Spin and orbital freezing in unconventional superconductors

Philipp Werner

University of Fribourg

Spin and orbital freezing in unconventional superconductors

In collaboration with:

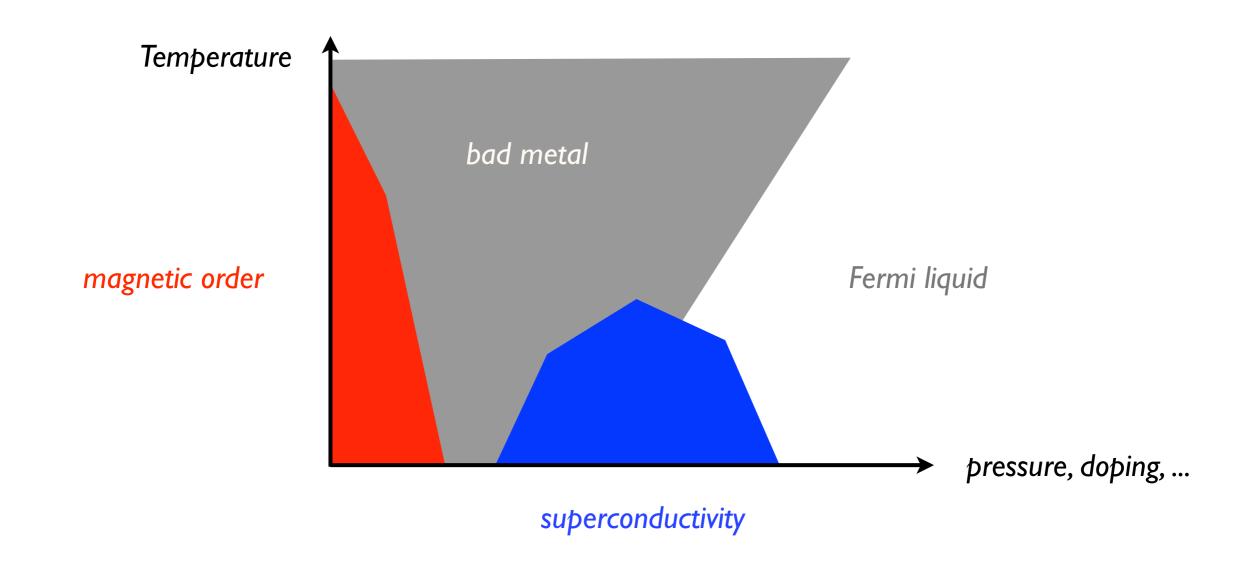
Shintaro Hoshino (Saitama)

Hiroshi Shinaoka (Saitama)

Karim Steiner (Fribourg)

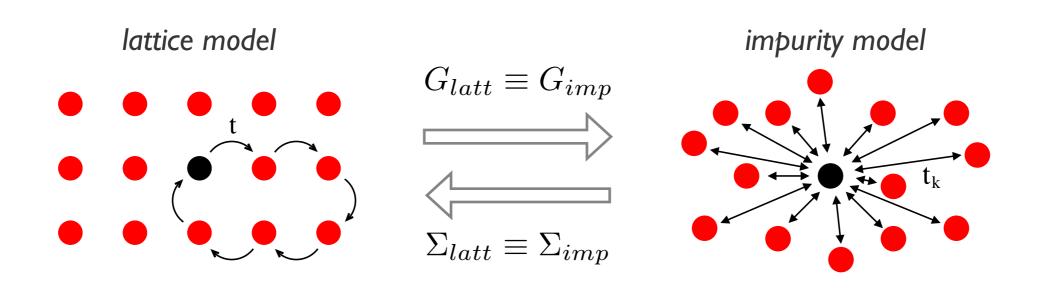
Introduction

- Generic phase diagram of unconventional superconductors
 - Superconducting dome next to a magnetically ordered phase
 - Non-Fermi liquid metal above the superconducting dome



Method

Dynamical mean field theory DMFT: mapping to an impurity problem



- Impurity solver: computes the Green's function of the correlated site
- Bath parameters = "mean field": optimized in such a way that the bath mimics the lattice environment

