In this expression, J⌫ (=

P
k  

†
k
@Hk
@k⌫

 k) is the charge

current, and J ⇢
µ (= 1

4{�⇢, Jµ}) is the spin current with
the je↵ = 1/2 spin represented by the Pauli matrix �⇢.
Other quantities in the expression are: the volume V of
the system, Bloch state |nki with energy ✏nk, and Fermi
level ✏F . The spin Hall conductivity connects an ap-
plied electric field E⌫ with an induced transverse spin
current by the relationship hJ ⇢

µ i = �⇢
µ⌫E

⌫ . Here, the
three indices imply the direction of the applied electric
field or charge current (⌫), the direction of the induced
spin current (µ), and the spin polarization axis of the
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k is crystal momentum. The matrix Hk contains ten dif-
ferent hopping channels up to the next nearest neighbor.
Depending on whether the pseudo-spin changes during
hopping processes or not, the hopping channels are clas-
sified into spin-dependent hopping {t0p, to1p, to2p, toz, tod} and
spin-independent hopping {tp, tz, txy, td, t0d}. The oxy-
gen octahedron tilting and rotation generate the spin-
dependent hopping which is crucial for the SHE in
SrIrO3. Such spin-dependent hopping is not allowed in
the perfect cubic perovskite. For the hopping parame-
ters, we use the values obtained in Ref. 28 based on ab

initio calculations. The explicit form of Hk and values of
the hopping parameters are presented in Appendix A.

The Pbnm space group symmetry, discussed above,
dictates the relations between the components of the spin
Hall conductivity tensor, as well as protects various fea-
tures of the band structure. To aid in the discussion
to follow in the upcoming sections, we present in Table
I a summary of the Pbnm space group, as well as the
remaining symmetries in various symmetry-broken bulk
systems (Sec. IV) and thin film (Sec. V).

Figure 1 depicts the electron band structure of the sys-
tem at the particular kb = ⇡ plane (R-U-X-S) in the
Brillouin zone. There are four doubly degenerate bands
on account of four sublattices and Kramers degeneracy.
One remarkable feature is the band crossing occurring
along a ring about the U point.28,29 This “nodal ring”
is quite small, but protected by nonsymmorphic symme-
tries compatible with the kb = ⇡ plane.33 Another inter-
esting point is the “near-degeneracy” of the four bands
found at the kb = ⇡ plane and ka = ⇡ plane (T-R-S-Y)
as highlighted by cyan in Fig. 3. It must be noted both
features appear by spin-dependent electron hopping in
the system. Interestingly, the nearly degenerate struc-
ture and the size of the nodal ring are correlated and
controlled by the same hopping parameter tod. In fact,
this intimate correlation between the two features pre-
vails in a wide window of permissible values of tod, so
that the ring appears concurrently with the presence of
the nearly degenerate structure (provided the necessary
nodal ring symmetry is intact). Even when the ring is
gently gapped out (as will be seen) the nearly degener-
ate structure is preserved. Such a correlated structure,

however, will eventually be suppressed by a large per-
turbation which may significantly modify the underlying
band structure.

A. Symmetry-Protected Nodal Line

Before we move on to the next section, we briefly re-
view the mechanism of the symmetry-protected nodal
line33 for self-containedness in our discussions. The nodal
line band crossing (or nodal ring) occurs by the interplay
of the three nonsymmorphic symmetries, n-glide plane
(Gn), b-glide plane (Gb), and a-screw axis (Sa), and its
symmetry protection can be understood by investigating
the little group of the Hamiltonian matrix Hk.

TABLE II. Elements of the little group of Hk at various high
symmetry locations in the Brillouin zone. In each case, little
group elements are denoted with checkmarks.
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k is crystal momentum. The matrix Hk contains ten dif-
ferent hopping channels up to the next nearest neighbor.
Depending on whether the pseudo-spin changes during
hopping processes or not, the hopping channels are clas-
sified into spin-dependent hopping {t0p, to1p, to2p, toz, tod} and
spin-independent hopping {tp, tz, txy, td, t0d}. The oxy-
gen octahedron tilting and rotation generate the spin-
dependent hopping which is crucial for the SHE in
SrIrO3. Such spin-dependent hopping is not allowed in
the perfect cubic perovskite. For the hopping parame-
ters, we use the values obtained in Ref. 28 based on ab

initio calculations. The explicit form of Hk and values of
the hopping parameters are presented in Appendix A.

The Pbnm space group symmetry, discussed above,
dictates the relations between the components of the spin
Hall conductivity tensor, as well as protects various fea-
tures of the band structure. To aid in the discussion
to follow in the upcoming sections, we present in Table
I a summary of the Pbnm space group, as well as the
remaining symmetries in various symmetry-broken bulk
systems (Sec. IV) and thin film (Sec. V).

Figure 1 depicts the electron band structure of the sys-
tem at the particular kb = ⇡ plane (R-U-X-S) in the
Brillouin zone. There are four doubly degenerate bands
on account of four sublattices and Kramers degeneracy.
One remarkable feature is the band crossing occurring
along a ring about the U point.28,29 This “nodal ring”
is quite small, but protected by nonsymmorphic symme-
tries compatible with the kb = ⇡ plane.33 Another inter-
esting point is the “near-degeneracy” of the four bands
found at the kb = ⇡ plane and ka = ⇡ plane (T-R-S-Y)
as highlighted by cyan in Fig. 3. It must be noted both
features appear by spin-dependent electron hopping in
the system. Interestingly, the nearly degenerate struc-
ture and the size of the nodal ring are correlated and
controlled by the same hopping parameter tod. In fact,
this intimate correlation between the two features pre-
vails in a wide window of permissible values of tod, so
that the ring appears concurrently with the presence of
the nearly degenerate structure (provided the necessary
nodal ring symmetry is intact). Even when the ring is
gently gapped out (as will be seen) the nearly degener-
ate structure is preserved. Such a correlated structure,

however, will eventually be suppressed by a large per-
turbation which may significantly modify the underlying
band structure.

A. Symmetry-Protected Nodal Line

Before we move on to the next section, we briefly re-
view the mechanism of the symmetry-protected nodal
line33 for self-containedness in our discussions. The nodal
line band crossing (or nodal ring) occurs by the interplay
of the three nonsymmorphic symmetries, n-glide plane
(Gn), b-glide plane (Gb), and a-screw axis (Sa), and its
symmetry protection can be understood by investigating
the little group of the Hamiltonian matrix Hk.
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k is crystal momentum. The matrix Hk contains ten dif-
ferent hopping channels up to the next nearest neighbor.
Depending on whether the pseudo-spin changes during
hopping processes or not, the hopping channels are clas-
sified into spin-dependent hopping {t0p, to1p, to2p, toz, tod} and
spin-independent hopping {tp, tz, txy, td, t0d}. The oxy-
gen octahedron tilting and rotation generate the spin-
dependent hopping which is crucial for the SHE in
SrIrO3. Such spin-dependent hopping is not allowed in
the perfect cubic perovskite. For the hopping parame-
ters, we use the values obtained in Ref. 28 based on ab

initio calculations. The explicit form of Hk and values of
the hopping parameters are presented in Appendix A.

The Pbnm space group symmetry, discussed above,
dictates the relations between the components of the spin
Hall conductivity tensor, as well as protects various fea-
tures of the band structure. To aid in the discussion
to follow in the upcoming sections, we present in Table
I a summary of the Pbnm space group, as well as the
remaining symmetries in various symmetry-broken bulk
systems (Sec. IV) and thin film (Sec. V).

Figure 1 depicts the electron band structure of the sys-
tem at the particular kb = ⇡ plane (R-U-X-S) in the
Brillouin zone. There are four doubly degenerate bands
on account of four sublattices and Kramers degeneracy.
One remarkable feature is the band crossing occurring
along a ring about the U point.28,29 This “nodal ring”
is quite small, but protected by nonsymmorphic symme-
tries compatible with the kb = ⇡ plane.33 Another inter-
esting point is the “near-degeneracy” of the four bands
found at the kb = ⇡ plane and ka = ⇡ plane (T-R-S-Y)
as highlighted by cyan in Fig. 3. It must be noted both
features appear by spin-dependent electron hopping in
the system. Interestingly, the nearly degenerate struc-
ture and the size of the nodal ring are correlated and
controlled by the same hopping parameter tod. In fact,
this intimate correlation between the two features pre-
vails in a wide window of permissible values of tod, so
that the ring appears concurrently with the presence of
the nearly degenerate structure (provided the necessary
nodal ring symmetry is intact). Even when the ring is
gently gapped out (as will be seen) the nearly degener-
ate structure is preserved. Such a correlated structure,

however, will eventually be suppressed by a large per-
turbation which may significantly modify the underlying
band structure.

A. Symmetry-Protected Nodal Line

Before we move on to the next section, we briefly re-
view the mechanism of the symmetry-protected nodal
line33 for self-containedness in our discussions. The nodal
line band crossing (or nodal ring) occurs by the interplay
of the three nonsymmorphic symmetries, n-glide plane
(Gn), b-glide plane (Gb), and a-screw axis (Sa), and its
symmetry protection can be understood by investigating
the little group of the Hamiltonian matrix Hk.

TABLE II. Elements of the little group of Hk at various high
symmetry locations in the Brillouin zone. In each case, little
group elements are denoted with checkmarks.
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k is crystal momentum. The matrix Hk contains ten dif-
ferent hopping channels up to the next nearest neighbor.
Depending on whether the pseudo-spin changes during
hopping processes or not, the hopping channels are clas-
sified into spin-dependent hopping {t0p, to1p, to2p, toz, tod} and
spin-independent hopping {tp, tz, txy, td, t0d}. The oxy-
gen octahedron tilting and rotation generate the spin-
dependent hopping which is crucial for the SHE in
SrIrO3. Such spin-dependent hopping is not allowed in
the perfect cubic perovskite. For the hopping parame-
ters, we use the values obtained in Ref. 28 based on ab

initio calculations. The explicit form of Hk and values of
the hopping parameters are presented in Appendix A.

The Pbnm space group symmetry, discussed above,
dictates the relations between the components of the spin
Hall conductivity tensor, as well as protects various fea-
tures of the band structure. To aid in the discussion
to follow in the upcoming sections, we present in Table
I a summary of the Pbnm space group, as well as the
remaining symmetries in various symmetry-broken bulk
systems (Sec. IV) and thin film (Sec. V).

Figure 1 depicts the electron band structure of the sys-
tem at the particular kb = ⇡ plane (R-U-X-S) in the
Brillouin zone. There are four doubly degenerate bands
on account of four sublattices and Kramers degeneracy.
One remarkable feature is the band crossing occurring
along a ring about the U point.28,29 This “nodal ring”
is quite small, but protected by nonsymmorphic symme-
tries compatible with the kb = ⇡ plane.33 Another inter-
esting point is the “near-degeneracy” of the four bands
found at the kb = ⇡ plane and ka = ⇡ plane (T-R-S-Y)
as highlighted by cyan in Fig. 3. It must be noted both
features appear by spin-dependent electron hopping in
the system. Interestingly, the nearly degenerate struc-
ture and the size of the nodal ring are correlated and
controlled by the same hopping parameter tod. In fact,
this intimate correlation between the two features pre-
vails in a wide window of permissible values of tod, so
that the ring appears concurrently with the presence of
the nearly degenerate structure (provided the necessary
nodal ring symmetry is intact). Even when the ring is
gently gapped out (as will be seen) the nearly degener-
ate structure is preserved. Such a correlated structure,

however, will eventually be suppressed by a large per-
turbation which may significantly modify the underlying
band structure.

A. Symmetry-Protected Nodal Line

Before we move on to the next section, we briefly re-
view the mechanism of the symmetry-protected nodal
line33 for self-containedness in our discussions. The nodal
line band crossing (or nodal ring) occurs by the interplay
of the three nonsymmorphic symmetries, n-glide plane
(Gn), b-glide plane (Gb), and a-screw axis (Sa), and its
symmetry protection can be understood by investigating
the little group of the Hamiltonian matrix Hk.
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First, we specify the little group for the kb = ⇡ plane
where the nodal line appears. Under a space group sym-
metry operation, Bloch states (momentum eigenstates)
generally move from a k point to another in the Brillouin
zone unless the operation is a pure translation. Neverthe-
less, at high symmetry points of the Brillouin zone, the
momentum of Bloch states can be invariant under certain
symmetry operations. Such symmetry operations define
the little group of Hk at a given high symmetry point.
In the case of the Pbnm space group, the entire kb = ⇡
plane is invariant under Gn. Moreover, high symmetry
points on that plane such as the U point and RS and SX
lines have further little group elements (Gb and/or Sa)
as summarized in Table II. One can check this from the
transformation rules of electron operators:

Gn :  k ! ip
2
ei

ka�kb+kc
2 (�x � �y)⌫x⌧x (ka,�kb,kc),

Gb :  k ! � ip
2
ei

�ka+kb
2 (�x + �y)⌧x (�ka,kb,kc),

Sa :  k ! � ip
2
ei

ka�kb
2 (�x + �y)⌧x (ka,�kb,�kc),

(2)
where �, µ, ⌧ represent Pauli matrices acting on spin
and sublattice degrees of freedom (see Appendix A for
the definitions). Using these transformation rules, one
can show that G2

n = �Ta+c, G2
b = �Tb, S2

a = �Ta

(where Tr represents a translation by a lattice vector r,
and the minus sign in each case arises due to a 2⇡-rotation
of je↵ = 1/2 spin). This tells us the eigenvalues of
{Gn, Gb, Sa}: n± ⌘ ±iei(ka+kc)/2 for Gn, b± ⌘ ±ieikb/2

for Gb, and a± ⌘ ±ieika/2 for Sa. Here it is important to
notice that Gn(= n±) serves as a good quantum number
to specify Bloch states over the whole kb = ⇡ plane.

Now we consider the commutation relations of the little
group elements listed in Table II. By using Eq. 2, we can
find the commutation relations for the U point and RS
and SX lines as follows.

(U) [Gn, Gb] = [Gn, Sa] = {Gb, Sa} = 0,
(RS) {Gn, Gb} = 0,
(SX) {Gn, Sa} = 0.

(3)

The anti-commutation relations impose constraints on
electron band structure: energy levels at the high symme-
try point and lines must be at least fourfold-degenerate
due to the anti-commutativeness and the Kramers de-
generacy. The minimal fourfold degeneracy is actually
observed in the band structure shown in Fig. 3 (two
fourfold-degenerate bands at the U point and along the
RS and XS lines).

More importantly, the anti-commutation relations de-
termine theGn-eigenvalue structure within each fourfold-
degenerate energy level. As illustrated in Fig. 2, the
two levels at the U point are characterized by the dif-
ferent eigenvalues: n+ for the upper and n� for the
lower. The upper level consists of four states {|n+, a+i,
|n+, a�i, ⇥|n+, a+i, ⇥|n+, a�i} which are simultaneous
eigenstates of Gn and Sa. Here ⇥ is the product of time-
reversal and spatial-inversion, and it satisfies [⇥, Gn] = 0.
These states form a four dimensional representation with

the little group structure stated in Eq. 3. In this repre-
sentation, both a+ and a� eigenstates are required by the
relation {Gb, Sa} = 0; under the Gb operation, a+ state is

mapped into a� state and vice versa (|a+i Gb$ |a�i). Sim-
ilarly, the lower level is formed by four states {|n�, a+i,
|n�, a�i, ⇥|n�, a+i, ⇥|n�, a�i} which realize another
four dimensional representation of the little group. How-
ever, there is no symmetry requirement that n+ and n�
eigenstates must coexist in each of the two energy levels
at the U point.
Along the SX line, each level comprises four states

{|n+i, |n�i, ⇥|n+i, ⇥|n�i} due to the relation

{Gn, Sa} = 0 () |n+i Sa$ |n�i). Here we stress that both
n+ and n� eigenstate appear in each level, in contrast to
the case at the U point. This means that there must be
Gn-partner exchange between the upper and lower levels
and thereby band crossing between the two bands in-
volved in the partner exchange, along any path from the
U point to the SX line (see Fig. 2). Similar argument
works for any path connecting the U point with the RS
line, in which case the relation {Gn, Gb} = 0 leads to
the coexistence of n+ and n� states in each of two en-
ergy levels. Consequently, band crossing occurs along a
ring centered around the U point, and the nodal ring
is protected so long as the nonsymmorphic symmetries
{Gn,Gb,Sa} are preserved in the system.

Although breaking of the n-glide symmetry gaps out
the nodal ring, the presence of additional nonsymmorphic
symmetries can tune the nodal ring into Weyl or Dirac
point nodes.29,38 This situation occurs when the n-glide
andm symmetries are broken while preserving the b-glide
symmetry. To completely gap out the nodal ring at all
points, requires both the n-glide and b-glide symmetries
to be broken. In the next sections, we discuss the spin
Hall e↵ect in the bulk and film systems.

III. SPIN HALL EFFECT IN BULK SYSTEM

Intrinsic spin Hall e↵ect in SrIrO3 is investigated with
a linear response theory. We compute the spin Hall con-
ductivity (SHC) tensor �⇢

µ⌫ using the Kubo formula:1,12

�⇢
µ⌫ =

2e~
V

X

k

X

✏nk<✏F<✏mk

Im

 hmk|J ⇢
µ |nkihnk|J⌫ |mki
(✏mk � ✏nk)2

�
.

(4)
In this expression, J⌫ (=

P
k  

†
k
@Hk
@k⌫

 k) is the charge

current, and J ⇢
µ (= 1

4{�⇢, Jµ}) is the spin current with
the je↵ = 1/2 spin represented by the Pauli matrix �⇢.
Other quantities in the expression are: the volume V of
the system, Bloch state |nki with energy ✏nk, and Fermi
level ✏F . The spin Hall conductivity connects an ap-
plied electric field E⌫ with an induced transverse spin
current by the relationship hJ ⇢

µ i = �⇢
µ⌫E

⌫ . Here, the
three indices imply the direction of the applied electric
field or charge current (⌫), the direction of the induced
spin current (µ), and the spin polarization axis of the
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TABLE I. Pbnm space group symmetry and remaining symmetries in various symmetry-broken systems. In the second column,
the symmetry operations are defined by the transformation rules of the position vector (R = aâ+bb̂+cĉ ! R0 = a0â+b0b̂+c0ĉ).
The last four columns represent the remaining symmetries in the symmetry-broken bulk systems (Sec. IV) and (010)

c

thin film
(Sec. V) with checkmarks.
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k is crystal momentum. The matrix Hk contains ten dif-
ferent hopping channels up to the next nearest neighbor.
Depending on whether the pseudo-spin changes during
hopping processes or not, the hopping channels are clas-
sified into spin-dependent hopping {t0p, to1p, to2p, toz, tod} and
spin-independent hopping {tp, tz, txy, td, t0d}. The oxy-
gen octahedron tilting and rotation generate the spin-
dependent hopping which is crucial for the SHE in
SrIrO3. Such spin-dependent hopping is not allowed in
the perfect cubic perovskite. For the hopping parame-
ters, we use the values obtained in Ref. 28 based on ab

initio calculations. The explicit form of Hk and values of
the hopping parameters are presented in Appendix A.

The Pbnm space group symmetry, discussed above,
dictates the relations between the components of the spin
Hall conductivity tensor, as well as protects various fea-
tures of the band structure. To aid in the discussion
to follow in the upcoming sections, we present in Table
I a summary of the Pbnm space group, as well as the
remaining symmetries in various symmetry-broken bulk
systems (Sec. IV) and thin film (Sec. V).

Figure 1 depicts the electron band structure of the sys-
tem at the particular kb = ⇡ plane (R-U-X-S) in the
Brillouin zone. There are four doubly degenerate bands
on account of four sublattices and Kramers degeneracy.
One remarkable feature is the band crossing occurring
along a ring about the U point.28,29 This “nodal ring”
is quite small, but protected by nonsymmorphic symme-
tries compatible with the kb = ⇡ plane.33 Another inter-
esting point is the “near-degeneracy” of the four bands
found at the kb = ⇡ plane and ka = ⇡ plane (T-R-S-Y)
as highlighted by cyan in Fig. 3. It must be noted both
features appear by spin-dependent electron hopping in
the system. Interestingly, the nearly degenerate struc-
ture and the size of the nodal ring are correlated and
controlled by the same hopping parameter tod. In fact,
this intimate correlation between the two features pre-
vails in a wide window of permissible values of tod, so
that the ring appears concurrently with the presence of
the nearly degenerate structure (provided the necessary
nodal ring symmetry is intact). Even when the ring is
gently gapped out (as will be seen) the nearly degener-
ate structure is preserved. Such a correlated structure,

however, will eventually be suppressed by a large per-
turbation which may significantly modify the underlying
band structure.

A. Symmetry-Protected Nodal Line

Before we move on to the next section, we briefly re-
view the mechanism of the symmetry-protected nodal
line33 for self-containedness in our discussions. The nodal
line band crossing (or nodal ring) occurs by the interplay
of the three nonsymmorphic symmetries, n-glide plane
(Gn), b-glide plane (Gb), and a-screw axis (Sa), and its
symmetry protection can be understood by investigating
the little group of the Hamiltonian matrix Hk.

TABLE II. Elements of the little group of Hk at various high
symmetry locations in the Brillouin zone. In each case, little
group elements are denoted with checkmarks.
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figure describes how the G
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ergy bands changes along paths connecting the U point with
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First, we specify the little group for the kb = ⇡ plane
where the nodal line appears. Under a space group sym-
metry operation, Bloch states (momentum eigenstates)
generally move from a k point to another in the Brillouin
zone unless the operation is a pure translation. Neverthe-
less, at high symmetry points of the Brillouin zone, the
momentum of Bloch states can be invariant under certain
symmetry operations. Such symmetry operations define
the little group of Hk at a given high symmetry point.
In the case of the Pbnm space group, the entire kb = ⇡
plane is invariant under Gn. Moreover, high symmetry
points on that plane such as the U point and RS and SX
lines have further little group elements (Gb and/or Sa)
as summarized in Table II. One can check this from the
transformation rules of electron operators:

Gn :  k ! ip
2
ei

ka�kb+kc
2 (�x � �y)⌫x⌧x (ka,�kb,kc),

Gb :  k ! � ip
2
ei

�ka+kb
2 (�x + �y)⌧x (�ka,kb,kc),

Sa :  k ! � ip
2
ei

ka�kb
2 (�x + �y)⌧x (ka,�kb,�kc),

(2)
where �, µ, ⌧ represent Pauli matrices acting on spin
and sublattice degrees of freedom (see Appendix A for
the definitions). Using these transformation rules, one
can show that G2

n = �Ta+c, G2
b = �Tb, S2

a = �Ta

(where Tr represents a translation by a lattice vector r,
and the minus sign in each case arises due to a 2⇡-rotation
of je↵ = 1/2 spin). This tells us the eigenvalues of
{Gn, Gb, Sa}: n± ⌘ ±iei(ka+kc)/2 for Gn, b± ⌘ ±ieikb/2

for Gb, and a± ⌘ ±ieika/2 for Sa. Here it is important to
notice that Gn(= n±) serves as a good quantum number
to specify Bloch states over the whole kb = ⇡ plane.

Now we consider the commutation relations of the little
group elements listed in Table II. By using Eq. 2, we can
find the commutation relations for the U point and RS
and SX lines as follows.

(U) [Gn, Gb] = [Gn, Sa] = {Gb, Sa} = 0,
(RS) {Gn, Gb} = 0,
(SX) {Gn, Sa} = 0.

(3)

The anti-commutation relations impose constraints on
electron band structure: energy levels at the high symme-
try point and lines must be at least fourfold-degenerate
due to the anti-commutativeness and the Kramers de-
generacy. The minimal fourfold degeneracy is actually
observed in the band structure shown in Fig. 3 (two
fourfold-degenerate bands at the U point and along the
RS and XS lines).

More importantly, the anti-commutation relations de-
termine theGn-eigenvalue structure within each fourfold-
degenerate energy level. As illustrated in Fig. 2, the
two levels at the U point are characterized by the dif-
ferent eigenvalues: n+ for the upper and n� for the
lower. The upper level consists of four states {|n+, a+i,
|n+, a�i, ⇥|n+, a+i, ⇥|n+, a�i} which are simultaneous
eigenstates of Gn and Sa. Here ⇥ is the product of time-
reversal and spatial-inversion, and it satisfies [⇥, Gn] = 0.
These states form a four dimensional representation with

the little group structure stated in Eq. 3. In this repre-
sentation, both a+ and a� eigenstates are required by the
relation {Gb, Sa} = 0; under the Gb operation, a+ state is

mapped into a� state and vice versa (|a+i Gb$ |a�i). Sim-
ilarly, the lower level is formed by four states {|n�, a+i,
|n�, a�i, ⇥|n�, a+i, ⇥|n�, a�i} which realize another
four dimensional representation of the little group. How-
ever, there is no symmetry requirement that n+ and n�
eigenstates must coexist in each of the two energy levels
at the U point.
Along the SX line, each level comprises four states

{|n+i, |n�i, ⇥|n+i, ⇥|n�i} due to the relation

{Gn, Sa} = 0 () |n+i Sa$ |n�i). Here we stress that both
n+ and n� eigenstate appear in each level, in contrast to
the case at the U point. This means that there must be
Gn-partner exchange between the upper and lower levels
and thereby band crossing between the two bands in-
volved in the partner exchange, along any path from the
U point to the SX line (see Fig. 2). Similar argument
works for any path connecting the U point with the RS
line, in which case the relation {Gn, Gb} = 0 leads to
the coexistence of n+ and n� states in each of two en-
ergy levels. Consequently, band crossing occurs along a
ring centered around the U point, and the nodal ring
is protected so long as the nonsymmorphic symmetries
{Gn,Gb,Sa} are preserved in the system.

Although breaking of the n-glide symmetry gaps out
the nodal ring, the presence of additional nonsymmorphic
symmetries can tune the nodal ring into Weyl or Dirac
point nodes.29,38 This situation occurs when the n-glide
andm symmetries are broken while preserving the b-glide
symmetry. To completely gap out the nodal ring at all
points, requires both the n-glide and b-glide symmetries
to be broken. In the next sections, we discuss the spin
Hall e↵ect in the bulk and film systems.

III. SPIN HALL EFFECT IN BULK SYSTEM

Intrinsic spin Hall e↵ect in SrIrO3 is investigated with
a linear response theory. We compute the spin Hall con-
ductivity (SHC) tensor �⇢

µ⌫ using the Kubo formula:1,12
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In this expression, J⌫ (=
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 k) is the charge

current, and J ⇢
µ (= 1

4{�⇢, Jµ}) is the spin current with
the je↵ = 1/2 spin represented by the Pauli matrix �⇢.
Other quantities in the expression are: the volume V of
the system, Bloch state |nki with energy ✏nk, and Fermi
level ✏F . The spin Hall conductivity connects an ap-
plied electric field E⌫ with an induced transverse spin
current by the relationship hJ ⇢

µ i = �⇢
µ⌫E

⌫ . Here, the
three indices imply the direction of the applied electric
field or charge current (⌫), the direction of the induced
spin current (µ), and the spin polarization axis of the
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The anti-commutation relations impose constraints on
electron band structure: energy levels at the high symme-
try point and lines must be at least fourfold-degenerate
due to the anti-commutativeness and the Kramers de-
generacy. The minimal fourfold degeneracy is actually
observed in the band structure shown in Fig. 3 (two
fourfold-degenerate bands at the U point and along the
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metry operation, Bloch states (momentum eigenstates)
generally move from a k point to another in the Brillouin
zone unless the operation is a pure translation. Neverthe-
less, at high symmetry points of the Brillouin zone, the
momentum of Bloch states can be invariant under certain
symmetry operations. Such symmetry operations define
the little group of Hk at a given high symmetry point.
In the case of the Pbnm space group, the entire kb = ⇡
plane is invariant under Gn. Moreover, high symmetry
points on that plane such as the U point and RS and SX
lines have further little group elements (Gb and/or Sa)
as summarized in Table II. One can check this from the
transformation rules of electron operators:
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where �, µ, ⌧ represent Pauli matrices acting on spin
and sublattice degrees of freedom (see Appendix A for
the definitions). Using these transformation rules, one
can show that G2

n = �Ta+c, G2
b = �Tb, S2

a = �Ta

(where Tr represents a translation by a lattice vector r,
and the minus sign in each case arises due to a 2⇡-rotation
of je↵ = 1/2 spin). This tells us the eigenvalues of
{Gn, Gb, Sa}: n± ⌘ ±iei(ka+kc)/2 for Gn, b± ⌘ ±ieikb/2

for Gb, and a± ⌘ ±ieika/2 for Sa. Here it is important to
notice that Gn(= n±) serves as a good quantum number
to specify Bloch states over the whole kb = ⇡ plane.

Now we consider the commutation relations of the little
group elements listed in Table II. By using Eq. 2, we can
find the commutation relations for the U point and RS
and SX lines as follows.

(U) [Gn, Gb] = [Gn, Sa] = {Gb, Sa} = 0,
(RS) {Gn, Gb} = 0,
(SX) {Gn, Sa} = 0.

(3)

The anti-commutation relations impose constraints on
electron band structure: energy levels at the high symme-
try point and lines must be at least fourfold-degenerate
due to the anti-commutativeness and the Kramers de-
generacy. The minimal fourfold degeneracy is actually
observed in the band structure shown in Fig. 3 (two
fourfold-degenerate bands at the U point and along the
RS and XS lines).

More importantly, the anti-commutation relations de-
termine theGn-eigenvalue structure within each fourfold-
degenerate energy level. As illustrated in Fig. 2, the
two levels at the U point are characterized by the dif-
ferent eigenvalues: n+ for the upper and n� for the
lower. The upper level consists of four states {|n+, a+i,
|n+, a�i, ⇥|n+, a+i, ⇥|n+, a�i} which are simultaneous
eigenstates of Gn and Sa. Here ⇥ is the product of time-
reversal and spatial-inversion, and it satisfies [⇥, Gn] = 0.
These states form a four dimensional representation with

the little group structure stated in Eq. 3. In this repre-
sentation, both a+ and a� eigenstates are required by the
relation {Gb, Sa} = 0; under the Gb operation, a+ state is

mapped into a� state and vice versa (|a+i Gb$ |a�i). Sim-
ilarly, the lower level is formed by four states {|n�, a+i,
|n�, a�i, ⇥|n�, a+i, ⇥|n�, a�i} which realize another
four dimensional representation of the little group. How-
ever, there is no symmetry requirement that n+ and n�
eigenstates must coexist in each of the two energy levels
at the U point.
Along the SX line, each level comprises four states

{|n+i, |n�i, ⇥|n+i, ⇥|n�i} due to the relation

{Gn, Sa} = 0 () |n+i Sa$ |n�i). Here we stress that both
n+ and n� eigenstate appear in each level, in contrast to
the case at the U point. This means that there must be
Gn-partner exchange between the upper and lower levels
and thereby band crossing between the two bands in-
volved in the partner exchange, along any path from the
U point to the SX line (see Fig. 2). Similar argument
works for any path connecting the U point with the RS
line, in which case the relation {Gn, Gb} = 0 leads to
the coexistence of n+ and n� states in each of two en-
ergy levels. Consequently, band crossing occurs along a
ring centered around the U point, and the nodal ring
is protected so long as the nonsymmorphic symmetries
{Gn,Gb,Sa} are preserved in the system.

Although breaking of the n-glide symmetry gaps out
the nodal ring, the presence of additional nonsymmorphic
symmetries can tune the nodal ring into Weyl or Dirac
point nodes.29,38 This situation occurs when the n-glide
andm symmetries are broken while preserving the b-glide
symmetry. To completely gap out the nodal ring at all
points, requires both the n-glide and b-glide symmetries
to be broken. In the next sections, we discuss the spin
Hall e↵ect in the bulk and film systems.
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plane is invariant under Gn. Moreover, high symmetry
points on that plane such as the U point and RS and SX
lines have further little group elements (Gb and/or Sa)
as summarized in Table II. One can check this from the
transformation rules of electron operators:

Gn :  k ! ip
2
ei

ka�kb+kc
2 (�x � �y)⌫x⌧x (ka,�kb,kc),

Gb :  k ! � ip
2
ei

�ka+kb
2 (�x + �y)⌧x (�ka,kb,kc),

Sa :  k ! � ip
2
ei

ka�kb
2 (�x + �y)⌧x (ka,�kb,�kc),

(2)
where �, µ, ⌧ represent Pauli matrices acting on spin
and sublattice degrees of freedom (see Appendix A for
the definitions). Using these transformation rules, one
can show that G2

n = �Ta+c, G2
b = �Tb, S2

a = �Ta

(where Tr represents a translation by a lattice vector r,
and the minus sign in each case arises due to a 2⇡-rotation
of je↵ = 1/2 spin). This tells us the eigenvalues of
{Gn, Gb, Sa}: n± ⌘ ±iei(ka+kc)/2 for Gn, b± ⌘ ±ieikb/2

for Gb, and a± ⌘ ±ieika/2 for Sa. Here it is important to
notice that Gn(= n±) serves as a good quantum number
to specify Bloch states over the whole kb = ⇡ plane.

Now we consider the commutation relations of the little
group elements listed in Table II. By using Eq. 2, we can
find the commutation relations for the U point and RS
and SX lines as follows.

(U) [Gn, Gb] = [Gn, Sa] = {Gb, Sa} = 0,
(RS) {Gn, Gb} = 0,
(SX) {Gn, Sa} = 0.

(3)

The anti-commutation relations impose constraints on
electron band structure: energy levels at the high symme-
try point and lines must be at least fourfold-degenerate
due to the anti-commutativeness and the Kramers de-
generacy. The minimal fourfold degeneracy is actually
observed in the band structure shown in Fig. 3 (two
fourfold-degenerate bands at the U point and along the
RS and XS lines).

More importantly, the anti-commutation relations de-
termine theGn-eigenvalue structure within each fourfold-
degenerate energy level. As illustrated in Fig. 2, the
two levels at the U point are characterized by the dif-
ferent eigenvalues: n+ for the upper and n� for the
lower. The upper level consists of four states {|n+, a+i,
|n+, a�i, ⇥|n+, a+i, ⇥|n+, a�i} which are simultaneous
eigenstates of Gn and Sa. Here ⇥ is the product of time-
reversal and spatial-inversion, and it satisfies [⇥, Gn] = 0.
These states form a four dimensional representation with

the little group structure stated in Eq. 3. In this repre-
sentation, both a+ and a� eigenstates are required by the
relation {Gb, Sa} = 0; under the Gb operation, a+ state is

mapped into a� state and vice versa (|a+i Gb$ |a�i). Sim-
ilarly, the lower level is formed by four states {|n�, a+i,
|n�, a�i, ⇥|n�, a+i, ⇥|n�, a�i} which realize another
four dimensional representation of the little group. How-
ever, there is no symmetry requirement that n+ and n�
eigenstates must coexist in each of the two energy levels
at the U point.
Along the SX line, each level comprises four states

{|n+i, |n�i, ⇥|n+i, ⇥|n�i} due to the relation

{Gn, Sa} = 0 () |n+i Sa$ |n�i). Here we stress that both
n+ and n� eigenstate appear in each level, in contrast to
the case at the U point. This means that there must be
Gn-partner exchange between the upper and lower levels
and thereby band crossing between the two bands in-
volved in the partner exchange, along any path from the
U point to the SX line (see Fig. 2). Similar argument
works for any path connecting the U point with the RS
line, in which case the relation {Gn, Gb} = 0 leads to
the coexistence of n+ and n� states in each of two en-
ergy levels. Consequently, band crossing occurs along a
ring centered around the U point, and the nodal ring
is protected so long as the nonsymmorphic symmetries
{Gn,Gb,Sa} are preserved in the system.

Although breaking of the n-glide symmetry gaps out
the nodal ring, the presence of additional nonsymmorphic
symmetries can tune the nodal ring into Weyl or Dirac
point nodes.29,38 This situation occurs when the n-glide
andm symmetries are broken while preserving the b-glide
symmetry. To completely gap out the nodal ring at all
points, requires both the n-glide and b-glide symmetries
to be broken. In the next sections, we discuss the spin
Hall e↵ect in the bulk and film systems.

III. SPIN HALL EFFECT IN BULK SYSTEM

Intrinsic spin Hall e↵ect in SrIrO3 is investigated with
a linear response theory. We compute the spin Hall con-
ductivity (SHC) tensor �⇢

µ⌫ using the Kubo formula:1,12
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current, and J ⇢
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4{�⇢, Jµ}) is the spin current with
the je↵ = 1/2 spin represented by the Pauli matrix �⇢.
Other quantities in the expression are: the volume V of
the system, Bloch state |nki with energy ✏nk, and Fermi
level ✏F . The spin Hall conductivity connects an ap-
plied electric field E⌫ with an induced transverse spin
current by the relationship hJ ⇢

µ i = �⇢
µ⌫E

⌫ . Here, the
three indices imply the direction of the applied electric
field or charge current (⌫), the direction of the induced
spin current (µ), and the spin polarization axis of the
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I. INTRODUCTION

II. MODEL HAMILTONIAN

We employ the tight-binding model constructed in
Refs. 1 and 2 to describe the electronic structure of
SrIrO3. Due to the significant tilting and rotation oxygen
octahedra, the system has the orthorhombic perovskite
crystal structure with four Ir sublattices and Pbnm non-
symmorphic space group (Fig. 1). In the basis of the
je↵ = 1/2 states for Ir4+ electrons, the model incorpo-
rates various electron hopping channels allowed in the
orthorhombic perovskite SrIrO3 with the following form
of Hamiltonian.

H =
X

k

 †
kHk k. (1)

Here,  = ( 1", 2", 3", 4", 1#, 2#, 3#, 4#)T are
electron operators with the subscripts meaning the sub-
lattice (1,2,3,4) and je↵ = 1/2 pseudo-spin (", #), and
k means the crystal momentum. The matrix Hk con-
tains ten di↵erent hopping channels up to the next
nearest neighbor. Depending on whether the pseudo-

FIG. 1: (Color online) Crystal structure and electron
energy bands of orthorhombic perovskite SrIrO3. Left:

orthorhombic unit cell with four Ir sublattices (numbered)
and the Brillouin zone. Y=(⇡,0,0), X=(0,⇡,0), Z=(0,0,⇡),
R=(⇡,⇡,⇡) in the coordinate of (k

a

, k
b

, k
c

). Right: electron
energy bands at the k

b

= ⇡ plane (R-U-X-S) of the Brillouin
zone.

spin changes during hopping processes or not, the hop-
ping channels are classified into the spin-dependent hop-
ping {t0p, to1p, to2p, toz, tod} and spin-independent hopping
{tp, tz, txy, td, t0d}. The oxygen octahedron tilting and ro-
tation generate the spin-dependent hopping which is cru-
cial for spin Hall e↵ect in SrIrO3. Such spin-dependent
hopping is not allowed in the cubic perovskite structure.
For the hopping parameters, we use the values obtained
in Ref. 1 based on ab initio calculations. The explicit
form of Hk and the values of the hopping parameters are
provided in APPENDIX.

Figure 1 shows the electron band structure of the sys-
tem at the particular kb = ⇡ plane (R-U-X-S) in the Bril-
louin zone. There are four doubly degenerate bands on
account of four sublattices and Kramers degeneracy. One
remarkable feature is the band crossing occurring along
a ring around the U point.1,2 This “nodal ring” is quite
small, but protected by nonsymmorphic symmetries com-
patible with the kb = ⇡ plane.3 Another interesting point
is the “near-degeneracy” of the four bands found at the
kb = ⇡ plane and ka = ⇡ plane (T-R-S-Y) as highlighted
by cyan in Fig. 2. The nearly degenerate structure and
the size of the nodal ring are correlated and controlled by
the same hopping parameter tod. It must be noted both
features appear by spin-dependent electron hopping in
the system.

III. SPIN HALL EFFECT IN BULK SYSTEM

Intrinsic spin Hall e↵ect in SrIrO3 is investigated with
a linear response theory. We compute the spin Hall con-
ductivity tensor �⇢

µ⌫ using the Kubo formula:4,5
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�⇢. Other quantities in the expression are: the volume
V of the system, Bloch state |nki with the energy ✏nk,
and fermi level ✏F . The spin Hall conductivity connects
an applied electric field E⌫ with an induced transverse
spin current by the relationship hJ ⇢
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⌫ . Here,
the three indices implies the direction of the applied field
or charge current (⌫), the direction of the induced spin
current (µ), and the spin polarization axis of the spin
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First, we specify the little group for the kb = ⇡ plane
where the nodal line appears. Under a space group sym-
metry operation, Bloch states (momentum eigenstates)
generally move from a k point to another in the Brillouin
zone unless the operation is a pure translation. Neverthe-
less, at high symmetry points of the Brillouin zone, the
momentum of Bloch states can be invariant under certain
symmetry operations. Such symmetry operations define
the little group of Hk at a given high symmetry point.
In the case of the Pbnm space group, the entire kb = ⇡
plane is invariant under Gn. Moreover, high symmetry
points on that plane such as the U point and RS and SX
lines have further little group elements (Gb and/or Sa)
as summarized in Table II. One can check this from the
transformation rules of electron operators:

Gn :  k ! ip
2
ei

ka�kb+kc
2 (�x � �y)⌫x⌧x (ka,�kb,kc),

Gb :  k ! � ip
2
ei

�ka+kb
2 (�x + �y)⌧x (�ka,kb,kc),

Sa :  k ! � ip
2
ei

ka�kb
2 (�x + �y)⌧x (ka,�kb,�kc),

(2)
where �, µ, ⌧ represent Pauli matrices acting on spin
and sublattice degrees of freedom (see Appendix A for
the definitions). Using these transformation rules, one
can show that G2

n = �Ta+c, G2
b = �Tb, S2

a = �Ta

(where Tr represents a translation by a lattice vector r,
and the minus sign in each case arises due to a 2⇡-rotation
of je↵ = 1/2 spin). This tells us the eigenvalues of
{Gn, Gb, Sa}: n± ⌘ ±iei(ka+kc)/2 for Gn, b± ⌘ ±ieikb/2

for Gb, and a± ⌘ ±ieika/2 for Sa. Here it is important to
notice that Gn(= n±) serves as a good quantum number
to specify Bloch states over the whole kb = ⇡ plane.

Now we consider the commutation relations of the little
group elements listed in Table II. By using Eq. 2, we can
find the commutation relations for the U point and RS
and SX lines as follows.

(U) [Gn, Gb] = [Gn, Sa] = {Gb, Sa} = 0,
(RS) {Gn, Gb} = 0,
(SX) {Gn, Sa} = 0.

(3)

The anti-commutation relations impose constraints on
electron band structure: energy levels at the high symme-
try point and lines must be at least fourfold-degenerate
due to the anti-commutativeness and the Kramers de-
generacy. The minimal fourfold degeneracy is actually
observed in the band structure shown in Fig. 3 (two
fourfold-degenerate bands at the U point and along the
RS and XS lines).