Method

CT-QMC solvers allow efficient simulation of multiorbital models

$$H_{loc} = -\sum_{\alpha,\sigma} \mu n_{\alpha,\sigma} + \sum_{\alpha} U n_{\alpha,\uparrow} n_{\alpha,\downarrow}$$

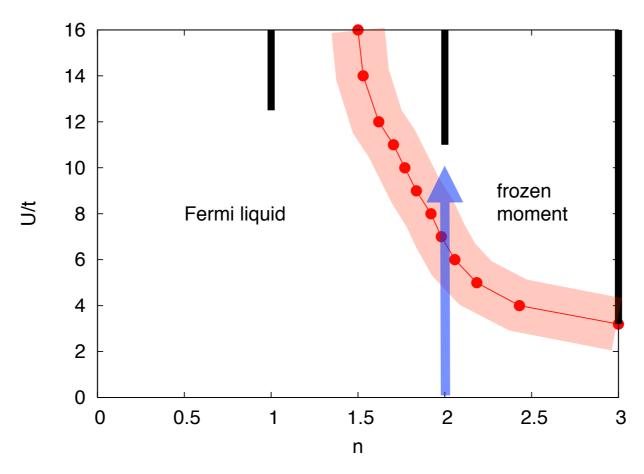
$$+ \sum_{\alpha>\beta,\sigma} U' n_{\alpha,\sigma} n_{\beta,-\sigma} + (U'-J) n_{\alpha,\sigma} n_{\beta,\sigma}$$

$$- \sum_{\alpha\neq\beta} J(\psi_{\alpha,\downarrow}^{\dagger} \psi_{\beta,\uparrow}^{\dagger} \psi_{\beta,\downarrow} \psi_{\alpha,\uparrow} + \psi_{\beta,\uparrow}^{\dagger} \psi_{\beta,\downarrow}^{\dagger} \psi_{\alpha,\uparrow} \psi_{\alpha,\downarrow} + h.c.)$$

Relevant cases:

- 4 electrons in 3 orbitals: SrRu2O4
- 3 electrons in 3 orbitals, J < 0: A_3C_{60}
- 6 electrons in 5 orbitals: Fe-pnictides

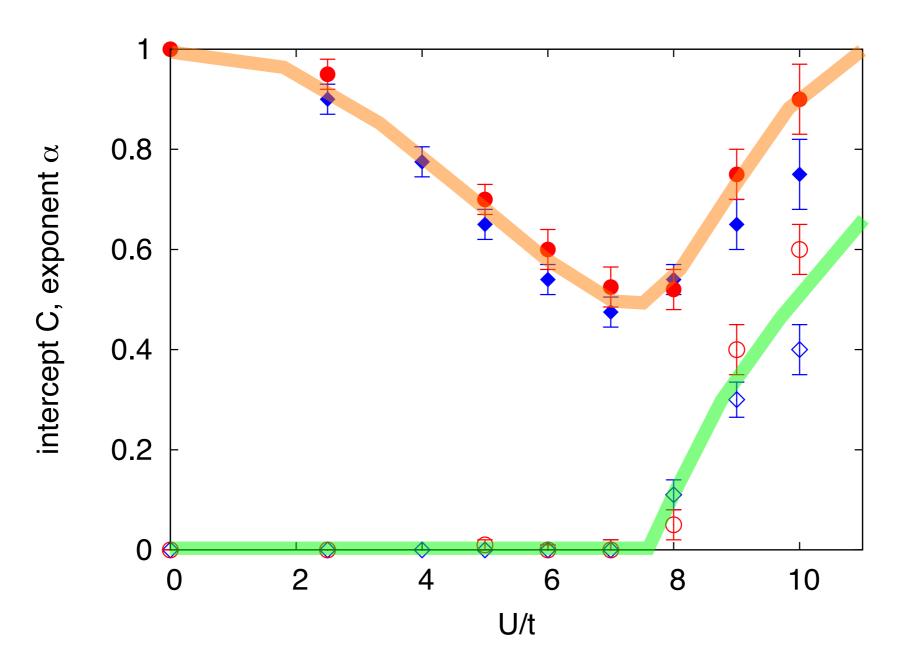
lacktriangle Phase diagram for $U'=U-2J, J/U=1/6, \beta=50$