More importantly, the anti-commutation relations de-
termine theGn-eigenvalue structure within each fourfold-
degenerate energy level. As illustrated in Fig. 2, the
two levels at the U point are characterized by the dif-
ferent eigenvalues: n+ for the upper and n� for the
lower. The upper level consists of four states {|n+, a+i,
|n+, a�i, ⇥|n+, a+i, ⇥|n+, a�i} which are simultaneous
eigenstates of Gn and Sa. Here ⇥ is the product of time-
reversal and spatial-inversion, and it satisfies [⇥, Gn] = 0.
These states form a four dimensional representation with

the little group structure stated in Eq. 3. In this repre-
sentation, both a+ and a� eigenstates are required by the
relation {Gb, Sa} = 0; under the Gb operation, a+ state is

mapped into a� state and vice versa (|a+i Gb$ |a�i). Sim-
ilarly, the lower level is formed by four states {|n�, a+i,
|n�, a�i, ⇥|n�, a+i, ⇥|n�, a�i} which realize another
four dimensional representation of the little group. How-
ever, there is no symmetry requirement that n+ and n�
eigenstates must coexist in each of the two energy levels
at the U point.
Along the SX line, each level comprises four states

{|n+i, |n�i, ⇥|n+i, ⇥|n�i} due to the relation

{Gn, Sa} = 0 () |n+i Sa$ |n�i). Here we stress that both
n+ and n� eigenstate appear in each level, in contrast to
the case at the U point. This means that there must be
Gn-partner exchange between the upper and lower levels
and thereby band crossing between the two bands in-
volved in the partner exchange, along any path from the
U point to the SX line (see Fig. 2). Similar argument
works for any path connecting the U point with the RS
line, in which case the relation {Gn, Gb} = 0 leads to
the coexistence of n+ and n� states in each of two en-
ergy levels. Consequently, band crossing occurs along a
ring centered around the U point, and the nodal ring
is protected so long as the nonsymmorphic symmetries
{Gn,Gb,Sa} are preserved in the system.

Although breaking of the n-glide symmetry gaps out
the nodal ring, the presence of additional nonsymmorphic
symmetries can tune the nodal ring into Weyl or Dirac
point nodes.29,38 This situation occurs when the n-glide
andm symmetries are broken while preserving the b-glide
symmetry. To completely gap out the nodal ring at all
points, requires both the n-glide and b-glide symmetries
to be broken. In the next sections, we discuss the spin
Hall e↵ect in the bulk and film systems.

III. SPIN HALL EFFECT IN BULK SYSTEM

Intrinsic spin Hall e↵ect in SrIrO3 is investigated with
a linear response theory. We compute the spin Hall con-
ductivity (SHC) tensor �⇢

µ⌫ using the Kubo formula:1,12
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current, and J ⇢
µ (= 1

4{�⇢, Jµ}) is the spin current with
the je↵ = 1/2 spin represented by the Pauli matrix �⇢.
Other quantities in the expression are: the volume V of
the system, Bloch state |nki with energy ✏nk, and Fermi
level ✏F . The spin Hall conductivity connects an ap-
plied electric field E⌫ with an induced transverse spin
current by the relationship hJ ⇢
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line, in which case the relation {Gn, Gb} = 0 leads to
the coexistence of n+ and n� states in each of two en-
ergy levels. Consequently, band crossing occurs along a
ring centered around the U point, and the nodal ring
is protected so long as the nonsymmorphic symmetries
{Gn,Gb,Sa} are preserved in the system.

Although breaking of the n-glide symmetry gaps out
the nodal ring, the presence of additional nonsymmorphic
symmetries can tune the nodal ring into Weyl or Dirac
point nodes.29,38 This situation occurs when the n-glide
andm symmetries are broken while preserving the b-glide
symmetry. To completely gap out the nodal ring at all
points, requires both the n-glide and b-glide symmetries
to be broken. In the next sections, we discuss the spin
Hall e↵ect in the bulk and film systems.

III. SPIN HALL EFFECT IN BULK SYSTEM

Intrinsic spin Hall e↵ect in SrIrO3 is investigated with
a linear response theory. We compute the spin Hall con-
ductivity (SHC) tensor �⇢

µ⌫ using the Kubo formula:1,12

�⇢
µ⌫ =

2e~
V

X

k

X

✏nk<✏F<✏mk

Im

 hmk|J ⇢
µ |nkihnk|J⌫ |mki
(✏mk � ✏nk)2

�
.

(4)
In this expression, J⌫ (=

P
k  

†
k
@Hk
@k⌫

 k) is the charge

current, and J ⇢
µ (= 1

4{�⇢, Jµ}) is the spin current with
the je↵ = 1/2 spin represented by the Pauli matrix �⇢.
Other quantities in the expression are: the volume V of
the system, Bloch state |nki with energy ✏nk, and Fermi
level ✏F . The spin Hall conductivity connects an ap-
plied electric field E⌫ with an induced transverse spin
current by the relationship hJ ⇢

µ i = �⇢
µ⌫E

⌫ . Here, the
three indices imply the direction of the applied electric
field or charge current (⌫), the direction of the induced
spin current (µ), and the spin polarization axis of the

4
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where the nodal line appears. Under a space group sym-
metry operation, Bloch states (momentum eigenstates)
generally move from a k point to another in the Brillouin
zone unless the operation is a pure translation. Neverthe-
less, at high symmetry points of the Brillouin zone, the
momentum of Bloch states can be invariant under certain
symmetry operations. Such symmetry operations define
the little group of Hk at a given high symmetry point.
In the case of the Pbnm space group, the entire kb = ⇡
plane is invariant under Gn. Moreover, high symmetry
points on that plane such as the U point and RS and SX
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as summarized in Table II. One can check this from the
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n = �Ta+c, G2
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Now we consider the commutation relations of the little
group elements listed in Table II. By using Eq. 2, we can
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sentation, both a+ and a� eigenstates are required by the
relation {Gb, Sa} = 0; under the Gb operation, a+ state is
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ever, there is no symmetry requirement that n+ and n�
eigenstates must coexist in each of the two energy levels
at the U point.
Along the SX line, each level comprises four states

{|n+i, |n�i, ⇥|n+i, ⇥|n�i} due to the relation

{Gn, Sa} = 0 () |n+i Sa$ |n�i). Here we stress that both
n+ and n� eigenstate appear in each level, in contrast to
the case at the U point. This means that there must be
Gn-partner exchange between the upper and lower levels
and thereby band crossing between the two bands in-
volved in the partner exchange, along any path from the
U point to the SX line (see Fig. 2). Similar argument
works for any path connecting the U point with the RS
line, in which case the relation {Gn, Gb} = 0 leads to
the coexistence of n+ and n� states in each of two en-
ergy levels. Consequently, band crossing occurs along a
ring centered around the U point, and the nodal ring
is protected so long as the nonsymmorphic symmetries
{Gn,Gb,Sa} are preserved in the system.

Although breaking of the n-glide symmetry gaps out
the nodal ring, the presence of additional nonsymmorphic
symmetries can tune the nodal ring into Weyl or Dirac
point nodes.29,38 This situation occurs when the n-glide
andm symmetries are broken while preserving the b-glide
symmetry. To completely gap out the nodal ring at all
points, requires both the n-glide and b-glide symmetries
to be broken. In the next sections, we discuss the spin
Hall e↵ect in the bulk and film systems.
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FIG. 2: (Color online) Electron energy band structure and
spin Hall conductivity. The magenta and cyan boxes

highlight the nearly degenerate bands that extend from the
nodal ring structure. Spin Hall conductivity �⇢

µ⌫

is presented
as a function of the Fermi level ✏

F

(vertical axis) for three
configurations in which the system shows the largest

response: �x

zy

(red dot), �y

zy

(green triangle), �y

yz

(orange
square). Here, x, y, z represent the pseudo-cubic axes of the

system (see text).

current (⇢). The spin Hall conductivity can be recast
as �⇢

µ⌫ =
P

n,k[⌦
⇢
µ⌫ ]nk fnk with the spin-Berry curva-

ture [⌦⇢
µ⌫ ]nk and the electron occupation number fnk of

energy level ✏nk.4,5 It is the spin-Berry curvature that
generates the transverse spin current as an intrinsic ef-
fect of electron band structure, analogous to the Berry
curvature in anomalous Hall e↵ect. In our calculation,
the configuration {⇢, µ, ⌫} representing the spin Hall ef-
fect geometry is specified using the pseudo-cubic axes
{x = (a � b)/2, y = (a + b)/2, z = c/2} rather than
the orthorhombic lattice vectors {a,b, c}.

We present the spin Hall conductivity �⇢
µ⌫ in Fig. 2

(right) as a function of the Fermi level ✏F . Our result
shows unexpectedly large spin Hall conductivity of the
order of 104(~/e)(⌦m)�1 in the three configurations, �x

zy,
�y
zy, �

y
yz. To be specific, �x

zy (red dot) has large values
over an extended region except around the zero Fermi en-
ergy while �y

zy (green triangle) and �y
yz (orange square)

peak around the zero energy. By comparing the spin Hall
conductivity with the electron band structure on the left
of the figure, one can notice that large values of �x

zy arise
in the energy range that the aforementioned nearly de-
generate bands (cyan) are extended over. On the other
hand, the peaks of �y

zy and �y
yz occur within the energy

band width at the U-R line (magenta). This implies that
the nearly degenerate bands forming the nodal ring struc-
ture are closely related to large spin Hall e↵ect in the
system.

Momentum-resolved spin Hall conductivity provides
further useful information about the origin of the large
spin Hall e↵ect. Defining momentum-resolved spin Hall
conductivity ⌦⇢

µ⌫(k) by �⇢
µ⌫ =

P
k ⌦

⇢
µ⌫(k), we investigate

the distribution of ⌦⇢
µ⌫(k) in the Brillouin zone. First,

we find that high intensity of ⌦x
zy(k) appears in the form

of loops extended over the ka = ⇡ and kb = ⇡ planes as
shown in Fig. 3. The k-points of the loops have a same
sign of ⌦x

zy(k), leading to constructive contributions to
�x
zy. Remarkably, the loops correspond to the k-points

where the Fermi level crosses the nearly degenerate bands
(compare the band structures in Figs. 1 and 2 with Fig.
3). Therefore, large values of �x

zy originate from the elec-
tronic states near the intersection of the Fermi surface
and the ka = ⇡ and kb = ⇡ planes.

The di↵erent behaviors of �x
zy, �

y
zy, �

y
yz around the zero

Fermi energy (Fig. 2) can be also understood by inves-
tigating the corresponding ⌦⇢

µ⌫(k). As shown in Fig. 4,
spin Hall conductivity at ✏F = 0 has major contributions
broadly from two di↵erent parts of the Brillouin zone:
(i) a region around the U point and (ii) arch-shaped in-
terior regions connected to the T point. Specifically, in
the case of ⌦x

zy(k), the two parts have a di↵erent sign
and their contributions to spin Hall conductivity almost
cancel each other, which results in highly suppressed �x

zy

at ✏F = 0. However, the other two cases ⌦y
zy(k) and

⌦y
yz(k) have an almost uniform sign over the two parts,

thereby �y
zy and �y

yz have a large value at ✏F = 0.
Nonsymmorphic symmetries of the bulk system pro-

vide useful constraints on the spin Hall conductivity ten-
sor. Specifically, one can easily check that �x

zy = ��y
zx,

�y
zy = ��x

zx, and �y
yz = ��x

xz (where x and y are in-
terchanged with an additional minus sign) by each of
the n-glide, b-glide, a-screw, and b-screw symmetries of
the Pbnm space group. Hence, the three configurations
shown in Fig. 2 are related to other three by symme-
try. Except the six configurations, we find subdominant
spin Hall conductivity, at least one order of magnitude
smaller.

Our result shows that the system exhibits large spin
Hall response when the spin current is induced along the
z axis (�x

zy and �y
zy in Fig. 2). Keeping the spin current

direction along the z axis, we change the applied field
direction to investigate the field direction dependence of
spin Hall conductivity. Specifically, we consider the fol-
lowing configuration.

⌫ k x̂ cos✓ + ŷ sin✓,
µ k ẑ,
⇢ k x̂ sin✓ � ŷ cos✓.

(3)

Here, the field direction (⌫) is changed within the xy
plane by the angle ✓ from the x axis with keeping the
three directions {⇢, µ, ⌫} orthogonal. In this setting, by
the nonsymmorphic symmetries the spin Hall conductiv-
ity is simply a combination of �x

zy and �y
zy:

�⇢
µ⌫ = �x

zy � �y
zy sin2✓. (4)

As described in Fig. 5, the spin Hall conductivity dras-
tically changes around the zero Fermi energy as the field
direction varies. The largest magnitude of spin Hall con-
ductivity occurs when ✓ = 45� and ✓ = 135� which cor-
respond to the [110] and [11̄0] pseudo-cubic axes for the



Intrinsic Spin Hall Conductivity

4

First, we specify the little group for the kb = ⇡ plane
where the nodal line appears. Under a space group sym-
metry operation, Bloch states (momentum eigenstates)
generally move from a k point to another in the Brillouin
zone unless the operation is a pure translation. Neverthe-
less, at high symmetry points of the Brillouin zone, the
momentum of Bloch states can be invariant under certain
symmetry operations. Such symmetry operations define
the little group of Hk at a given high symmetry point.
In the case of the Pbnm space group, the entire kb = ⇡
plane is invariant under Gn. Moreover, high symmetry
points on that plane such as the U point and RS and SX
lines have further little group elements (Gb and/or Sa)
as summarized in Table II. One can check this from the
transformation rules of electron operators:

Gn :  k ! ip
2
ei

ka�kb+kc
2 (�x � �y)⌫x⌧x (ka,�kb,kc),

Gb :  k ! � ip
2
ei

�ka+kb
2 (�x + �y)⌧x (�ka,kb,kc),

Sa :  k ! � ip
2
ei

ka�kb
2 (�x + �y)⌧x (ka,�kb,�kc),

(2)
where �, µ, ⌧ represent Pauli matrices acting on spin
and sublattice degrees of freedom (see Appendix A for
the definitions). Using these transformation rules, one
can show that G2

n = �Ta+c, G2
b = �Tb, S2

a = �Ta

(where Tr represents a translation by a lattice vector r,
and the minus sign in each case arises due to a 2⇡-rotation
of je↵ = 1/2 spin). This tells us the eigenvalues of
{Gn, Gb, Sa}: n± ⌘ ±iei(ka+kc)/2 for Gn, b± ⌘ ±ieikb/2

for Gb, and a± ⌘ ±ieika/2 for Sa. Here it is important to
notice that Gn(= n±) serves as a good quantum number
to specify Bloch states over the whole kb = ⇡ plane.

Now we consider the commutation relations of the little
group elements listed in Table II. By using Eq. 2, we can
find the commutation relations for the U point and RS
and SX lines as follows.

(U) [Gn, Gb] = [Gn, Sa] = {Gb, Sa} = 0,
(RS) {Gn, Gb} = 0,
(SX) {Gn, Sa} = 0.

(3)

The anti-commutation relations impose constraints on
electron band structure: energy levels at the high symme-
try point and lines must be at least fourfold-degenerate
due to the anti-commutativeness and the Kramers de-
generacy. The minimal fourfold degeneracy is actually
observed in the band structure shown in Fig. 3 (two
fourfold-degenerate bands at the U point and along the
RS and XS lines).

More importantly, the anti-commutation relations de-
termine theGn-eigenvalue structure within each fourfold-
degenerate energy level. As illustrated in Fig. 2, the
two levels at the U point are characterized by the dif-
ferent eigenvalues: n+ for the upper and n� for the
lower. The upper level consists of four states {|n+, a+i,
|n+, a�i, ⇥|n+, a+i, ⇥|n+, a�i} which are simultaneous
eigenstates of Gn and Sa. Here ⇥ is the product of time-
reversal and spatial-inversion, and it satisfies [⇥, Gn] = 0.
These states form a four dimensional representation with

the little group structure stated in Eq. 3. In this repre-
sentation, both a+ and a� eigenstates are required by the
relation {Gb, Sa} = 0; under the Gb operation, a+ state is

mapped into a� state and vice versa (|a+i Gb$ |a�i). Sim-
ilarly, the lower level is formed by four states {|n�, a+i,
|n�, a�i, ⇥|n�, a+i, ⇥|n�, a�i} which realize another
four dimensional representation of the little group. How-
ever, there is no symmetry requirement that n+ and n�
eigenstates must coexist in each of the two energy levels
at the U point.
Along the SX line, each level comprises four states

{|n+i, |n�i, ⇥|n+i, ⇥|n�i} due to the relation

{Gn, Sa} = 0 () |n+i Sa$ |n�i). Here we stress that both
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{Gn,Gb,Sa} are preserved in the system.

Although breaking of the n-glide symmetry gaps out
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symmetries can tune the nodal ring into Weyl or Dirac
point nodes.29,38 This situation occurs when the n-glide
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where the nodal line appears. Under a space group sym-
metry operation, Bloch states (momentum eigenstates)
generally move from a k point to another in the Brillouin
zone unless the operation is a pure translation. Neverthe-
less, at high symmetry points of the Brillouin zone, the
momentum of Bloch states can be invariant under certain
symmetry operations. Such symmetry operations define
the little group of Hk at a given high symmetry point.
In the case of the Pbnm space group, the entire kb = ⇡
plane is invariant under Gn. Moreover, high symmetry
points on that plane such as the U point and RS and SX
lines have further little group elements (Gb and/or Sa)
as summarized in Table II. One can check this from the
transformation rules of electron operators:
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where �, µ, ⌧ represent Pauli matrices acting on spin
and sublattice degrees of freedom (see Appendix A for
the definitions). Using these transformation rules, one
can show that G2

n = �Ta+c, G2
b = �Tb, S2

a = �Ta

(where Tr represents a translation by a lattice vector r,
and the minus sign in each case arises due to a 2⇡-rotation
of je↵ = 1/2 spin). This tells us the eigenvalues of
{Gn, Gb, Sa}: n± ⌘ ±iei(ka+kc)/2 for Gn, b± ⌘ ±ieikb/2

for Gb, and a± ⌘ ±ieika/2 for Sa. Here it is important to
notice that Gn(= n±) serves as a good quantum number
to specify Bloch states over the whole kb = ⇡ plane.

Now we consider the commutation relations of the little
group elements listed in Table II. By using Eq. 2, we can
find the commutation relations for the U point and RS
and SX lines as follows.

(U) [Gn, Gb] = [Gn, Sa] = {Gb, Sa} = 0,
(RS) {Gn, Gb} = 0,
(SX) {Gn, Sa} = 0.

(3)

The anti-commutation relations impose constraints on
electron band structure: energy levels at the high symme-
try point and lines must be at least fourfold-degenerate
due to the anti-commutativeness and the Kramers de-
generacy. The minimal fourfold degeneracy is actually
observed in the band structure shown in Fig. 3 (two
fourfold-degenerate bands at the U point and along the
RS and XS lines).

More importantly, the anti-commutation relations de-
termine theGn-eigenvalue structure within each fourfold-
degenerate energy level. As illustrated in Fig. 2, the
two levels at the U point are characterized by the dif-
ferent eigenvalues: n+ for the upper and n� for the
lower. The upper level consists of four states {|n+, a+i,
|n+, a�i, ⇥|n+, a+i, ⇥|n+, a�i} which are simultaneous
eigenstates of Gn and Sa. Here ⇥ is the product of time-
reversal and spatial-inversion, and it satisfies [⇥, Gn] = 0.
These states form a four dimensional representation with

the little group structure stated in Eq. 3. In this repre-
sentation, both a+ and a� eigenstates are required by the
relation {Gb, Sa} = 0; under the Gb operation, a+ state is

mapped into a� state and vice versa (|a+i Gb$ |a�i). Sim-
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Along the SX line, each level comprises four states
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ergy levels. Consequently, band crossing occurs along a
ring centered around the U point, and the nodal ring
is protected so long as the nonsymmorphic symmetries
{Gn,Gb,Sa} are preserved in the system.

Although breaking of the n-glide symmetry gaps out
the nodal ring, the presence of additional nonsymmorphic
symmetries can tune the nodal ring into Weyl or Dirac
point nodes.29,38 This situation occurs when the n-glide
andm symmetries are broken while preserving the b-glide
symmetry. To completely gap out the nodal ring at all
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FIG. 2: (Color online) Electron energy band structure and
spin Hall conductivity. The magenta and cyan boxes

highlight the nearly degenerate bands that extend from the
nodal ring structure. Spin Hall conductivity �⇢

µ⌫

is presented
as a function of the Fermi level ✏

F

(vertical axis) for three
configurations in which the system shows the largest

response: �x

zy

(red dot), �y

zy

(green triangle), �y

yz

(orange
square). Here, x, y, z represent the pseudo-cubic axes of the

system (see text).

current (⇢). The spin Hall conductivity can be recast
as �⇢

µ⌫ =
P

n,k[⌦
⇢
µ⌫ ]nk fnk with the spin-Berry curva-

ture [⌦⇢
µ⌫ ]nk and the electron occupation number fnk of

energy level ✏nk.4,5 It is the spin-Berry curvature that
generates the transverse spin current as an intrinsic ef-
fect of electron band structure, analogous to the Berry
curvature in anomalous Hall e↵ect. In our calculation,
the configuration {⇢, µ, ⌫} representing the spin Hall ef-
fect geometry is specified using the pseudo-cubic axes
{x = (a � b)/2, y = (a + b)/2, z = c/2} rather than
the orthorhombic lattice vectors {a,b, c}.