- Metallic phase: "transition" from Fermi liquid to spin-glass
- Narrow crossover regime with self-energy

$$\mathrm{Im}\Sigma/t \sim (i\omega_n/t)^{\alpha}, \ \alpha \approx 0.5$$

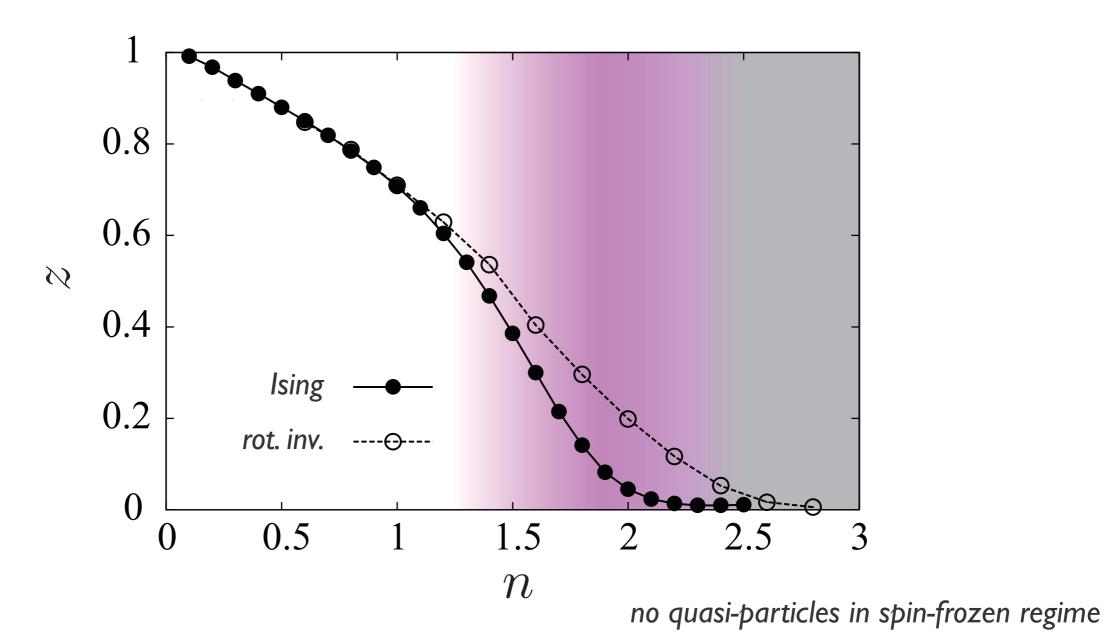
• Fit self-energy by $-\mathrm{Im}\Sigma(i\omega_n)=C+A(\omega_n)^{\alpha}$



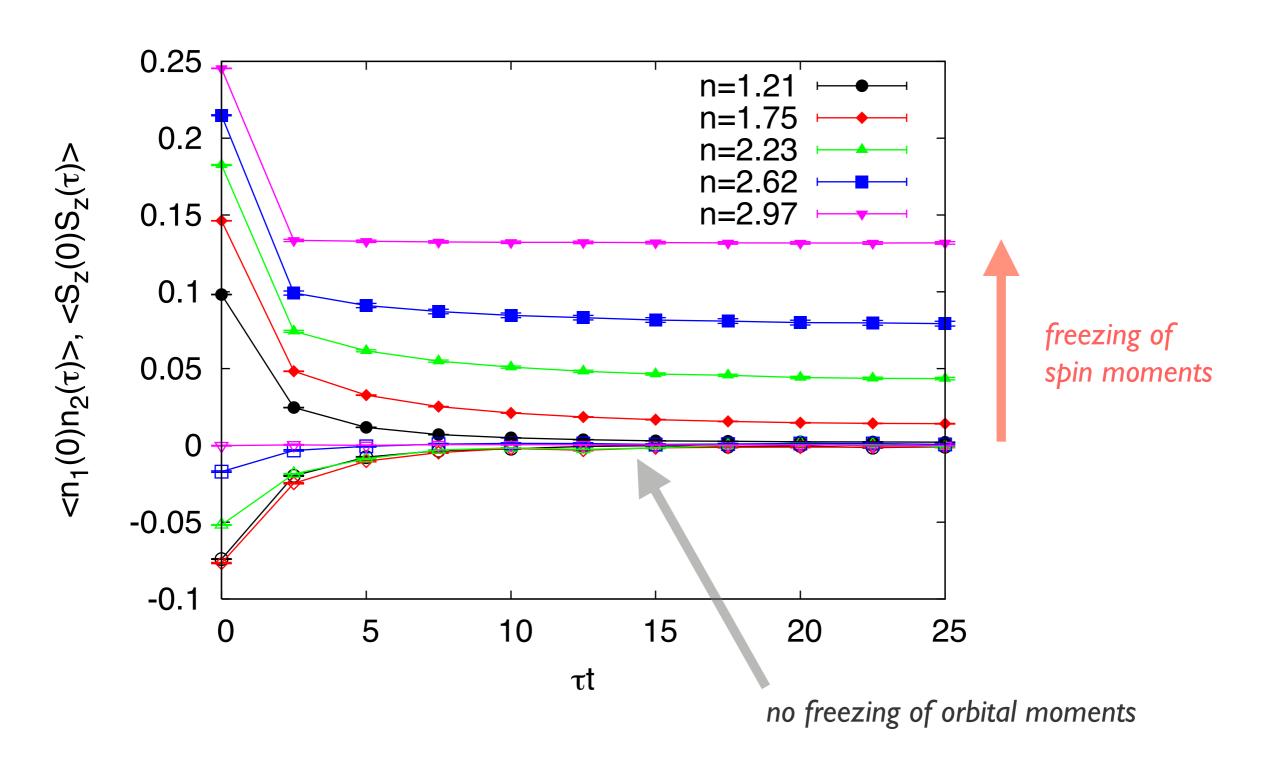
Square-root self-energy coincides with on-set of frozen moments

Spin-freezing leads to a small "quasi-particle weight" z

$$z \approx 1/(1 - \mathrm{Im}\Sigma(i\omega_0)/\omega_0)$$



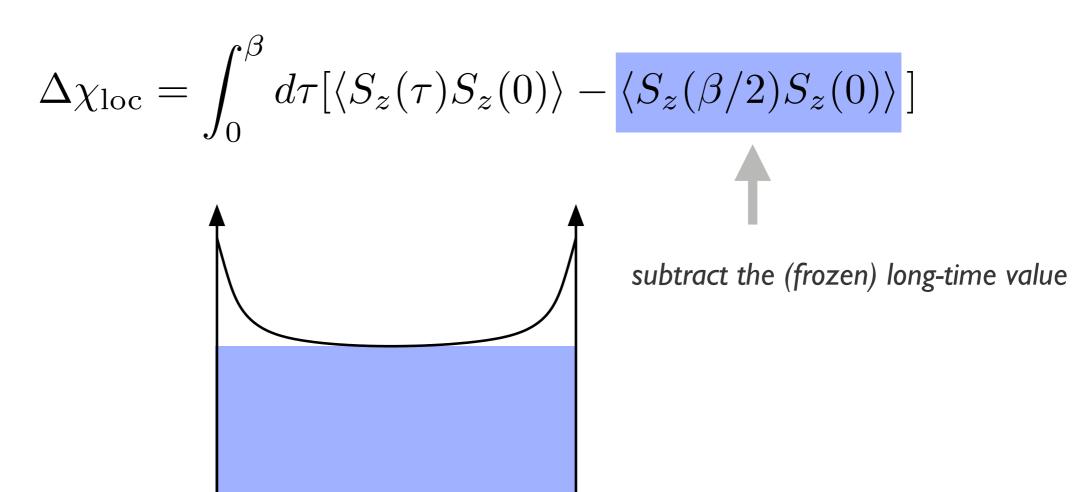
Spin-spin and orbital-orbital correlation functions