We present the spin Hall conductivity �⇢
µ⌫ in Fig. 2

(right) as a function of the Fermi level ✏F . Our result
shows unexpectedly large spin Hall conductivity of the
order of 104(~/e)(⌦m)�1 in the three configurations, �x

zy,
�y
zy, �

y
yz. To be specific, �x

zy (red dot) has large values
over an extended region except around the zero Fermi en-
ergy while �y

zy (green triangle) and �y
yz (orange square)

peak around the zero energy. By comparing the spin Hall
conductivity with the electron band structure on the left
of the figure, one can notice that large values of �x

zy arise
in the energy range that the aforementioned nearly de-
generate bands (cyan) are extended over. On the other
hand, the peaks of �y

zy and �y
yz occur within the energy

band width at the U-R line (magenta). This implies that
the nearly degenerate bands forming the nodal ring struc-
ture are closely related to large spin Hall e↵ect in the
system.

Momentum-resolved spin Hall conductivity provides
further useful information about the origin of the large
spin Hall e↵ect. Defining momentum-resolved spin Hall
conductivity ⌦⇢

µ⌫(k) by �⇢
µ⌫ =

P
k ⌦

⇢
µ⌫(k), we investigate

the distribution of ⌦⇢
µ⌫(k) in the Brillouin zone. First,

we find that high intensity of ⌦x
zy(k) appears in the form

of loops extended over the ka = ⇡ and kb = ⇡ planes as
shown in Fig. 3. The k-points of the loops have a same
sign of ⌦x

zy(k), leading to constructive contributions to
�x
zy. Remarkably, the loops correspond to the k-points

where the Fermi level crosses the nearly degenerate bands
(compare the band structures in Figs. 1 and 2 with Fig.
3). Therefore, large values of �x

zy originate from the elec-
tronic states near the intersection of the Fermi surface
and the ka = ⇡ and kb = ⇡ planes.

The di↵erent behaviors of �x
zy, �

y
zy, �

y
yz around the zero

Fermi energy (Fig. 2) can be also understood by inves-
tigating the corresponding ⌦⇢

µ⌫(k). As shown in Fig. 4,
spin Hall conductivity at ✏F = 0 has major contributions
broadly from two di↵erent parts of the Brillouin zone:
(i) a region around the U point and (ii) arch-shaped in-
terior regions connected to the T point. Specifically, in
the case of ⌦x

zy(k), the two parts have a di↵erent sign
and their contributions to spin Hall conductivity almost
cancel each other, which results in highly suppressed �x

zy

at ✏F = 0. However, the other two cases ⌦y
zy(k) and

⌦y
yz(k) have an almost uniform sign over the two parts,

thereby �y
zy and �y

yz have a large value at ✏F = 0.
Nonsymmorphic symmetries of the bulk system pro-

vide useful constraints on the spin Hall conductivity ten-
sor. Specifically, one can easily check that �x

zy = ��y
zx,

�y
zy = ��x

zx, and �y
yz = ��x

xz (where x and y are in-
terchanged with an additional minus sign) by each of
the n-glide, b-glide, a-screw, and b-screw symmetries of
the Pbnm space group. Hence, the three configurations
shown in Fig. 2 are related to other three by symme-
try. Except the six configurations, we find subdominant
spin Hall conductivity, at least one order of magnitude
smaller.

Our result shows that the system exhibits large spin
Hall response when the spin current is induced along the
z axis (�x

zy and �y
zy in Fig. 2). Keeping the spin current

direction along the z axis, we change the applied field
direction to investigate the field direction dependence of
spin Hall conductivity. Specifically, we consider the fol-
lowing configuration.

⌫ k x̂ cos✓ + ŷ sin✓,
µ k ẑ,
⇢ k x̂ sin✓ � ŷ cos✓.

(3)

Here, the field direction (⌫) is changed within the xy
plane by the angle ✓ from the x axis with keeping the
three directions {⇢, µ, ⌫} orthogonal. In this setting, by
the nonsymmorphic symmetries the spin Hall conductiv-
ity is simply a combination of �x

zy and �y
zy:

�⇢
µ⌫ = �x

zy � �y
zy sin2✓. (4)

As described in Fig. 5, the spin Hall conductivity dras-
tically changes around the zero Fermi energy as the field
direction varies. The largest magnitude of spin Hall con-
ductivity occurs when ✓ = 45� and ✓ = 135� which cor-
respond to the [110] and [11̄0] pseudo-cubic axes for the
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spin current (⇢). The spin Hall conductivity can be re-
cast as �⇢

µ⌫ =
P

n,k[⌦
⇢
µ⌫ ]nk fnk with the spin-Berry cur-

vature [⌦⇢
µ⌫ ]nk and the electron occupation number fnk

at energy level ✏nk.1,12 It is the spin-Berry curvature that
generates the transverse spin current as an intrinsic e↵ect
of electron band structure (analogous to the Berry cur-
vature in anomalous Hall e↵ect). However, in contrast
to the anomalous Hall e↵ect, the spin Hall conductivity
is even under time reversal, and so the spin Hall e↵ect
does not require time reversal to be broken. In our calcu-
lations, the configuration {⇢, µ, ⌫} representing the spin
Hall e↵ect geometry is specified using the pseudo-cubic
axes {x = (a�b)/2, y = (a+b)/2, z = c/2} rather than
the orthorhombic lattice vectors {a,b, c}. By employing
the pseudo-cubic axes, it enables easier visualization of
the symmetry transformations of the spin Hall conduc-
tivity tensor. In Table III, we present the correspondence
between the pseudo-cubic and orthorhombic axes.

TABLE III. Correspondence between the pseudo-cubic (c)
and orthorhombic axes (o).

Pseudo-cubic {x,y, z} Orthorhombic {a,b, c}
[100]

c

[1-10]
o

[010]
c

[110]
o

[001]
c

[001]
o

We present the spin Hall conductivity �⇢
µ⌫ in Fig. 3

(right) as a function of the Fermi level ✏F . Our results

show unexpectedly large spin Hall conductivity of the or-
der of 104(~/e)(⌦m)�1 in the three configurations, �y

zx,
�y
zy, �

x
xz. To be specific, �y

zx (red dot) has large values
over an extended region except around the zero Fermi en-
ergy, while �y

zy (green triangle) and �x
xz (orange square)

peak around the zero energy. The zero energy is of par-
ticular interest as it corresponds to the electron filling
of the bulk system (i.e., half filled je↵ = 1/2 electron
energy bands). By comparing the spin Hall conductiv-
ity with the electron band structure on the left of Fig. 3,
one can notice that large values of �y

zx arise in the energy
range that the aforementioned nearly degenerate bands
(cyan) are extended over. On the other hand, the peaks
of �y

zy and �x
xz occur within the energy band width at the

UR line (magenta). This implies that the nearly degen-
erate bands forming the nodal ring structure are closely
related to large spin Hall e↵ect in the system.

A. Electronic Origin of Large Bulk SHC

Momentum-resolved spin Hall conductivity provides
further useful information about the origin of the large
spin Hall e↵ect. Defining momentum-resolved spin Hall
conductivity ⌦⇢

µ⌫(k) by �⇢
µ⌫ =

P
k ⌦

⇢
µ⌫(k), we investigate

the distribution of ⌦⇢
µ⌫(k) in the Brillouin zone. First,

we find that high intensity of ⌦y
zx(k) appears in the form

of loops extended over the ka = ⇡ and kb = ⇡ planes
as shown in Fig. 4. The k-points of the loops have the
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same sign of ⌦y
zx(k), thus leading to constructive contri-

butions to �y
zx. Remarkably, these loops correspond to

the k-points where the Fermi level crosses the nearly de-
generate bands in the ka = ⇡ and kb = ⇡ planes [compare
the resemblance of the Fermi surface cross sections within
the kb = ⇡ plane in Fig. 1 to ⌦y

zx(k) in Fig. 4]. This
suggests that the ‘active’ electronic states that are con-
tributing the most to ⌦y

zx(k) are in fact the states resid-
ing in the nearly degenerate band structure in the ka = ⇡
and kb = ⇡ planes. Therefore, one can conclude that the
large values of �y

zx indeed originates from the interband
transition between the aforementioned nearly degenerate
bands in the ka = ⇡ and kb = ⇡ planes (shaded in Fig.
3).

The di↵erent behaviors of �y
zx, �y

zy, �x
xz around the

zero Fermi energy (Fig. 3) can also be understood by in-
vestigating the corresponding ⌦⇢

µ⌫(k). As shown in Fig.
5, spin Hall conductivity at ✏F = 0 eV has major contri-
butions broadly from two di↵erent parts of the Brillouin
zone: (i) a region around the U point and (ii) arch-shaped
interior regions connected to the T point. Specifically, in
the case of ⌦y

zx(k), the two parts have a di↵erent sign
and their contributions to spin Hall conductivity almost
cancel each other, which results in highly suppressed �y

zx

at ✏F = 0 eV. However, the other two cases ⌦y
zy(k) and

⌦x
xz(k) have an almost uniform sign over the two parts,

thereby �y
zy and �x

xz have a large value at ✏F = 0 eV.

B. Signature of Nonsymmorphic Symmetries in
Bulk SHC

Nonsymmorphic symmetries of the bulk system pro-
vide useful constraints on the spin Hall conductivity ten-
sor. Specifically, one can easily check that �y

zx = ��x
zy,

�y
zy = ��x

zx, and �x
xz = ��y

yz (where x and y are in-
terchanged with an additional minus sign) by each of
the n-glide, b-glide, a-screw, and b-screw symmetries
of the Pbnm space group. Hence, the three configura-
tions shown in Fig. 3 are symmetry-related to other
three. Except the six configurations, we find subdomi-
nant spin Hall conductivity, at least one order of magni-
tude smaller.

Our results show that the system exhibits large spin
Hall response when the spin current is induced along the
z axis (�y

zx and �y
zy in Fig. 3). Keeping the spin current

direction along the z axis, we change the applied electric
field direction to investigate the field direction depen-
dence of spin Hall conductivity. Specifically, we consider
the following configuration.

⌫ k x̂ cos✓ + ŷ sin✓,
µ k ẑ,
⇢ k x̂ sin✓ � ŷ cos✓.

(5)

Here, the field direction (⌫) is changed within the xy
plane by the angle ✓ from the x axis with keeping the
three directions {⇢, µ, ⌫} orthogonal. In this setting, by
the nonsymmorphic symmetries, the spin Hall conduc-
tivity is simply a combination of �y

zx and �y
zy:

�⇢
µ⌫ = ��y

zx � �y
zy sin2✓. (6)

As described in Fig. 6, the spin Hall conductivity dras-
tically changes around the zero Fermi energy as the field
direction varies. The largest magnitude of spin Hall con-
ductivity occurs when ✓ = 45� and ✓ = 135� which cor-
respond to the [110]c and [11̄0]c pseudo-cubic axes for
the field direction, respectively (those two axes are iden-
tical to the [100]o and [01̄0]o orthorhombic axes). For
the experiments on the bulk system, this suggests that
the largest spin Hall response is expected for the electric
field along the [100]o or [01̄0]o axis. On the other hand,
the characteristic sinusoidal angular dependence (inset
of Fig. 6) can be used to experimentally probe the pres-
ence of the nonsymmorphic symmetries in the system.
The sinusoidal behavior described in Eq. 6 is dictated by
the Pbnm nonsymmorphic symmetries regardless of the
details of the Hamiltonian.
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the resemblance of the Fermi surface cross sections within
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zx(k) in Fig. 4]. This
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ing in the nearly degenerate band structure in the ka = ⇡
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zero Fermi energy (Fig. 3) can also be understood by in-
vestigating the corresponding ⌦⇢

µ⌫(k). As shown in Fig.
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thereby �y
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zy in Fig. 3). Keeping the spin current

direction along the z axis, we change the applied electric
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(5)

Here, the field direction (⌫) is changed within the xy
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the nonsymmorphic symmetries, the spin Hall conduc-
tivity is simply a combination of �y

zx and �y
zy:

�⇢
µ⌫ = ��y

zx � �y
zy sin2✓. (6)

As described in Fig. 6, the spin Hall conductivity dras-
tically changes around the zero Fermi energy as the field
direction varies. The largest magnitude of spin Hall con-
ductivity occurs when ✓ = 45� and ✓ = 135� which cor-
respond to the [110]c and [11̄0]c pseudo-cubic axes for
the field direction, respectively (those two axes are iden-
tical to the [100]o and [01̄0]o orthorhombic axes). For
the experiments on the bulk system, this suggests that
the largest spin Hall response is expected for the electric
field along the [100]o or [01̄0]o axis. On the other hand,
the characteristic sinusoidal angular dependence (inset
of Fig. 6) can be used to experimentally probe the pres-
ence of the nonsymmorphic symmetries in the system.
The sinusoidal behavior described in Eq. 6 is dictated by
the Pbnm nonsymmorphic symmetries regardless of the
details of the Hamiltonian.
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same sign of ⌦y
zx(k), thus leading to constructive contri-

butions to �y
zx. Remarkably, these loops correspond to

the k-points where the Fermi level crosses the nearly de-
generate bands in the ka = ⇡ and kb = ⇡ planes [compare
the resemblance of the Fermi surface cross sections within
the kb = ⇡ plane in Fig. 1 to ⌦y

zx(k) in Fig. 4]. This
suggests that the ‘active’ electronic states that are con-
tributing the most to ⌦y

zx(k) are in fact the states resid-
ing in the nearly degenerate band structure in the ka = ⇡
and kb = ⇡ planes. Therefore, one can conclude that the
large values of �y

zx indeed originates from the interband
transition between the aforementioned nearly degenerate
bands in the ka = ⇡ and kb = ⇡ planes (shaded in Fig.
3).

The di↵erent behaviors of �y
zx, �y

zy, �x
xz around the

zero Fermi energy (Fig. 3) can also be understood by in-
vestigating the corresponding ⌦⇢

µ⌫(k). As shown in Fig.
5, spin Hall conductivity at ✏F = 0 eV has major contri-
butions broadly from two di↵erent parts of the Brillouin
zone: (i) a region around the U point and (ii) arch-shaped
interior regions connected to the T point. Specifically, in
the case of ⌦y

zx(k), the two parts have a di↵erent sign
and their contributions to spin Hall conductivity almost
cancel each other, which results in highly suppressed �y

zx

at ✏F = 0 eV. However, the other two cases ⌦y
zy(k) and

⌦x
xz(k) have an almost uniform sign over the two parts,

thereby �y
zy and �x

xz have a large value at ✏F = 0 eV.

B. Signature of Nonsymmorphic Symmetries in
Bulk SHC

Nonsymmorphic symmetries of the bulk system pro-
vide useful constraints on the spin Hall conductivity ten-
sor. Specifically, one can easily check that �y

zx = ��x
zy,

�y
zy = ��x

zx, and �x
xz = ��y

yz (where x and y are in-
terchanged with an additional minus sign) by each of
the n-glide, b-glide, a-screw, and b-screw symmetries
of the Pbnm space group. Hence, the three configura-
tions shown in Fig. 3 are symmetry-related to other
three. Except the six configurations, we find subdomi-
nant spin Hall conductivity, at least one order of magni-
tude smaller.

Our results show that the system exhibits large spin
Hall response when the spin current is induced along the
z axis (�y

zx and �y
zy in Fig. 3). Keeping the spin current

direction along the z axis, we change the applied electric
field direction to investigate the field direction depen-
dence of spin Hall conductivity. Specifically, we consider
the following configuration.

⌫ k x̂ cos✓ + ŷ sin✓,
µ k ẑ,
⇢ k x̂ sin✓ � ŷ cos✓.

(5)

Here, the field direction (⌫) is changed within the xy
plane by the angle ✓ from the x axis with keeping the
three directions {⇢, µ, ⌫} orthogonal. In this setting, by
the nonsymmorphic symmetries, the spin Hall conduc-
tivity is simply a combination of �y

zx and �y
zy:

�⇢
µ⌫ = ��y

zx � �y
zy sin2✓. (6)

As described in Fig. 6, the spin Hall conductivity dras-
tically changes around the zero Fermi energy as the field
direction varies. The largest magnitude of spin Hall con-
ductivity occurs when ✓ = 45� and ✓ = 135� which cor-
respond to the [110]c and [11̄0]c pseudo-cubic axes for
the field direction, respectively (those two axes are iden-
tical to the [100]o and [01̄0]o orthorhombic axes). For
the experiments on the bulk system, this suggests that
the largest spin Hall response is expected for the electric
field along the [100]o or [01̄0]o axis. On the other hand,
the characteristic sinusoidal angular dependence (inset
of Fig. 6) can be used to experimentally probe the pres-
ence of the nonsymmorphic symmetries in the system.
The sinusoidal behavior described in Eq. 6 is dictated by
the Pbnm nonsymmorphic symmetries regardless of the
details of the Hamiltonian.

6

UR
ZT

X
S

Y

✏F =�1.3

-20

-10

0

10

20
UR

ZT

X
S

Y

✏F =�1.0

UR
ZT

X
S

Y

✏F =�0.2

UR
ZT

X
S

Y

✏F=0.6

UR
ZT

X
S

Y

✏F=1.2

UR
ZT

X
S

Y

✏F=1.4

FIG. 4. Momentum-resolved SHC ⌦y

zx

(k) as a function of the Fermi level ✏
F

.

UR
ZT

X
S

Y

Ωy
zx (k )

-20

-10

0

10

20

UR
ZT

X
S

Y

Ωx
xz(k )

UR
ZT

X
S

Y

Ωy
zy (k )

FIG. 5. Momentum-resolved SHC at ✏
F

= 0 for the three
configurations in Fig. 3.

same sign of ⌦y
zx(k), thus leading to constructive contri-

butions to �y
zx. Remarkably, these loops correspond to

the k-points where the Fermi level crosses the nearly de-
generate bands in the ka = ⇡ and kb = ⇡ planes [compare
the resemblance of the Fermi surface cross sections within
the kb = ⇡ plane in Fig. 1 to ⌦y

zx(k) in Fig. 4]. This
suggests that the ‘active’ electronic states that are con-
tributing the most to ⌦y

zx(k) are in fact the states resid-
ing in the nearly degenerate band structure in the ka = ⇡
and kb = ⇡ planes. Therefore, one can conclude that the
large values of �y

zx indeed originates from the interband
transition between the aforementioned nearly degenerate
bands in the ka = ⇡ and kb = ⇡ planes (shaded in Fig.
3).

The di↵erent behaviors of �y
zx, �y

zy, �x
xz around the

zero Fermi energy (Fig. 3) can also be understood by in-
vestigating the corresponding ⌦⇢

µ⌫(k). As shown in Fig.
5, spin Hall conductivity at ✏F = 0 eV has major contri-
butions broadly from two di↵erent parts of the Brillouin
zone: (i) a region around the U point and (ii) arch-shaped
interior regions connected to the T point. Specifically, in
the case of ⌦y

zx(k), the two parts have a di↵erent sign
and their contributions to spin Hall conductivity almost
cancel each other, which results in highly suppressed �y

zx

at ✏F = 0 eV. However, the other two cases ⌦y
zy(k) and

⌦x
xz(k) have an almost uniform sign over the two parts,

thereby �y
zy and �x

xz have a large value at ✏F = 0 eV.

B. Signature of Nonsymmorphic Symmetries in
Bulk SHC

Nonsymmorphic symmetries of the bulk system pro-
vide useful constraints on the spin Hall conductivity ten-
sor. Specifically, one can easily check that �y

zx = ��x
zy,

�y
zy = ��x

zx, and �x
xz = ��y

yz (where x and y are in-
terchanged with an additional minus sign) by each of
the n-glide, b-glide, a-screw, and b-screw symmetries
of the Pbnm space group. Hence, the three configura-
tions shown in Fig. 3 are symmetry-related to other
three. Except the six configurations, we find subdomi-
nant spin Hall conductivity, at least one order of magni-
tude smaller.

Our results show that the system exhibits large spin
Hall response when the spin current is induced along the
z axis (�y

zx and �y
zy in Fig. 3). Keeping the spin current

direction along the z axis, we change the applied electric
field direction to investigate the field direction depen-
dence of spin Hall conductivity. Specifically, we consider
the following configuration.

⌫ k x̂ cos✓ + ŷ sin✓,
µ k ẑ,
⇢ k x̂ sin✓ � ŷ cos✓.

(5)

Here, the field direction (⌫) is changed within the xy
plane by the angle ✓ from the x axis with keeping the
three directions {⇢, µ, ⌫} orthogonal. In this setting, by
the nonsymmorphic symmetries, the spin Hall conduc-
tivity is simply a combination of �y

zx and �y
zy:

�⇢
µ⌫ = ��y

zx � �y
zy sin2✓. (6)

As described in Fig. 6, the spin Hall conductivity dras-
tically changes around the zero Fermi energy as the field
direction varies. The largest magnitude of spin Hall con-
ductivity occurs when ✓ = 45� and ✓ = 135� which cor-
respond to the [110]c and [11̄0]c pseudo-cubic axes for
the field direction, respectively (those two axes are iden-
tical to the [100]o and [01̄0]o orthorhombic axes). For
the experiments on the bulk system, this suggests that
the largest spin Hall response is expected for the electric
field along the [100]o or [01̄0]o axis. On the other hand,
the characteristic sinusoidal angular dependence (inset
of Fig. 6) can be used to experimentally probe the pres-
ence of the nonsymmorphic symmetries in the system.
The sinusoidal behavior described in Eq. 6 is dictated by
the Pbnm nonsymmorphic symmetries regardless of the
details of the Hamiltonian.
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same sign of ⌦y
zx(k), thus leading to constructive contri-

butions to �y
zx. Remarkably, these loops correspond to

the k-points where the Fermi level crosses the nearly de-
generate bands in the ka = ⇡ and kb = ⇡ planes [compare
the resemblance of the Fermi surface cross sections within
the kb = ⇡ plane in Fig. 1 to ⌦y

zx(k) in Fig. 4]. This
suggests that the ‘active’ electronic states that are con-
tributing the most to ⌦y

zx(k) are in fact the states resid-
ing in the nearly degenerate band structure in the ka = ⇡
and kb = ⇡ planes. Therefore, one can conclude that the
large values of �y

zx indeed originates from the interband
transition between the aforementioned nearly degenerate
bands in the ka = ⇡ and kb = ⇡ planes (shaded in Fig.
3).

The di↵erent behaviors of �y
zx, �y

zy, �x
xz around the

zero Fermi energy (Fig. 3) can also be understood by in-
vestigating the corresponding ⌦⇢

µ⌫(k). As shown in Fig.
5, spin Hall conductivity at ✏F = 0 eV has major contri-
butions broadly from two di↵erent parts of the Brillouin
zone: (i) a region around the U point and (ii) arch-shaped
interior regions connected to the T point. Specifically, in
the case of ⌦y

zx(k), the two parts have a di↵erent sign
and their contributions to spin Hall conductivity almost
cancel each other, which results in highly suppressed �y

zx

at ✏F = 0 eV. However, the other two cases ⌦y
zy(k) and

⌦x
xz(k) have an almost uniform sign over the two parts,

thereby �y
zy and �x

xz have a large value at ✏F = 0 eV.

B. Signature of Nonsymmorphic Symmetries in
Bulk SHC

Nonsymmorphic symmetries of the bulk system pro-
vide useful constraints on the spin Hall conductivity ten-
sor. Specifically, one can easily check that �y

zx = ��x
zy,

�y
zy = ��x

zx, and �x
xz = ��y

yz (where x and y are in-
terchanged with an additional minus sign) by each of
the n-glide, b-glide, a-screw, and b-screw symmetries
of the Pbnm space group. Hence, the three configura-
tions shown in Fig. 3 are symmetry-related to other
three. Except the six configurations, we find subdomi-
nant spin Hall conductivity, at least one order of magni-
tude smaller.

Our results show that the system exhibits large spin
Hall response when the spin current is induced along the
z axis (�y

zx and �y
zy in Fig. 3). Keeping the spin current

direction along the z axis, we change the applied electric
field direction to investigate the field direction depen-
dence of spin Hall conductivity. Specifically, we consider
the following configuration.

⌫ k x̂ cos✓ + ŷ sin✓,
µ k ẑ,
⇢ k x̂ sin✓ � ŷ cos✓.

(5)

Here, the field direction (⌫) is changed within the xy
plane by the angle ✓ from the x axis with keeping the
three directions {⇢, µ, ⌫} orthogonal. In this setting, by
the nonsymmorphic symmetries, the spin Hall conduc-
tivity is simply a combination of �y

zx and �y
zy:

�⇢
µ⌫ = ��y

zx � �y
zy sin2✓. (6)

As described in Fig. 6, the spin Hall conductivity dras-
tically changes around the zero Fermi energy as the field
direction varies. The largest magnitude of spin Hall con-
ductivity occurs when ✓ = 45� and ✓ = 135� which cor-
respond to the [110]c and [11̄0]c pseudo-cubic axes for
the field direction, respectively (those two axes are iden-
tical to the [100]o and [01̄0]o orthorhombic axes). For
the experiments on the bulk system, this suggests that
the largest spin Hall response is expected for the electric
field along the [100]o or [01̄0]o axis. On the other hand,
the characteristic sinusoidal angular dependence (inset
of Fig. 6) can be used to experimentally probe the pres-
ence of the nonsymmorphic symmetries in the system.
The sinusoidal behavior described in Eq. 6 is dictated by
the Pbnm nonsymmorphic symmetries regardless of the
details of the Hamiltonian.
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same sign of ⌦y
zx(k), thus leading to constructive contri-

butions to �y
zx. Remarkably, these loops correspond to

the k-points where the Fermi level crosses the nearly de-
generate bands in the ka = ⇡ and kb = ⇡ planes [compare
the resemblance of the Fermi surface cross sections within
the kb = ⇡ plane in Fig. 1 to ⌦y

zx(k) in Fig. 4]. This
suggests that the ‘active’ electronic states that are con-
tributing the most to ⌦y

zx(k) are in fact the states resid-
ing in the nearly degenerate band structure in the ka = ⇡
and kb = ⇡ planes. Therefore, one can conclude that the
large values of �y

zx indeed originates from the interband
transition between the aforementioned nearly degenerate
bands in the ka = ⇡ and kb = ⇡ planes (shaded in Fig.
3).

The di↵erent behaviors of �y
zx, �y

zy, �x
xz around the

zero Fermi energy (Fig. 3) can also be understood by in-
vestigating the corresponding ⌦⇢

µ⌫(k). As shown in Fig.
5, spin Hall conductivity at ✏F = 0 eV has major contri-
butions broadly from two di↵erent parts of the Brillouin
zone: (i) a region around the U point and (ii) arch-shaped
interior regions connected to the T point. Specifically, in
the case of ⌦y

zx(k), the two parts have a di↵erent sign
and their contributions to spin Hall conductivity almost
cancel each other, which results in highly suppressed �y

zx

at ✏F = 0 eV. However, the other two cases ⌦y
zy(k) and

⌦x
xz(k) have an almost uniform sign over the two parts,

thereby �y
zy and �x

xz have a large value at ✏F = 0 eV.

B. Signature of Nonsymmorphic Symmetries in
Bulk SHC

Nonsymmorphic symmetries of the bulk system pro-
vide useful constraints on the spin Hall conductivity ten-
sor. Specifically, one can easily check that �y

zx = ��x
zy,

�y
zy = ��x

zx, and �x
xz = ��y

yz (where x and y are in-
terchanged with an additional minus sign) by each of
the n-glide, b-glide, a-screw, and b-screw symmetries
of the Pbnm space group. Hence, the three configura-
tions shown in Fig. 3 are symmetry-related to other
three. Except the six configurations, we find subdomi-
nant spin Hall conductivity, at least one order of magni-
tude smaller.

Our results show that the system exhibits large spin
Hall response when the spin current is induced along the
z axis (�y

zx and �y
zy in Fig. 3). Keeping the spin current

direction along the z axis, we change the applied electric
field direction to investigate the field direction depen-
dence of spin Hall conductivity. Specifically, we consider
the following configuration.

⌫ k x̂ cos✓ + ŷ sin✓,
µ k ẑ,
⇢ k x̂ sin✓ � ŷ cos✓.

(5)

Here, the field direction (⌫) is changed within the xy
plane by the angle ✓ from the x axis with keeping the
three directions {⇢, µ, ⌫} orthogonal. In this setting, by
the nonsymmorphic symmetries, the spin Hall conduc-
tivity is simply a combination of �y

zx and �y
zy:

�⇢
µ⌫ = ��y

zx � �y
zy sin2✓. (6)

As described in Fig. 6, the spin Hall conductivity dras-
tically changes around the zero Fermi energy as the field
direction varies. The largest magnitude of spin Hall con-
ductivity occurs when ✓ = 45� and ✓ = 135� which cor-
respond to the [110]c and [11̄0]c pseudo-cubic axes for
the field direction, respectively (those two axes are iden-
tical to the [100]o and [01̄0]o orthorhombic axes). For
the experiments on the bulk system, this suggests that
the largest spin Hall response is expected for the electric
field along the [100]o or [01̄0]o axis. On the other hand,
the characteristic sinusoidal angular dependence (inset
of Fig. 6) can be used to experimentally probe the pres-
ence of the nonsymmorphic symmetries in the system.
The sinusoidal behavior described in Eq. 6 is dictated by
the Pbnm nonsymmorphic symmetries regardless of the
details of the Hamiltonian.
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same sign of ⌦y
zx(k), thus leading to constructive contri-

butions to �y
zx. Remarkably, these loops correspond to

the k-points where the Fermi level crosses the nearly de-
generate bands in the ka = ⇡ and kb = ⇡ planes [compare
the resemblance of the Fermi surface cross sections within
the kb = ⇡ plane in Fig. 1 to ⌦y

zx(k) in Fig. 4]. This
suggests that the ‘active’ electronic states that are con-
tributing the most to ⌦y

zx(k) are in fact the states resid-
ing in the nearly degenerate band structure in the ka = ⇡
and kb = ⇡ planes. Therefore, one can conclude that the
large values of �y

zx indeed originates from the interband
transition between the aforementioned nearly degenerate
bands in the ka = ⇡ and kb = ⇡ planes (shaded in Fig.
3).

The di↵erent behaviors of �y
zx, �y

zy, �x
xz around the

zero Fermi energy (Fig. 3) can also be understood by in-
vestigating the corresponding ⌦⇢

µ⌫(k). As shown in Fig.
5, spin Hall conductivity at ✏F = 0 eV has major contri-
butions broadly from two di↵erent parts of the Brillouin
zone: (i) a region around the U point and (ii) arch-shaped
interior regions connected to the T point. Specifically, in
the case of ⌦y

zx(k), the two parts have a di↵erent sign
and their contributions to spin Hall conductivity almost
cancel each other, which results in highly suppressed �y

zx

at ✏F = 0 eV. However, the other two cases ⌦y
zy(k) and

⌦x
xz(k) have an almost uniform sign over the two parts,

thereby �y
zy and �x

xz have a large value at ✏F = 0 eV.

B. Signature of Nonsymmorphic Symmetries in
Bulk SHC

Nonsymmorphic symmetries of the bulk system pro-
vide useful constraints on the spin Hall conductivity ten-
sor. Specifically, one can easily check that �y

zx = ��x
zy,

�y
zy = ��x

zx, and �x
xz = ��y

yz (where x and y are in-
terchanged with an additional minus sign) by each of
the n-glide, b-glide, a-screw, and b-screw symmetries
of the Pbnm space group. Hence, the three configura-
tions shown in Fig. 3 are symmetry-related to other
three. Except the six configurations, we find subdomi-
nant spin Hall conductivity, at least one order of magni-
tude smaller.

Our results show that the system exhibits large spin
Hall response when the spin current is induced along the
z axis (�y

zx and �y
zy in Fig. 3). Keeping the spin current

direction along the z axis, we change the applied electric
field direction to investigate the field direction depen-
dence of spin Hall conductivity. Specifically, we consider
the following configuration.

⌫ k x̂ cos✓ + ŷ sin✓,
µ k ẑ,
⇢ k x̂ sin✓ � ŷ cos✓.

(5)

Here, the field direction (⌫) is changed within the xy
plane by the angle ✓ from the x axis with keeping the
three directions {⇢, µ, ⌫} orthogonal. In this setting, by
the nonsymmorphic symmetries, the spin Hall conduc-
tivity is simply a combination of �y

zx and �y
zy:

�⇢
µ⌫ = ��y

zx � �y
zy sin2✓. (6)

As described in Fig. 6, the spin Hall conductivity dras-
tically changes around the zero Fermi energy as the field
direction varies. The largest magnitude of spin Hall con-
ductivity occurs when ✓ = 45� and ✓ = 135� which cor-
respond to the [110]c and [11̄0]c pseudo-cubic axes for
the field direction, respectively (those two axes are iden-
tical to the [100]o and [01̄0]o orthorhombic axes). For
the experiments on the bulk system, this suggests that
the largest spin Hall response is expected for the electric
field along the [100]o or [01̄0]o axis. On the other hand,
the characteristic sinusoidal angular dependence (inset
of Fig. 6) can be used to experimentally probe the pres-
ence of the nonsymmorphic symmetries in the system.
The sinusoidal behavior described in Eq. 6 is dictated by
the Pbnm nonsymmorphic symmetries regardless of the
details of the Hamiltonian.
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the experiments on the bulk system, this suggests that
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field along the [100]o or [01̄0]o axis. On the other hand,
the characteristic sinusoidal angular dependence (inset
of Fig. 6) can be used to experimentally probe the pres-
ence of the nonsymmorphic symmetries in the system.
The sinusoidal behavior described in Eq. 6 is dictated by
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details of the Hamiltonian.
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C. Role of Nodal Ring in Bulk SHC

Now we examine the spin-Berry curvature contained
in the nodal ring band structure and its contribution to
the bulk SHC. Fig. 7 depicts the spin-Berry curvature of
the nodal ring band structure. High intensity spin-Berry
curvature is found near the nodal ring band crossing.
Moreover, the sign of the spin-Berry curvature changes
across the nodal ring in the kb = ⇡ plane (such sign-
changing behavior of high intensity spin-Berry curvature
across band crossing points has also been found in recent
ab initio studies on Weyl semimetals39). One interesting
feature here is that the spin-Berry curvature is nonzero
only at the kb = ⇡ plane, and it immediately vanishes o↵
the plane.

Although the nodal ring structure generates high in-
tensity of spin-Berry curvature (near the ring), its net
contribution to the total bulk SHC is quite small due to
the massive cancellation between the opposite signs of
the spin-Berry curvature in the kb = ⇡ plane. We di-
rectly examine this large cancellation by focusing on the

FIG. 7. Spin-Berry curvature of the nodal ring band struc-
ture. The color maps depict the net spin-Berry curvature
⌦

⇢

µ⌫

(k)(=
P4

n=1[⌦
⇢

µ⌫

]
nk

) calculated for the lowest two dou-
bly degenerate bands in Figs. 1 (c) and 3 on the k

b

= ⇡
plane. The yellow dashed line denotes the nodal ring residing
in the k

b

= ⇡ plane.

nodal ring’s isolated contributions (i.e., from the k-points
in the rectangular region just-enclosing the nodal ring in
the kb = ⇡ plane). For the three configurations, �y

zx, �
y
zy

and �x
xz, the isolated contribution (weighted by the en-

tire Brillouin zone contribution) of the nodal ring is 6%,
0.7%, and 0.03% respectively for ✏F = 0 eV, and 7%, 2%,
and 0.01% respectively for ✏F = �0.1 eV. Furthermore,
we also investigated the impact of the size of the nodal
ring (controlled by the spin-dependent hopping parame-
ter tod) on the SHC. Our computations determined that
despite the size of the nodal ring increasing by two-fold,
four-fold or even six-fold, the change in the SHC is very
small and not substantial (order of magnitude remains
the same). This suggests that any contributions arising
from and about the the nodal ring are promptly can-
celled, resulting in its benign contribution to the SHC.

IV. IMPACT OF BREAKING
NONSYMMORPHIC SYMMETRIES ON BULK

SHC

In a realistic system, it is highly probable (and likely)
that one or many of nonsymmorphic symmetries can be
broken. The breaking of these symmetries (such as the
glide symmetries) can be the result of growth defects,
impurities, or external strain/pressure on the bulk. This
can lead to, depending on which symmetry is broken,
the lifting of degeneracy at certain high symmetry loca-
tions in the Brillouin zone or (even more drastically) the
removal of certain topological features in the band struc-
ture like the nodal ring. In fact, the gapping of the nodal
ring is not a rare occurrence in thin film configurations
of SrIrO3 as has been observed through ARPES studies
on epitaxial thin films,40 as well as in epitaxially strained
thin films.38 One way to incorporate such a broken sym-
metry is a perturbation term in the bulk model:

hgap = tgap

h
sin(ky) � sin(kx)

i
sin(kz)⌫y⌧y. (7)

This term preserves the inversion, time-reversal, and
mirror symmetries. However, it breaks the b-glide and
n-glide symmetries, and so it meets the required crite-
rion to completely gap out the nodal ring. This can be
seen by the commutation of hgap and the symmetry op-
erators (Eq. 2 and Eq. B1 in Appendix B). Moreover,
this term involves the in-plane and sublayer degrees of
freedom (⌧ and ⌫, respectively) and so physically this
mimics a possible physical strain on the system that has
led to the breaking of these symmetries. The choice of
tgap = 0.01eV is at least an order of magnitude smaller
than the other energy scales in the system, and thus it
acts as a small perturbation. Furthermore, this term
introduces a Dirac mass gap of ⇡ 40meV, consistent
with experimental observations of gapped Dirac points in
SrIrO3 thin films.40 Fig. 15 in Appendix C depicts the
impact of the perturbative term hgap on the band struc-
ture (along high symmetry directions U!R and U!X).



Robust to perturbations (bulk)

Spin Hall conductivity remains very large even when the 
non-symmorphic symmetry is broken such that 

the nodal line is gently gapped out. 

Nodal line itself does not contribute much to the spin 
Hall conductivity. However, the nearly degenerate 

energy level structures are robust and provide large 
contributions
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film. The bulk Brillouin zone (cube) is
projected and folded into the film Brillouin zone (bottom rectangle). (c) Electronic energy band structure of (010)
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film with
16 layers of Ir ions. The inset shows the band structure magnified around the Ū point.

ble and robust to the introduction of various symmetry
breaking terms (other symmetry breaking terms further
support this conclusion).

V. SPIN HALL EFFECT IN THIN FILM
SYSTEM

Now we turn our attention to thin film systems of
SrIrO3. Recent experiments32 discovered that SrIrO3

thin films exhibit surprisingly large spin Hall conduc-
tivity [�exp

SH ⇠ 105(~/2e)⌦�1m�1], which is about one
order of magnitude larger than values predicted for the
bulk system. The experimental film samples were grown
along the [010]c direction up to a thickness of 20 bulk
unit cells. Due to the nature of the experimental setup,
only the spin current induced along the [010]c film di-
rection was measured (see Fig. 10). This large thin film
spin Hall response is unexpected, since our theory for the
bulk system predicts rather small responses for the same
configuration corresponding to the experiment.

In this section, we study the (010)c thin film system
to get an insight into the large enhancement of SHC in
the film geometry. The (010)c thin film in our study is
described using the bulk tight-binding model H on the
slab lattice geometry shown in Fig. 10 (a). Our cal-
culation results presented below were obtained for the
system with 16 layers of Ir sites (8 bulk unit cells along
the [010]c direction) which is the largest thickness that
allowed us to reach convergence in the SHC calculations
within a reasonable amount of time. The finite thickness
of the film system leads to the breaking of some of the
original bulk symmetries, for instance the n-glide and b-
glide symmetries as well as the translational symmetry
along the [010]c direction (see Table I for the remaining
symmetries in the film system). As a consequence of the

lower lattice symmetry, the nodal line band crossing of
the bulk system is gapped out in the (010)c film [see Fig.
10 (c)]. Moreover, the film system has a nonuniform elec-
tron distribution over the layers of the Ir sites as shown
in Fig. 11 (by contrast, the bulk system has a uniform
electron distribution over the four sublattices by lattice
symmetry).

Figure 12 displays the spin Hall conductivity obtained
from the linear response theory for the thin film. Our
result shows large film SHC in the configuration corre-
sponding to the experiments: �z

yx ⇠ 104(~/2e)⌦�1m�1

around the zero Fermi energy (see the shaded region in
Fig. 12). However, in the same configuration, the bulk
system shows rather small SHC as shown in the figure
(at least one order of magnitude smaller compared to the
film SHC). Thus, natural questions to ask are (i) why is
the film’s spin Hall response so di↵erent from the bulk
system and (ii) what is the origin of the large spin Hall
response in the film.

To understand the di↵erence between the film and bulk
and the origin of the large SHC in the film, we resolve
the SHC in the two dimensional Brillouin zone of the film
as shown in Fig. 13. The upper and lower panels rep-
resent the momentum-resolved SHC ⌦z

yx(k) for the film
and bulk systems, respectively; the bulk result was ob-
tained by taking into account the zone folding described
in Fig. 10 (b). The similarities and di↵erences between
the film and bulk systems are revealed in the distribution
of ⌦z

yx(k). Firstly at each Fermi energy, overall patterns
of ⌦z

yx(k) in the film and bulk are quite similar to each
other. Despite this similarity, significant di↵erence in the
magnitude and sign of ⌦z

yx(k) is observed between the
film and bulk, suggesting that electron wave functions in
the thin film significantly deviate from wave functions in
the corresponding bulk system.

In addition to the modification of electron wave func-
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the film’s spin Hall response so di↵erent from the bulk
system and (ii) what is the origin of the large spin Hall
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and the origin of the large SHC in the film, we resolve
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resent the momentum-resolved SHC ⌦z

yx(k) for the film
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ble and robust to the introduction of various symmetry
breaking terms (other symmetry breaking terms further
support this conclusion).

V. SPIN HALL EFFECT IN THIN FILM
SYSTEM

Now we turn our attention to thin film systems of
SrIrO3. Recent experiments32 discovered that SrIrO3

thin films exhibit surprisingly large spin Hall conduc-
tivity [�exp

SH ⇠ 105(~/2e)⌦�1m�1], which is about one
order of magnitude larger than values predicted for the
bulk system. The experimental film samples were grown
along the [010]c direction up to a thickness of 20 bulk
unit cells. Due to the nature of the experimental setup,
only the spin current induced along the [010]c film di-
rection was measured (see Fig. 10). This large thin film
spin Hall response is unexpected, since our theory for the
bulk system predicts rather small responses for the same
configuration corresponding to the experiment.

In this section, we study the (010)c thin film system
to get an insight into the large enhancement of SHC in
the film geometry. The (010)c thin film in our study is
described using the bulk tight-binding model H on the
slab lattice geometry shown in Fig. 10 (a). Our cal-
culation results presented below were obtained for the
system with 16 layers of Ir sites (8 bulk unit cells along
the [010]c direction) which is the largest thickness that
allowed us to reach convergence in the SHC calculations
within a reasonable amount of time. The finite thickness
of the film system leads to the breaking of some of the
original bulk symmetries, for instance the n-glide and b-
glide symmetries as well as the translational symmetry
along the [010]c direction (see Table I for the remaining
symmetries in the film system). As a consequence of the

lower lattice symmetry, the nodal line band crossing of
the bulk system is gapped out in the (010)c film [see Fig.
10 (c)]. Moreover, the film system has a nonuniform elec-
tron distribution over the layers of the Ir sites as shown
in Fig. 11 (by contrast, the bulk system has a uniform
electron distribution over the four sublattices by lattice
symmetry).

Figure 12 displays the spin Hall conductivity obtained
from the linear response theory for the thin film. Our
result shows large film SHC in the configuration corre-
sponding to the experiments: �z

yx ⇠ 104(~/2e)⌦�1m�1

around the zero Fermi energy (see the shaded region in
Fig. 12). However, in the same configuration, the bulk
system shows rather small SHC as shown in the figure
(at least one order of magnitude smaller compared to the
film SHC). Thus, natural questions to ask are (i) why is
the film’s spin Hall response so di↵erent from the bulk
system and (ii) what is the origin of the large spin Hall
response in the film.

To understand the di↵erence between the film and bulk
and the origin of the large SHC in the film, we resolve
the SHC in the two dimensional Brillouin zone of the film
as shown in Fig. 13. The upper and lower panels rep-
resent the momentum-resolved SHC ⌦z

yx(k) for the film
and bulk systems, respectively; the bulk result was ob-
tained by taking into account the zone folding described
in Fig. 10 (b). The similarities and di↵erences between
the film and bulk systems are revealed in the distribution
of ⌦z

yx(k). Firstly at each Fermi energy, overall patterns
of ⌦z

yx(k) in the film and bulk are quite similar to each
other. Despite this similarity, significant di↵erence in the
magnitude and sign of ⌦z

yx(k) is observed between the
film and bulk, suggesting that electron wave functions in
the thin film significantly deviate from wave functions in
the corresponding bulk system.

In addition to the modification of electron wave func-

9

FIG. 10. Geometry and electronic structure of (010)
c

thin film. (a) Lattice geometry of Ir ions (green). The orange planes
describe a stacking of (010)

c

layers of Ir ions in thin film system. The black lines and arrows represent bulk unit cell and some
of the crystallographic axes, respectively. (b) Two dimensional Brillouin zone of (010)

c

film. The bulk Brillouin zone (cube) is
projected and folded into the film Brillouin zone (bottom rectangle). (c) Electronic energy band structure of (010)

c

film with
16 layers of Ir ions. The inset shows the band structure magnified around the Ū point.
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of the film system leads to the breaking of some of the
original bulk symmetries, for instance the n-glide and b-
glide symmetries as well as the translational symmetry
along the [010]c direction (see Table I for the remaining
symmetries in the film system). As a consequence of the

lower lattice symmetry, the nodal line band crossing of
the bulk system is gapped out in the (010)c film [see Fig.
10 (c)]. Moreover, the film system has a nonuniform elec-
tron distribution over the layers of the Ir sites as shown
in Fig. 11 (by contrast, the bulk system has a uniform
electron distribution over the four sublattices by lattice
symmetry).

Figure 12 displays the spin Hall conductivity obtained
from the linear response theory for the thin film. Our
result shows large film SHC in the configuration corre-
sponding to the experiments: �z

yx ⇠ 104(~/2e)⌦�1m�1

around the zero Fermi energy (see the shaded region in
Fig. 12). However, in the same configuration, the bulk
system shows rather small SHC as shown in the figure
(at least one order of magnitude smaller compared to the
film SHC). Thus, natural questions to ask are (i) why is
the film’s spin Hall response so di↵erent from the bulk
system and (ii) what is the origin of the large spin Hall
response in the film.

To understand the di↵erence between the film and bulk
and the origin of the large SHC in the film, we resolve
the SHC in the two dimensional Brillouin zone of the film
as shown in Fig. 13. The upper and lower panels rep-
resent the momentum-resolved SHC ⌦z

yx(k) for the film
and bulk systems, respectively; the bulk result was ob-
tained by taking into account the zone folding described
in Fig. 10 (b). The similarities and di↵erences between
the film and bulk systems are revealed in the distribution
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yx(k). Firstly at each Fermi energy, overall patterns
of ⌦z

yx(k) in the film and bulk are quite similar to each
other. Despite this similarity, significant di↵erence in the
magnitude and sign of ⌦z

yx(k) is observed between the
film and bulk, suggesting that electron wave functions in
the thin film significantly deviate from wave functions in
the corresponding bulk system.

In addition to the modification of electron wave func-
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FIG. 11. Layer dependence of electron density in the thin
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pattern of the electron density about the central layers (8,9) is
due to the inversion symmetry remaining in the film system.

tions, the surface states arising in the film (which are lo-
calized around the boundary surfaces) could be another
source for the di↵erence between the film and bulk spin
Hall responses. Fig. 14 depicts the locations at which
surface states occur in the Brillouin zone. Comparing
Figs. 13 and 14, one observes that the distribution of
the surface states in momentum space does not seem to
match well with the pattern of ⌦z

yx(k) in the film system.
This supports the idea that the large film SHC is mainly
an e↵ect of bulk-like electron states rather than the sur-
face states. The bulk-like electron states are, however,
substantially modified from states in the bulk system as
indicated by the electron density (Fig. 11) and spin-
Berry curvature distribution (Fig. 13). The change in
the wave functions (and subsequent enhancement of the
spin Hall e↵ect in the film geometry) is attributed to the
lower lattice symmetry in the thin film system. In the
absence of the film direction translation, n-glide, b-glide,
and other lattice symmetries, electron wave functions are
obviously less constrained as compared to in the original
bulk environment.
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VI. CONCLUSIONS

In this work, we examined the intrinsic spin Hall e↵ect
in both bulk and thin film configurations of SrIrO3 us-
ing linear response theory. We employed the je↵ = 1/2
tight binding model constructed from ab initio studies of
SrIrO3.28,29 From our bulk SrIrO3 studies in Sec. III and
IV, we found an unexpectedly large spin Hall conductiv-
ity [�SH ⇠ 104(~/e)(⌦m)�1] in three configurations: �y

zx,
�y
zy, and �x

xz. We attribute the enormity of this response
to large extended regions in the Brillouin zone (shaded
in Fig. 3) where the band structure is nearly degenerate.
We also determined that the bulk spin Hall conductivity
is very robust and stable to a number of symmetry break-
ing terms, provided that the aforementioned nearly de-
generate band structure is preserved. Our thin film calcu-
lations implicated the modification of the bulk-like wave
functions in the thin film to be responsible for enhanced
SHE in certain geometries. This thin film consideration
is unlike the symmetry-broken-augmented bulk calcula-
tions where the symmetry breaking perturbations do not
induce as large a change to the electronic states. The na-
ture of the electronic states being a key ingredient in the
spin Hall conductivity suggests that further constrained
and restricted geometries of SrIrO3 (where the electronic
states can change significantly due to, for example, cer-
tain symmetries being decisively broken) can lead to large
enhancement of the spin Hall conductivity with respect
to the corresponding bulk response. Although this study
examines the case of SrIrO3, we are hopeful that simi-
lar 5d-like iridate materials can also have large spin Hall
conductivities. This aspiration is partly rooted in recent
experimental work in binary 5d transition metal oxide
IrO2, where large SHE was demonstrated with high spin
current conversion.24

The results from our theoretical calculations seem to
agree at least qualitatively with the recent experimental
report where large spin Hall conductivity was observed in

Large enhancement of 
the spin Hall conductivity
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FIG. 13. Momentum-resolved spin Hall conductivity ⌦z

yx

(k) of the thin film (upper) and bulk (lower) systems. The bulk result
was obtained by taking into account the zone folding described in Fig. 10 (b) and using the same unit for the film and bulk
results for comparison with the film result.
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FIG. 14. Locations of the surface states in the Brillouin zone.
The purple dots represent the states with electron density
with more than 66 percent at the top four and bottom four
layers among the entire 16 Ir-layers of the film system. The
surface state locations, which are qualitatively di↵erent from
the pattern of ⌦z

yx

(k) in Fig. 13, indicate that the large film
SHE is mainly an e↵ect by bulk-like states rather than the
surface states in the thin film system.

SrIrO3 thin films. To enable a more quantitative compar-
ison with experimental spin Hall conductivity measure-
ments, it is important to take into account the e↵ects
of the neighbouring ferromagnetic permalloy layer (Py)
on the SHC. Although we provide some early analysis of
these e↵ects in Appendix D, we propose taking into ac-
count the e↵ects of the Py exchange field on the interface
to be an interesting direction for future research.

ACKNOWLEDGEMENTS

K. H. and Y. B. K. thank T. Nan, T. J. Anderson, C. B.
Eom, M. S. Rzchowski, J. Gibbons, and D. C. Ralph for
helpful discussions and collaborations in a related study.
This work was supported by the NSERC of Canada and

the Center for Quantum Materials at the University of
Toronto. We acknowledge the hospitality at the Kavli
Institute for Theoretical Physics, supported in part by
the NSF grant PHY-1125915 and the Aspen Center for
Physics, supported in part by NSF grant PHY-1607611,
where some parts of this work were done. H.W.L was
supported by the National Research Foundation of Ko-
rea (NRF) grant (No. 2011-0030046). Some of the com-
putations were performed on the GPC supercomputer at
the SciNet HPC Consortium.41 SciNet is funded by: the
Canada Foundation for Innovation under the auspices of
Compute Canada; the Government of Ontario; Ontario
Research Fund - Research Excellence; and the University
of Toronto.

Appendix A: Hamiltonian matrix Hk

The explicit form of the tight binding model28,29 is
given by the 8⇥8 Hamiltonian matrix:

Hk =
⇣
✏por,k�y + ✏poi,k�x

⌘
⌫z⌧y +

�
✏zor,k�y + ✏zoi,k�x

�
⌫y⌧z

+
�
✏dor,k�y + ✏doi,k�x

�
⌫x⌧y + ✏dr,k⌫x⌧x + ✏di,k⌫y⌧y

+ ✏pr,k⌧x + ✏pi,k�z⌧y + ✏zk⌫x + �k.

(A1)
Here the Pauli matrices �, ⌧, ⌫ act on the spin (", #) and
sublattice (1,2,3,4) degrees of freedom in the following
way.

�x : " $ #,
⌫x : 1 $ 3, 2 $ 4,

⌧x : 1 $ 2, 3 $ 4.

(A2)
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Figure 4| Control of spin-Hall conductivity with lattice symmetry stabilization and the 
calculations from linear response theory. a, SHC σ|| of Py/SrIrO3 bilayer (with Py thickness 
fixed at 3.5 nm) as a function of SrIrO3 thickness. b, Thickness dependent orthorhombicity 
factor, defined as a/b, of SrIrO3. The dashed line represents a trend for the SrIrO3 crystalline 
symmetry transition. c, Schematic illustrations of the SrIrO3 lattice symmetry change originating 
from the IrO6 octahedral distortion that is dependent on thickness when grown on SrTiO3. d, 
Bulk SHC calculated for three different measurement geometries (!!"! , !!"! , !!"! ,) as a function of 
Fermi energy !! . The measurement geometry is specified by the three indices of !!"!! : ! 
(direction of external electric field), ! (direction of induced spin current), and !! (spin polarization 
direction). e, Schematic illustration of the SrIrO3 lattice and the corresponding film experimental 
configuration of 3 orthogonal vectors. f, g, h, Momentum-resolved SHC Ω!"! (!) in the Brillouin 
zone. As the Fermi level increases (from g to h), the distribution of Ω!"! (!)  changes in 
accordance with the shape of the Fermi surface. 

 

4	
	

ψ is the angle between the [100]c and the current axis, and ψ0 accounts for the misalignment 
between the device pattern and the crystal orientation. We note that the higher !∥ axis along the 
[010]c coincides with the lower resistivity axis of the SrIrO3 thin film (see Supplementary 
Information for the anisotropic resistivity of SrIrO3).  

 

Figure 2| ST-FMR measurements and the line shape analysis. a, Schematic of the Py/SrIrO3 
bilayer on SrTiO3(001) and the current-induced torque geometries (left). Atomic structure of the 
Py/SrIrO3// SrTiO3 (right). b, ST-FMR spectrum (fitted to a Lorentzian function, solid line) for a 
3.5 nm Py/8 nm (20 uc) SrIrO3 sample with microwave current applied along the [010]c axis. The 
dashed lines represent the fits of the symmetric and antisymmetric components. The external 
magnetic field is oriented at an angle φ=-45° with respect to the current axis. The applied 
microwave frequency and power are 5.5 GHz and 12 dBm. The Vmix across the device bar is 
acquired by a dc voltage meter. c, Symmetric and antisymmetric resonance components as a 
function of the external magnetic field angle φ, which are fitted to !"#2!"#$!. d, In-plane 
crystallographic orientation (current applied along from [100]c to [010]c) dependence of the 
measured spin-torque ratio. The external magnetic field angle is fixed at φ=45°. The solid line 
shows the fit to sin (! + !!). 

 

We further confirmed the exceptionally large spin-torque ratio in SrIrO3 by measuring the dc 
current-induced transformation of the ST-FMR resonance5,24. The injection of the dc current 
exerts an additional dc spin-torque on the adjacent Py. The dc in-plane torque component 
modifies the relaxation of the Py magnetization precession, modulating its resonance linewidth, 
as this torque component is parallel or antiparallel to the Gilbert damping torque depending on 
the relative orientation between the current and magnetic field4. We performed ST-FMR 
measurements on the Py/SrIrO3 bilayer device patterned along [010]c axis (20 µm × 40 µm) with 
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Kitaev Model: Exact Solution

II. HEISENBERG-KITAEV MODEL ON HYPER-HONEYCOMB

Let us consider the following Heisenberg-Kitaev model on the Hyper-honeycomb lattice.

HHK = J
�

⇥ij⇤

Si · Sj �K
�

��links

S�
i S

�
j (1)

We first study the di�erent limits.

A. K=0

This is the limit of the pure antiferromagnetic Heisenberg model. The above lattice is

similar topologically to the lattice in fig. 5. On this lattice, the Neel order is not frustrated.

This is shown in figure 6. The reason that Neel order is not frustrated is that the above

lattice can be seen as a partially deleted cubic lattice where the deletion is done without

introducing new bonds.[7] So the Neel order remains unfrustrated and is the classical ground

state.

B. J=0

This is the pure Kitaev limit. This limit was first studied by Mandal et. al [4] on the

deleted cubic lattice (fig. 5). The Hamiltonian looks like:

HK = �
�

��links

S�
i S

�
j (2)

where the di�erent links are given in fig. 5. The details of this lattice are described in

Appendix A. Using the usual majorana fermion decomposition of the spins, we find that the

Hamiltonian is given by:

HK =
i

2

�

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ) (3)

Now unlike the 2D case here we do not have a clear cut Lieb’s theorem which says that the

ground state belongs to the zero flux sector. So Ref. [4] resorted to some selected numerical

check and found that the ground state indeed belongs to this sector. We shall assume that

this is correct and look for the majorana dispersion in this sector. In this sector, we can set
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point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

⌥

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
�

loop

u�
ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =

i

2

⌥

ij

cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
K =

⌥

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and

Hk =
i

4
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where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)
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y � z and x � z bonds respectively. We would like to re-
emphasize that the word skew indicates that this is essentially
a three dimensional magnetic order as opposed to a stacked
up two dimensional spin order. At this special point there is a
continuous “SU(2)” spin rotation symmetry that ensures that
all the three skew-stripy phases described above have the same
energy.

It is however worthwhile to note that there is a crucial
difference from the honeycomb case away from this special
point. In the honeycomb lattice a two dimensional stripy
phase is obtained for the Heisenberg-Kitaev model at the same
parameter value. There, a C3 symmetry of the lattice along
with concomitant rotation of the spins which is a symmetry
of the HHK Hamiltonian on the honeycomb lattice ensures
that the three stripy ordered phases have the same energy even
away from this special point where there is no “SU(2)” sym-
metry. However on the hyper-honeycomb lattice, there is only
a C2 symmetry between the x and the y bonds, while the z
bonds are not related by any symmetry. So there is no a-priori
reason for the Sz ordered skew-stripy phase to have the same
energy as the other two. Indeed we find that, away from this
point (K = 2J), although the classical energies of the three
states remain the same, quantum corrections coming from the
spin-wave fluctuations lift this accidental classical degener-
acy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al19 showed
that the pure Kitaev model on the deleted cubic lattice which
is topologically similar to the hyper-honeycomb lattice can
be exactly solved using methods originally employed by
Kitaev.18

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual Ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

 

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four Majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (the blue sites in Fig. 1) are given by19

WP =
⌦

loop

u�
ij . (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.

This separation of the Majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.18

The problem then reduces to Majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb
lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al.28 proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice19 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al.19 resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes for several flux configurations and found that the zero-
flux sector has the lowest energy. Thus it is expected that the
zero flux sector corresponds to the ground state in our case as
well. We can then specialize to the zero-flux sector choosing
a gauge where u�

ij = +1 (⇤⌥ij�) to get

H0�flux
K =

i

2

 

ij

cicj . (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation, taking the unit cell as given in Fig. 1 (the lattice
vectors are given in Appendix A). We get

H0�flux
K =

 

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and

Hk =
i

4

⇤
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�1 0 BK 0
0 �B⇤

k 0 1
�A⇤

k 0 �1 0

⌅

�⌃ (8)

where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)

The spectrum is given by:

Ek = ± 1

2
⌦
2

�
(2 + |Ak|2 + |Bk|2)± (10)

↵
[2 + |Ak|2 + |Bk|2]2 � 4 [1 + |Ak|2|Bk|2 + 2⌅ [AkB⇤

k]]

⇥1/2

(11)

The spectrum for the dispersing Majorana fermion, c, along
the high symmetry lines within the first Brillouin zone is given
in Fig. 5. The lower two bands are occupied while the zero
energy surface describe the contour of the gapless excitation.
We find a fermi surface of co-dimension two, i.e. line nodes.
From Eq. 11, it is easy to see that this is given by the zeros of

WP = ±1⇒

7

We can rewrite the single occupancy constraint for the
complex fermions (eq. 10) in terms of the Majorana
fermions17 as

�0
i�

1
i�

2
i�

3
i =

1

4
. (40)

Using this, we can rewrite the spins in terms of the Ma-
jorana fermions as

Sx
i = i�0

i�
1
i , Sy

i = i�0
i�

2
i , Sz

i = i�0
i�

3
i , (41)

which is the original formulation used by Kitaev in the
solution of his model, with our Majorana fermions nor-
malized such that {�↵

i ,�
�
j } = �ij�

↵� . A set of plaquette
operators,

Wp = 26Sx
1S

y
2S

z
3S

x
4S

y
5S

z
6 , (42)

are defined on the individual plaquettes of the lattice,
where the sites 1� 6 traverse a honeycomb plaquette as
shown in figure 2. (The factor of 26 which is present
in our definition of Wp is due to the plaquette operator
being written in terms of spins, rather than Pauli ma-
trices as in the original formulation of Kitaev.4) These
plaquette operators commute with the original Kitaev
spin Hamiltonian and with one another, which allows the
Hilbert space to be split into eigen-spaces of these oper-
ators, enabling the exact solution. These operators do
not commute with the mean field Hamiltonian; however,
that these operators take the same value in the mean-field
solution as in the exact solution.19

To make a connection with Kitaev’s original solution
we now express our results in terms of the Majorana
fermions. By construction, the Majorana fermions in-
troduced in Eq. 38 are the modes in which the band
structure is diagonal. While �1, �2 and �3 form the flat
bands, the single dispersing band is made up of the �0

fermions.17 In terms of the original solution of Kitaev, the
dispersing fermion is the single gapless Majorana mode,
while the flat band fermions describe the frozen Z2 fluxes,
as we now show. The flat bands arise from the fact that
the mean-field Hamiltonians for �1,�2 and �3 become
disjoint, i.e., the hopping for these fermions are non-zero
only on x, y or z bonds respectively. For the hopping on
the z-link, we have,

⌅(i�3
i�

3
j � i�3

j�
3
i ) (43)

where ⌅ is expressed in terms of the mean field param-
eters and ij are neighbours on a z-link. The eigenvalues
are given by ±|⌅|, independent of ~k, and therefore these
form the flat bands. At half filling, the lower energy state
(lower flat band) is occupied. To compare with the exact
solution, the Majorana bilinear �3

i�
3
j has to be identi-

fied with the Z2 gauge fields defined on the z-links, uz
ij .

4

Indeed, we identify

uz
ij = 2i�3

i�
3
j = i(�3

i�
3
j � �3

j�
3
i ). (44)

In the ground state, clearly the eigenvalues of uz
ij are ±1.

Similarly we can introduce ux
ij and uy

ij on x and y links
respectively. Now we can re-write the flux operators Wp

in Eq. 42 (using 41, 40 and the fact that �↵
i �

↵
i = 1

2 ) as

Wp = 26Sx
1S

y
2S

z
3S

x
4S

y
5S

z
6 = uz

12u
x
23u

y
34u

z
45u

x
56u

z
61 (45)

It is now clear that in the ground state the plaquette
operators Wp have an expectation value of +1. For a
small departure from this Kitaev point, one can still use
the variables up

ij and Wp. However, these are no longer
static, but acquire dynamics as the corresponding Majo-
rana fermions starts dispersing.
The fermionic mean-field theory of this state describes

a Z2 spin liquid, as we will show explicitly in the next
subsection. At the mean field saddle-point, the values of
di↵erent parameters are given by

� iDy
i,x = Ez

i,x = Dx
i,y = Ez

i,y = Dx
i,z = �iDy

i,z = 0.190608i,

Dx
i,x = �iDy

i,y = Ez
i,z = �0.0593918i, (46)

values which have been determined by self-consistent
iteration28, as described above.
The resultant spinon spectrum is given in Figure 4.

There are 8 bands which, characteristic of Bogoliubov
Hamiltonians, are symmetric about zero energy. The flat
bands are threefold degenerate. At half filling for the
spinons the lower four bands (red) are filled while the
upper four bands (blue) are empty. While the flat bands
are gapped, the two dispersing bands meet at the bound-
ary of the hexagonal Brillouin zone with a characteristic
Dirac spectrum. Hence the spin liquid that we are de-
scribing is indeed gapless and matches with the spinon
spectrum obtained in the exact solution of the Kitaev
model. This provides a useful check on the validity of
our mean field solution, as well as a controlled limit from
which we can perturb the model.
The presence of the pairing term indicates that, in

terms of the complex fermions, the spin liquid is a “su-
perconductor” for the spinons. We can analyze the
symmetry of the pairing amplitude. In order to de-
termine the properties of the pairing around the Dirac
node, we isolate the dispersing band by examining the
�0 fermionic modes and returning to the original basis
of Dirac fermions. For the �0 modes, the Hamiltonian is
given by

H0
K =

M

4

X

i

X

p

�0
i�

0
i+p (47)

=
M

8

X

i

X

p

(fi," + f†
i,")(fi+p," + f†

i+p,")

=
1

8

X

k

X

p

(M(fk"Af�k"B + fk"Af
†
k"B)e

�i~k·~Rp

AB + h.c.)

(48)

where M = 0.38122i. From here we can expand the
pairing terms about the K-points in the brillouin zone.
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

⌥

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
�

loop

u�
ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =

i

2

⌥

ij

cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
K =

⌥

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and

Hk =
i

4
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⇧⇤
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�1 0 BK 0
0 �B⇤

k 0 1
�A⇤

k 0 �1 0

⇥

⌃⌅ (8)

where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)
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FIG. 5. The spectrum of the dispersing majorana fermion in the pure kitaev model on the hyperhoneycomb lattice along paths of high symmetry
in the first Brillouin zone (The first Brillouin zone and the paths are shown in Appendix A)

point (K = 2J), although the classical energies of the three
orders remain same, but, quantum corrections coming from
the spin-wave fluctuations lift this, accidental classical degen-
eracy.

C. J = 0 : The Kitaev Spin Liquid

This is the pure Kitaev limit. Mandal et. al6 showed that
the pure Kitaev model on the deleted cubic lattice which is
topologically similar to the hyper-honeycomb lattice can be
exactly solved using methods originally employed by Kitaev.2

The exact solution, as in the honeycomb case, is rendered
by the three-fold coordination and consequent presence of an
infinite number of conserved quantities. Using the usual ma-
jorana fermion decomposition of the spins

S�
i = ib�i c (3)

we find that the Hamiltonian (Eq. 1) in this limit is given by:

HK =
i

2

⌥

��links

u�
ijcicj (where u�

ij = ib�i b
�
j ), (4)

where we have put the overall scale K = 1. The {bxi , b
y
i , b

z
i , c}

are the four majorana fermions that mutually anticommute.
The infinite number of conserved quantities are given by

the Z2-link variables u�
ij that commute with each other and

with the Hamiltonian (Eq. 4). The Z2-fluxes generated by u�
ij

over the 10 site loop (see fig. 1) are given by6

WP =
�

loop

u�
ij (5)

Since these fluxes commute with the Hamiltonian, by con-
struction, they do not have any dynamics and hence the prob-
lem can be solved independently for different flux sectors.
This separation of the majorana sector and the flux sector, the
latter being good quantum numbers, lies at the heart of the
exact solution of the Kitaev models on different lattices.

The problem then reduces to majorana fermions hopping
in the background of frozen fluxes on the hyper-honeycomb

lattice. Similar issues have been studied by various people
on other lattices. E. Lieb et al. proved that, on certain bi-
partite lattice that contain mirror planes that bisect the lattice
links, the lowest energy is obtained when planer plaquettes
containing 2(mod 4) sites have zero-flux through them, while
plaquettes having 0 (mod 4) sites have �-flux through them.
Unfortunately, unlike the 2D-honeycomb lattice, we cannot
prove Lieb’s theorem for the present lattice6 because of the
absence of suitable miror planes. In absence of such theo-
rems, Mandal et al. resorted to numerical diagonalization of
the fermion hopping Hamiltonian (Eq. 4) over large system
sizes and found that the zero-flux sector has the lowest energy.
Assuming that this is also true in our case, we can specialize to
the zero-flux sector choosing a gauge where u�

ij = +1 (⇥⇧ij⌃)
to get

H0�flux
K =

i

2

⌥

ij

cicj (6)

This Hamiltonian can then be diagonalized by fourier trans-
formation taking the unit cell, as given in given in fig. 1 (and
the lattice vectors are given in Appendix A). We get

H0�flux
K =

⌥

k

�T
�kHk�k (7)

where �T
k = (c1,k, c2,k, c3,k, c4,k) and

Hk =
i

4
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�1 0 BK 0
0 �B⇤

k 0 1
�A⇤

k 0 �1 0

⇥

⌃⌅ (8)

where,

Ak = e�ik·a1 + e�ik·a2 ; Bk = 1 + e�ik·a3 (9)

Ground state is in the zero-flux sector

Flux excitations can be created at 
finite temperatures

Wp = �1

for some loops



4

(a) (b) (c) (d)α=1.0 α=0.8 α=0.75 α=0.5

0.0

0.2

0.4

0.6

0.8

L=6
L=8

L=10
L=12

 10-4  10-3  10-2  10-1  100  10+1

T
 10-4  10-3  10-2  10-1  100  10+1  10-4  10-3  10-2  10-1  100  10+1  10-4  10-3  10-2  10-1  100  10+1

C
v

S
 /
 ln

 2
, 
 W

S
p

S
zz

,

T T T

(e) (f) (g) (h)

(i) (j) (k) (l)

L=6
L=8

L=10
L=12

S/ln2 W

L=6
L=8

L=10
L=12

Sp Szz

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

α=1.0 α=0.8 α=0.75 α=0.5

α=1.0 α=0.8 α=0.75 α=0.5

FIG. 1: (color online). (a)-(d) T dependences of the specific heat at (a) α = 1.0, (b) α = 0.8, (c) α = 0.75, and (d) α = 0.5 in the
several clusters with 2 × L2 spins. Here, we define the anisotropy parameter α by taking Jx = Jy = α/3 and Jz = 1 − 2α/3. (e)-(h) T
dependences of the entropy per site, S, and the thermal average of the density of the fluxWp,W . (i)-(l) T dependences of the equal-time spin
correlations, Sll; Sp = (Sxx + Syy)/2. The horizontal dashed lines represent the values at T = 0 which are calculated analytically [18], and
the dashed-dotted curves represent the high-T Curie behaviors Sll ∼ Jl/T .
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FIG. 2: (color online). Contour map of the entropy per site, S/ ln 2,
on a plane of T and α. The dashed line represents crossover temper-
ature obtained by the perturbation theory in the limit of Jz ≫ Jx, Jy

(α ≪ 1). The dashed-dotted line represents the crossover tempera-
ture obtained by assuming the constant DOS. NNC stands for a NN
correlation.

C. Low-T crossover: flux density

Next, we discuss what occurs in the low-T crossover. The
entropy release near TL originates from the localized Majo-
rana fermions c̄j or ηr. This is confirmed by calculating the
T dependence of the flux density, W , in Eq. (7), as shown
in Figs. 1(e)-1(h). The results show thatW rapidly decreases
from 1 with increasing T in the vicinity of TL. Hence, the
crossover at TL is due to the thermal fluctuation of fluxes.
This is further confirmed by considering the toric code limit

corresponding to Jx, Jy ≪ Jz (α ≪ 1). In this limit,
the Kitaev model is reduced to the effective model Heff =

−Jeff
∑

p Wp, where Jeff = J2
xJ

2
y/(16J

3
z ) [7]. Since this ef-

fective model describes free Ising spins in the magnetic field
Jeff , the specific heat is of Schottky-type, which takes a max-
imum at T̃L/Jeff ∼ 0.833. The asymptotic behavior is shown
by the dashed line in Fig. 2. The agreement between this line
and TL further supports that the low-T crossover is caused by
the thermal disturbance of fluxes.
We also note that the agreement of the asymptotic behav-

ior is consistent with the absence of phase transition in this
two-dimensional system. This is in contrast to the three-
dimensional case; there are local constraints forWp in the Ki-
taev model defined on a three-dimensional hyperhoneycomb
lattice, leading to a finite-T phase transition [16]. On the other
hand, there is no constraint for Wp in the two-dimensional
case, which results in the absence of the phase transition for
T > 0.
To summarize the above results, the three regions in the

phase diagram depicted in Fig. 2 are characterized as follows.
The high-T region for T ! TH is a conventional paramagnetic
state, where the NN spin correlations obey the Curie behavior.
On the other hand, in the low-T region for T < TL, the NN
spin correlations are saturated to the T = 0 values, and fur-
thermore, the fluxes are also aligned. Thus, the system below
TL behaves similar to the ground state QSL. In the region for
TL " T " TH, a peculiar intermediate state appears: the NN
spin correlations are well developed, whereas the fluxes are
thermally disordered. In the following sections, we discuss
the nature of this intermediate state.

D. Density of states of itinerant Majorana fermions

Since the Z2 variables ηr couple with the itinerant Ma-
jorana fermions, we expect that the enhanced fluctuations
of fluxes above TL affect the nature of itinerant Majorana
fermions considerably. In order to elucidate such behavior, we
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C. Low-T crossover: flux density

Next, we discuss what occurs in the low-T crossover. The
entropy release near TL originates from the localized Majo-
rana fermions c̄j or ηr. This is confirmed by calculating the
T dependence of the flux density, W , in Eq. (7), as shown
in Figs. 1(e)-1(h). The results show thatW rapidly decreases
from 1 with increasing T in the vicinity of TL. Hence, the
crossover at TL is due to the thermal fluctuation of fluxes.
This is further confirmed by considering the toric code limit

corresponding to Jx, Jy ≪ Jz (α ≪ 1). In this limit,
the Kitaev model is reduced to the effective model Heff =

−Jeff
∑

p Wp, where Jeff = J2
xJ

2
y/(16J

3
z ) [7]. Since this ef-

fective model describes free Ising spins in the magnetic field
Jeff , the specific heat is of Schottky-type, which takes a max-
imum at T̃L/Jeff ∼ 0.833. The asymptotic behavior is shown
by the dashed line in Fig. 2. The agreement between this line
and TL further supports that the low-T crossover is caused by
the thermal disturbance of fluxes.
We also note that the agreement of the asymptotic behav-

ior is consistent with the absence of phase transition in this
two-dimensional system. This is in contrast to the three-
dimensional case; there are local constraints forWp in the Ki-
taev model defined on a three-dimensional hyperhoneycomb
lattice, leading to a finite-T phase transition [16]. On the other
hand, there is no constraint for Wp in the two-dimensional
case, which results in the absence of the phase transition for
T > 0.
To summarize the above results, the three regions in the

phase diagram depicted in Fig. 2 are characterized as follows.
The high-T region for T ! TH is a conventional paramagnetic
state, where the NN spin correlations obey the Curie behavior.
On the other hand, in the low-T region for T < TL, the NN
spin correlations are saturated to the T = 0 values, and fur-
thermore, the fluxes are also aligned. Thus, the system below
TL behaves similar to the ground state QSL. In the region for
TL " T " TH, a peculiar intermediate state appears: the NN
spin correlations are well developed, whereas the fluxes are
thermally disordered. In the following sections, we discuss
the nature of this intermediate state.

D. Density of states of itinerant Majorana fermions

Since the Z2 variables ηr couple with the itinerant Ma-
jorana fermions, we expect that the enhanced fluctuations
of fluxes above TL affect the nature of itinerant Majorana
fermions considerably. In order to elucidate such behavior, we
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(α ≪ 1). The dashed-dotted line represents the crossover tempera-
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C. Low-T crossover: flux density

Next, we discuss what occurs in the low-T crossover. The
entropy release near TL originates from the localized Majo-
rana fermions c̄j or ηr. This is confirmed by calculating the
T dependence of the flux density, W , in Eq. (7), as shown
in Figs. 1(e)-1(h). The results show thatW rapidly decreases
from 1 with increasing T in the vicinity of TL. Hence, the
crossover at TL is due to the thermal fluctuation of fluxes.
This is further confirmed by considering the toric code limit

corresponding to Jx, Jy ≪ Jz (α ≪ 1). In this limit,
the Kitaev model is reduced to the effective model Heff =

−Jeff
∑

p Wp, where Jeff = J2
xJ

2
y/(16J

3
z ) [7]. Since this ef-

fective model describes free Ising spins in the magnetic field
Jeff , the specific heat is of Schottky-type, which takes a max-
imum at T̃L/Jeff ∼ 0.833. The asymptotic behavior is shown
by the dashed line in Fig. 2. The agreement between this line
and TL further supports that the low-T crossover is caused by
the thermal disturbance of fluxes.
We also note that the agreement of the asymptotic behav-

ior is consistent with the absence of phase transition in this
two-dimensional system. This is in contrast to the three-
dimensional case; there are local constraints forWp in the Ki-
taev model defined on a three-dimensional hyperhoneycomb
lattice, leading to a finite-T phase transition [16]. On the other
hand, there is no constraint for Wp in the two-dimensional
case, which results in the absence of the phase transition for
T > 0.
To summarize the above results, the three regions in the

phase diagram depicted in Fig. 2 are characterized as follows.
The high-T region for T ! TH is a conventional paramagnetic
state, where the NN spin correlations obey the Curie behavior.
On the other hand, in the low-T region for T < TL, the NN
spin correlations are saturated to the T = 0 values, and fur-
thermore, the fluxes are also aligned. Thus, the system below
TL behaves similar to the ground state QSL. In the region for
TL " T " TH, a peculiar intermediate state appears: the NN
spin correlations are well developed, whereas the fluxes are
thermally disordered. In the following sections, we discuss
the nature of this intermediate state.

D. Density of states of itinerant Majorana fermions

Since the Z2 variables ηr couple with the itinerant Ma-
jorana fermions, we expect that the enhanced fluctuations
of fluxes above TL affect the nature of itinerant Majorana
fermions considerably. In order to elucidate such behavior, we
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(α ≪ 1). The dashed-dotted line represents the crossover tempera-
ture obtained by assuming the constant DOS. NNC stands for a NN
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C. Low-T crossover: flux density

Next, we discuss what occurs in the low-T crossover. The
entropy release near TL originates from the localized Majo-
rana fermions c̄j or ηr. This is confirmed by calculating the
T dependence of the flux density, W , in Eq. (7), as shown
in Figs. 1(e)-1(h). The results show thatW rapidly decreases
from 1 with increasing T in the vicinity of TL. Hence, the
crossover at TL is due to the thermal fluctuation of fluxes.
This is further confirmed by considering the toric code limit

corresponding to Jx, Jy ≪ Jz (α ≪ 1). In this limit,
the Kitaev model is reduced to the effective model Heff =

−Jeff
∑

p Wp, where Jeff = J2
xJ

2
y/(16J

3
z ) [7]. Since this ef-

fective model describes free Ising spins in the magnetic field
Jeff , the specific heat is of Schottky-type, which takes a max-
imum at T̃L/Jeff ∼ 0.833. The asymptotic behavior is shown
by the dashed line in Fig. 2. The agreement between this line
and TL further supports that the low-T crossover is caused by
the thermal disturbance of fluxes.
We also note that the agreement of the asymptotic behav-

ior is consistent with the absence of phase transition in this
two-dimensional system. This is in contrast to the three-
dimensional case; there are local constraints forWp in the Ki-
taev model defined on a three-dimensional hyperhoneycomb
lattice, leading to a finite-T phase transition [16]. On the other
hand, there is no constraint for Wp in the two-dimensional
case, which results in the absence of the phase transition for
T > 0.
To summarize the above results, the three regions in the

phase diagram depicted in Fig. 2 are characterized as follows.
The high-T region for T ! TH is a conventional paramagnetic
state, where the NN spin correlations obey the Curie behavior.
On the other hand, in the low-T region for T < TL, the NN
spin correlations are saturated to the T = 0 values, and fur-
thermore, the fluxes are also aligned. Thus, the system below
TL behaves similar to the ground state QSL. In the region for
TL " T " TH, a peculiar intermediate state appears: the NN
spin correlations are well developed, whereas the fluxes are
thermally disordered. In the following sections, we discuss
the nature of this intermediate state.

D. Density of states of itinerant Majorana fermions

Since the Z2 variables ηr couple with the itinerant Ma-
jorana fermions, we expect that the enhanced fluctuations
of fluxes above TL affect the nature of itinerant Majorana
fermions considerably. In order to elucidate such behavior, we

Specific Heat and Thermal Entropy
exciting flux 

degree of freedom
WP =

Y

loop

u↵
ij = �1



4

(a) (b) (c) (d)α=1.0 α=0.8 α=0.75 α=0.5

0.0

0.2

0.4

0.6

0.8

L=6
L=8

L=10
L=12

 10-4  10-3  10-2  10-1  100  10+1

T
 10-4  10-3  10-2  10-1  100  10+1  10-4  10-3  10-2  10-1  100  10+1  10-4  10-3  10-2  10-1  100  10+1

C
v

S
 /
 ln

 2
, 
 W

S
p

S
zz

,

T T T

(e) (f) (g) (h)

(i) (j) (k) (l)

L=6
L=8

L=10
L=12

S/ln2 W

L=6
L=8

L=10
L=12

Sp Szz

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

α=1.0 α=0.8 α=0.75 α=0.5

α=1.0 α=0.8 α=0.75 α=0.5

FIG. 1: (color online). (a)-(d) T dependences of the specific heat at (a) α = 1.0, (b) α = 0.8, (c) α = 0.75, and (d) α = 0.5 in the
several clusters with 2 × L2 spins. Here, we define the anisotropy parameter α by taking Jx = Jy = α/3 and Jz = 1 − 2α/3. (e)-(h) T
dependences of the entropy per site, S, and the thermal average of the density of the fluxWp,W . (i)-(l) T dependences of the equal-time spin
correlations, Sll; Sp = (Sxx + Syy)/2. The horizontal dashed lines represent the values at T = 0 which are calculated analytically [18], and
the dashed-dotted curves represent the high-T Curie behaviors Sll ∼ Jl/T .

α

spin disordered, flux disordered

spin NNC, flux disordered

spin NNC, flux “aligned”

 10-5

 10-4

 10-3

 10-2

 10-1

 100

 10+1

T

0.50 0.75 1.00 1.25 1.50
0.00

0.25

0.50

0.75

1.00

FIG. 2: (color online). Contour map of the entropy per site, S/ ln 2,
on a plane of T and α. The dashed line represents crossover temper-
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(α ≪ 1). The dashed-dotted line represents the crossover tempera-
ture obtained by assuming the constant DOS. NNC stands for a NN
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C. Low-T crossover: flux density

Next, we discuss what occurs in the low-T crossover. The
entropy release near TL originates from the localized Majo-
rana fermions c̄j or ηr. This is confirmed by calculating the
T dependence of the flux density, W , in Eq. (7), as shown
in Figs. 1(e)-1(h). The results show thatW rapidly decreases
from 1 with increasing T in the vicinity of TL. Hence, the
crossover at TL is due to the thermal fluctuation of fluxes.
This is further confirmed by considering the toric code limit

corresponding to Jx, Jy ≪ Jz (α ≪ 1). In this limit,
the Kitaev model is reduced to the effective model Heff =

−Jeff
∑

p Wp, where Jeff = J2
xJ

2
y/(16J

3
z ) [7]. Since this ef-

fective model describes free Ising spins in the magnetic field
Jeff , the specific heat is of Schottky-type, which takes a max-
imum at T̃L/Jeff ∼ 0.833. The asymptotic behavior is shown
by the dashed line in Fig. 2. The agreement between this line
and TL further supports that the low-T crossover is caused by
the thermal disturbance of fluxes.
We also note that the agreement of the asymptotic behav-

ior is consistent with the absence of phase transition in this
two-dimensional system. This is in contrast to the three-
dimensional case; there are local constraints forWp in the Ki-
taev model defined on a three-dimensional hyperhoneycomb
lattice, leading to a finite-T phase transition [16]. On the other
hand, there is no constraint for Wp in the two-dimensional
case, which results in the absence of the phase transition for
T > 0.
To summarize the above results, the three regions in the

phase diagram depicted in Fig. 2 are characterized as follows.
The high-T region for T ! TH is a conventional paramagnetic
state, where the NN spin correlations obey the Curie behavior.
On the other hand, in the low-T region for T < TL, the NN
spin correlations are saturated to the T = 0 values, and fur-
thermore, the fluxes are also aligned. Thus, the system below
TL behaves similar to the ground state QSL. In the region for
TL " T " TH, a peculiar intermediate state appears: the NN
spin correlations are well developed, whereas the fluxes are
thermally disordered. In the following sections, we discuss
the nature of this intermediate state.

D. Density of states of itinerant Majorana fermions

Since the Z2 variables ηr couple with the itinerant Ma-
jorana fermions, we expect that the enhanced fluctuations
of fluxes above TL affect the nature of itinerant Majorana
fermions considerably. In order to elucidate such behavior, we
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(α ≪ 1). The dashed-dotted line represents the crossover tempera-
ture obtained by assuming the constant DOS. NNC stands for a NN
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C. Low-T crossover: flux density

Next, we discuss what occurs in the low-T crossover. The
entropy release near TL originates from the localized Majo-
rana fermions c̄j or ηr. This is confirmed by calculating the
T dependence of the flux density, W , in Eq. (7), as shown
in Figs. 1(e)-1(h). The results show thatW rapidly decreases
from 1 with increasing T in the vicinity of TL. Hence, the
crossover at TL is due to the thermal fluctuation of fluxes.
This is further confirmed by considering the toric code limit

corresponding to Jx, Jy ≪ Jz (α ≪ 1). In this limit,
the Kitaev model is reduced to the effective model Heff =

−Jeff
∑

p Wp, where Jeff = J2
xJ

2
y/(16J

3
z ) [7]. Since this ef-

fective model describes free Ising spins in the magnetic field
Jeff , the specific heat is of Schottky-type, which takes a max-
imum at T̃L/Jeff ∼ 0.833. The asymptotic behavior is shown
by the dashed line in Fig. 2. The agreement between this line
and TL further supports that the low-T crossover is caused by
the thermal disturbance of fluxes.
We also note that the agreement of the asymptotic behav-

ior is consistent with the absence of phase transition in this
two-dimensional system. This is in contrast to the three-
dimensional case; there are local constraints forWp in the Ki-
taev model defined on a three-dimensional hyperhoneycomb
lattice, leading to a finite-T phase transition [16]. On the other
hand, there is no constraint for Wp in the two-dimensional
case, which results in the absence of the phase transition for
T > 0.
To summarize the above results, the three regions in the

phase diagram depicted in Fig. 2 are characterized as follows.
The high-T region for T ! TH is a conventional paramagnetic
state, where the NN spin correlations obey the Curie behavior.
On the other hand, in the low-T region for T < TL, the NN
spin correlations are saturated to the T = 0 values, and fur-
thermore, the fluxes are also aligned. Thus, the system below
TL behaves similar to the ground state QSL. In the region for
TL " T " TH, a peculiar intermediate state appears: the NN
spin correlations are well developed, whereas the fluxes are
thermally disordered. In the following sections, we discuss
the nature of this intermediate state.

D. Density of states of itinerant Majorana fermions

Since the Z2 variables ηr couple with the itinerant Ma-
jorana fermions, we expect that the enhanced fluctuations
of fluxes above TL affect the nature of itinerant Majorana
fermions considerably. In order to elucidate such behavior, we
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C. Low-T crossover: flux density

Next, we discuss what occurs in the low-T crossover. The
entropy release near TL originates from the localized Majo-
rana fermions c̄j or ηr. This is confirmed by calculating the
T dependence of the flux density, W , in Eq. (7), as shown
in Figs. 1(e)-1(h). The results show thatW rapidly decreases
from 1 with increasing T in the vicinity of TL. Hence, the
crossover at TL is due to the thermal fluctuation of fluxes.
This is further confirmed by considering the toric code limit

corresponding to Jx, Jy ≪ Jz (α ≪ 1). In this limit,
the Kitaev model is reduced to the effective model Heff =

−Jeff
∑

p Wp, where Jeff = J2
xJ

2
y/(16J

3
z ) [7]. Since this ef-

fective model describes free Ising spins in the magnetic field
Jeff , the specific heat is of Schottky-type, which takes a max-
imum at T̃L/Jeff ∼ 0.833. The asymptotic behavior is shown
by the dashed line in Fig. 2. The agreement between this line
and TL further supports that the low-T crossover is caused by
the thermal disturbance of fluxes.
We also note that the agreement of the asymptotic behav-

ior is consistent with the absence of phase transition in this
two-dimensional system. This is in contrast to the three-
dimensional case; there are local constraints forWp in the Ki-
taev model defined on a three-dimensional hyperhoneycomb
lattice, leading to a finite-T phase transition [16]. On the other
hand, there is no constraint for Wp in the two-dimensional
case, which results in the absence of the phase transition for
T > 0.
To summarize the above results, the three regions in the

phase diagram depicted in Fig. 2 are characterized as follows.
The high-T region for T ! TH is a conventional paramagnetic
state, where the NN spin correlations obey the Curie behavior.
On the other hand, in the low-T region for T < TL, the NN
spin correlations are saturated to the T = 0 values, and fur-
thermore, the fluxes are also aligned. Thus, the system below
TL behaves similar to the ground state QSL. In the region for
TL " T " TH, a peculiar intermediate state appears: the NN
spin correlations are well developed, whereas the fluxes are
thermally disordered. In the following sections, we discuss
the nature of this intermediate state.

D. Density of states of itinerant Majorana fermions

Since the Z2 variables ηr couple with the itinerant Ma-
jorana fermions, we expect that the enhanced fluctuations
of fluxes above TL affect the nature of itinerant Majorana
fermions considerably. In order to elucidate such behavior, we
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C. Low-T crossover: flux density

Next, we discuss what occurs in the low-T crossover. The
entropy release near TL originates from the localized Majo-
rana fermions c̄j or ηr. This is confirmed by calculating the
T dependence of the flux density, W , in Eq. (7), as shown
in Figs. 1(e)-1(h). The results show thatW rapidly decreases
from 1 with increasing T in the vicinity of TL. Hence, the
crossover at TL is due to the thermal fluctuation of fluxes.
This is further confirmed by considering the toric code limit

corresponding to Jx, Jy ≪ Jz (α ≪ 1). In this limit,
the Kitaev model is reduced to the effective model Heff =

−Jeff
∑

p Wp, where Jeff = J2
xJ

2
y/(16J

3
z ) [7]. Since this ef-

fective model describes free Ising spins in the magnetic field
Jeff , the specific heat is of Schottky-type, which takes a max-
imum at T̃L/Jeff ∼ 0.833. The asymptotic behavior is shown
by the dashed line in Fig. 2. The agreement between this line
and TL further supports that the low-T crossover is caused by
the thermal disturbance of fluxes.
We also note that the agreement of the asymptotic behav-

ior is consistent with the absence of phase transition in this
two-dimensional system. This is in contrast to the three-
dimensional case; there are local constraints forWp in the Ki-
taev model defined on a three-dimensional hyperhoneycomb
lattice, leading to a finite-T phase transition [16]. On the other
hand, there is no constraint for Wp in the two-dimensional
case, which results in the absence of the phase transition for
T > 0.
To summarize the above results, the three regions in the

phase diagram depicted in Fig. 2 are characterized as follows.
The high-T region for T ! TH is a conventional paramagnetic
state, where the NN spin correlations obey the Curie behavior.
On the other hand, in the low-T region for T < TL, the NN
spin correlations are saturated to the T = 0 values, and fur-
thermore, the fluxes are also aligned. Thus, the system below
TL behaves similar to the ground state QSL. In the region for
TL " T " TH, a peculiar intermediate state appears: the NN
spin correlations are well developed, whereas the fluxes are
thermally disordered. In the following sections, we discuss
the nature of this intermediate state.

D. Density of states of itinerant Majorana fermions

Since the Z2 variables ηr couple with the itinerant Ma-
jorana fermions, we expect that the enhanced fluctuations
of fluxes above TL affect the nature of itinerant Majorana
fermions considerably. In order to elucidate such behavior, we
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FIG. 1. (Color online) (a) Top: E0/N (yellow) and 1
N

@E0
@�

(purple) for anisotropy parameter a = 0.1. Bottom: S

q

for anisotropy

parameter a = 0.1 at �- (black), M- (blue), Y- (cyan), K- (red) and �0- (green) in the reciprocal lattice (inset). (b) Representation
of S

q

, averaged over domains in a real material, when a = 0.1 for various � in the phase diagram.

tanglement entropy on the infinite tree lattice with a = 0.1
by infinite time-evolution block decimation (iTEBD) shows
no sign of a phase transition and supports the ED results.
2) An intervening magnetically ordered phase separates the
spin liquid phase near the pure �

�

limit and the antiferro-
magnetic Kitaev spin liquid at �/⇡ = 1.
3) The specific heat C(T ) and entropy S(T ) at finite tem-
peratures computed by the method of thermal pure quan-
tum states31–35 (see Supplementary Materials) suggest a
smooth crossover from the ferromagnetic Kitaev limit to
the pure �

�

limit.
4) Zig-zag spin correlations become dominant upon per-
turbing the quantum spin liquid phase in 0 < � < ⇡/2 by
J3, suggesting significant enhancement of the zig-zag order
for large J3.

Extended spin liquid state in global phase diagram — The
ground state energy per site E0/N of Eq. (1) was com-
puted for �/⇡ 2 [0, 1], and for anisotropy parameters a = 0
and 0.1 by ED on a 24-site cluster using periodic boundary
conditions (see Supplementary Materials). Discontinuties
in 1

N

@E0
@�

were used to identify possible phase transitions.

Remarkably, when �/⇡ 2 [0, 0.5] with slight anisotropy, the
first derivative of the energy presents no sharp features sug-
gesting that the ground state of the �-limit (�/⇡ = 0.5) is
smoothly connected to the ferromagnetic Kitaev spin liquid

(�/⇡ = 0).
In the antiferromagnetic region of phase space, there are

two large discontinuities in 1
N

@E0
@�

that encompass a large
region of phase space separating the �-limit and the ex-
actly solvable antiferromagnetic Kitaev limit at �/⇡ = 1.
These peaks coincide with kinks in E0/N (solid yellow)
shown in Fig. 1a. Two smaller discontinuities can also be
seen near �/⇡ = 0.75, however these are not present in the
a = 0 limit, while the larger jumps near �/⇡ = 0.5 and 1
appear consistently for di↵erent a. The small discontinu-
ities can thus be considered spurious and a consequence of
the finite cluster size. Similar finite size e↵ects were also
found for �/⇡ 2 [0, 0.5] when a = 0, as discussed in the
Supplementary Materials, which makes it di�cult to draw
a conclusion on the phase diagram for the isotropic model

(a = 0).
Magnetic order and perturbations — The ground state

wavefunction of Eq. (1) computed by ED is used to eval-
uate real-space spin-spin correlation functions hS

i

· S
j

i,
where i and j are site indices on the honeycomb lat-
tice. By Fourier transform, we obtain the SSF given by
Sq = 1

N

P
i,j

ei(ri�rj)·qhS
i

·S
j

i where q is a vector in the re-
ciprocal lattice. The SSF at various points in the Brillouin
zone (BZ) is plotted over the phase space in the bottom
panel of Fig. 1a.

The discontinuities in the SSF can be directly matched
with those in 1

N

@E0
@�

. Visualizations of the SSF over the BZ
for representative � in the phase diagram are presented in
Fig. 1b. The SSF in Fig. 1b is obtained by computing the
average of hS

i

· S
j

i over all n.n. bonds, 2nd n.n., etc. This
calculation reflects the presence of di↵erent domains in the
crystal, in which either of x, y, z bond interactions can be
stronger and thus, over the whole crystal, these domains
result in an isotropic S

q

despite the inherent bond anistropy
in Eq. (1). The SSF varies smoothly when a = 0.1 for
� 2 [0,⇡/2] and the spin correlations at the �- and M-
points are comparable in intensity when � ' K

�

, leading to
a “star”-shaped structure in the SSF as seen in Fig. 1b (e.g,
�/⇡ = 0.2). The extended phase separating �/⇡ = 0.5 and
1 is characterized by dominating spin correlations at the K-
and �0-points in the reciprocal lattice (�/⇡ = 0.75 in Fig.
1b). Contained within this phase is the exactly solvable
point with hidden SU(2) symmetry at �/⇡ = 0.75 which
features K-point correlations36 consistent with the results
presented here. Thus the extended spin liquid phase for
ferromagnetic K is separated from the antiferromagnetic
Kitaev spin liquid at �/⇡ = 1 by a magnetically ordered
phase.

These results can be connected to real materials, partic-
ularly RuCl3 in which a zig-zag magnetic ordering has been
observed37–39. Previous studies have shown that in addi-
tion to the n.n. ferromagnetic Kitaev and antiferromag-
netic � interactions, a 3rd n.n. antiferromagnetic Heisen-
berg interaction J3 is non-vanishing and plays a role in
determining the magnetic ordering in RuCl326,27. Fig. 2
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(purple) for anisotropy parameter a = 0.1. Bottom: S

q

for anisotropy

parameter a = 0.1 at �- (black), M- (blue), Y- (cyan), K- (red) and �0- (green) in the reciprocal lattice (inset). (b) Representation
of S

q

, averaged over domains in a real material, when a = 0.1 for various � in the phase diagram.

tanglement entropy on the infinite tree lattice with a = 0.1
by infinite time-evolution block decimation (iTEBD) shows
no sign of a phase transition and supports the ED results.
2) An intervening magnetically ordered phase separates the
spin liquid phase near the pure �

�

limit and the antiferro-
magnetic Kitaev spin liquid at �/⇡ = 1.
3) The specific heat C(T ) and entropy S(T ) at finite tem-
peratures computed by the method of thermal pure quan-
tum states31–35 (see Supplementary Materials) suggest a
smooth crossover from the ferromagnetic Kitaev limit to
the pure �

�

limit.
4) Zig-zag spin correlations become dominant upon per-
turbing the quantum spin liquid phase in 0 < � < ⇡/2 by
J3, suggesting significant enhancement of the zig-zag order
for large J3.

Extended spin liquid state in global phase diagram — The
ground state energy per site E0/N of Eq. (1) was com-
puted for �/⇡ 2 [0, 1], and for anisotropy parameters a = 0
and 0.1 by ED on a 24-site cluster using periodic boundary
conditions (see Supplementary Materials). Discontinuties
in 1

N

@E0
@�

were used to identify possible phase transitions.

Remarkably, when �/⇡ 2 [0, 0.5] with slight anisotropy, the
first derivative of the energy presents no sharp features sug-
gesting that the ground state of the �-limit (�/⇡ = 0.5) is
smoothly connected to the ferromagnetic Kitaev spin liquid

(�/⇡ = 0).
In the antiferromagnetic region of phase space, there are

two large discontinuities in 1
N

@E0
@�

that encompass a large
region of phase space separating the �-limit and the ex-
actly solvable antiferromagnetic Kitaev limit at �/⇡ = 1.
These peaks coincide with kinks in E0/N (solid yellow)
shown in Fig. 1a. Two smaller discontinuities can also be
seen near �/⇡ = 0.75, however these are not present in the
a = 0 limit, while the larger jumps near �/⇡ = 0.5 and 1
appear consistently for di↵erent a. The small discontinu-
ities can thus be considered spurious and a consequence of
the finite cluster size. Similar finite size e↵ects were also
found for �/⇡ 2 [0, 0.5] when a = 0, as discussed in the
Supplementary Materials, which makes it di�cult to draw
a conclusion on the phase diagram for the isotropic model

(a = 0).
Magnetic order and perturbations — The ground state

wavefunction of Eq. (1) computed by ED is used to eval-
uate real-space spin-spin correlation functions hS

i

· S
j

i,
where i and j are site indices on the honeycomb lat-
tice. By Fourier transform, we obtain the SSF given by
Sq = 1

N

P
i,j

ei(ri�rj)·qhS
i

·S
j

i where q is a vector in the re-
ciprocal lattice. The SSF at various points in the Brillouin
zone (BZ) is plotted over the phase space in the bottom
panel of Fig. 1a.

The discontinuities in the SSF can be directly matched
with those in 1

N

@E0
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. Visualizations of the SSF over the BZ
for representative � in the phase diagram are presented in
Fig. 1b. The SSF in Fig. 1b is obtained by computing the
average of hS

i

· S
j

i over all n.n. bonds, 2nd n.n., etc. This
calculation reflects the presence of di↵erent domains in the
crystal, in which either of x, y, z bond interactions can be
stronger and thus, over the whole crystal, these domains
result in an isotropic S

q

despite the inherent bond anistropy
in Eq. (1). The SSF varies smoothly when a = 0.1 for
� 2 [0,⇡/2] and the spin correlations at the �- and M-
points are comparable in intensity when � ' K

�

, leading to
a “star”-shaped structure in the SSF as seen in Fig. 1b (e.g,
�/⇡ = 0.2). The extended phase separating �/⇡ = 0.5 and
1 is characterized by dominating spin correlations at the K-
and �0-points in the reciprocal lattice (�/⇡ = 0.75 in Fig.
1b). Contained within this phase is the exactly solvable
point with hidden SU(2) symmetry at �/⇡ = 0.75 which
features K-point correlations36 consistent with the results
presented here. Thus the extended spin liquid phase for
ferromagnetic K is separated from the antiferromagnetic
Kitaev spin liquid at �/⇡ = 1 by a magnetically ordered
phase.

These results can be connected to real materials, partic-
ularly RuCl3 in which a zig-zag magnetic ordering has been
observed37–39. Previous studies have shown that in addi-
tion to the n.n. ferromagnetic Kitaev and antiferromag-
netic � interactions, a 3rd n.n. antiferromagnetic Heisen-
berg interaction J3 is non-vanishing and plays a role in
determining the magnetic ordering in RuCl326,27. Fig. 2
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, averaged over domains in a real material, when a = 0.1 for various � in the phase diagram.

treat J3 as a perturbation. We study this model using three
di↵erent numerical methods which combined together give
the following results:
1) When K

�

has the ferromagnetic sign (0  �  ⇡/2),
there is no phase transition between the Kitaev spin liquid
limit at �/⇡ = 0 and the �

�

-only limit at �/⇡ = 0.5. This
result is clearly seen in the ground state energy and static
structure factor (SSF) computed by exact diagonalization
(ED) on a 24-site honeycomb cluster with a = 0.1. An
independent calculation of the ground state energy and en-
tanglement entropy on the infinite tree lattice with a = 0.1
by infinite time-evolution block decimation (iTEBD) shows
no sign of a phase transition and supports the ED results.
2) An intervening magnetically ordered phase separates the
spin liquid phase near the pure �

�

limit and the antiferro-
magnetic Kitaev spin liquid at �/⇡ = 1.
3) The specific heat C(T ) and entropy S(T ) at finite tem-
peratures computed by the method of thermal pure quan-
tum states31–35 (see Supplementary Materials) suggest a
smooth crossover from the ferromagnetic Kitaev limit to
the pure �

�

limit.
4) Zig-zag spin correlations become dominant upon per-
turbing the quantum spin liquid phase in 0 < � < ⇡/2 by
J3, suggesting significant enhancement of the zig-zag order
for large J3.

Extended spin liquid state in global phase diagram — The
ground state energy per site E0/N of Eq. (1) was computed
for �/⇡ 2 [0, 1], and for anisotropy parameters a = 0 and
0.1 by ED on a 24-site cluster using periodic boundary
conditions (see Supplementary Materials). Divergences in

� 1
N

@

2
E0

@�

2 were used to identify possible phase transitions.

Sharp peaks of varying intensity can be identified in

� 1
N

@

2
E0

@�

2 throughout the phase space as shown in Fig. 1a

for a = 0.1 (solid purple). Remarkably, when �/⇡ 2 [0, 0.5]
with slight anisotropy, the second derivative of the energy
presents no sharp features suggesting that the ground state

of the �-limit (�/⇡ = 0.5) is smoothly connected to the

ferromagnetic Kitaev spin liquid (�/⇡ = 0). In the antifer-
romagnetic region of phase space, there are two large peaks

in � 1
N

@

2
E0

@�

2 encompassing a large region of phase space
separating the �-limit and the exactly solvable antiferro-
magnetic Kitaev limit at �/⇡ = 1. These peaks coincide
with kinks in E0/N (solid yellow) shown in Fig. 1a. Two
smaller peaks can also be seen near �/⇡ = 0.75, however
these are not present in the a = 0 limit, while the larger
peaks near �/⇡ = 0.5 and 1 appear consistently for di↵er-
ent a. The small peaks can thus be considered spurious
and a consequence of the finite cluster size, with only one
phase separating the � and antiferromagnetic Kitaev limits.
Similar finite size e↵ects were also found for �/⇡ 2 [0, 0.5]
when a = 0, as discussed in the Supplementary Materials,
which makes it di�cult to draw a conclusion on the phase
diagram for the isotropic model (a = 0).

Magnetic order and perturbations — The ground state
wavefunction of Eq. (1) computed by ED is used to eval-
uate real-space spin-spin correlation functions hS

i

· S
j

i,
where i and j are site indices on the honeycomb lat-
tice. By Fourier transform, we obtain the SSF given by
Sq = 1

N

P
i,j

ei(ri�rj)·qhS
i

·S
j

i where q is a vector in the re-
ciprocal lattice. The SSF at various points in the Brillouin
zone (BZ) is plotted over the phase space in the bottom
panel of Fig. 1a.

The discontinuities in the SSF can be directly matched

with the divergences in � 1
N

@

2
E0

@�

2 . Visualizations of the SSF
over the BZ for representative � in the phase diagram are
presented in Fig. 1b. The SSF in Fig. 1b is obtained
by computing the average of hS

i

· S
j

i over all n.n. bonds,
2nd n.n., etc. and perfoming the resulting one-dimensional
Fourier transform. This calculation reflects the presence of
di↵erent domains in the crystal, in which either of x, y, z
bond interactions can be stronger and thus, over the whole
crystal, these domains result in an isotropic S

q

despite
the inherent bond anistropy in Eq. (1). The SSF varies
smoothly when a = 0.1 for � 2 [0,⇡/2] and the spin cor-
relations at the �- and M-points are comparable in inten-
sity when � ' K

�

, leading to a “star”-shaped structure
in the SSF as seen in Fig. 1b (e.g, �/⇡ = 0.2). The ex-
tended phase separating �/⇡ = 0.5 and 1 is characterized

Enhanced spin 
correlation  

at M point as  
Γ increases when  

K is negative  
(Ferro-like)

� = 0.2⇡ similar to dynamical structure factor at low 
energy in experiment

ED 24-site cluster
a = 0.1