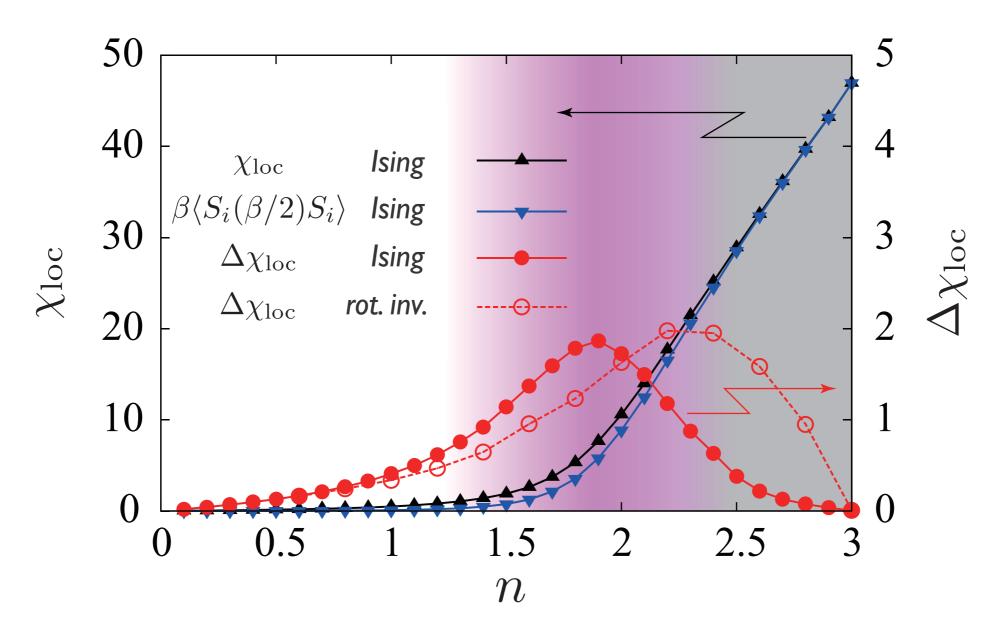
Consider the local susceptibility

$$\chi_{\rm loc} = \int_0^\beta d\tau \langle S_z(\tau) S_z(0) \rangle$$

and its dynamic contribution



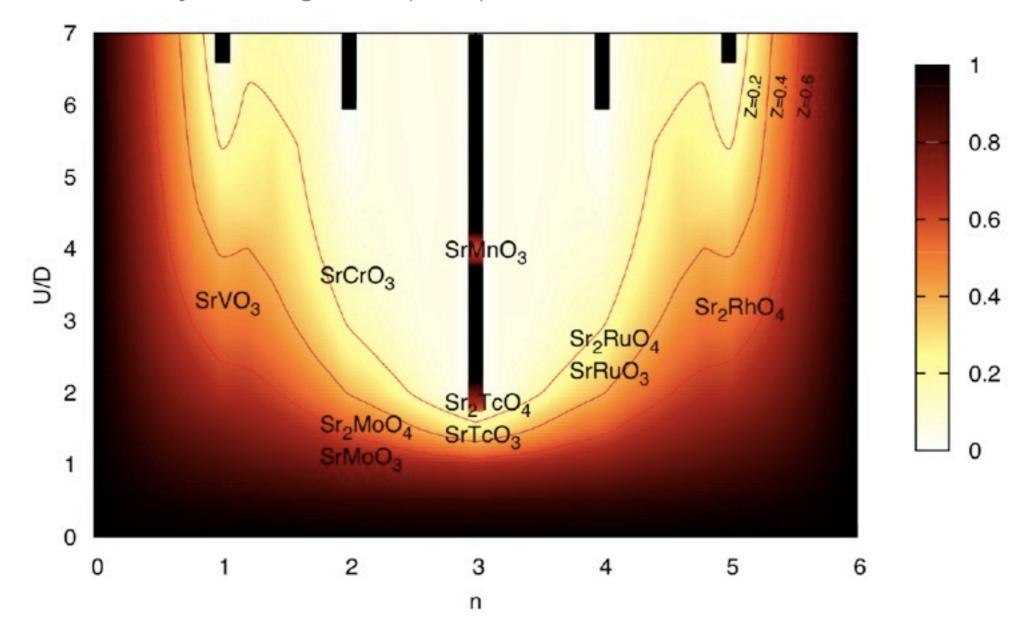
lacktriangle Consider the local susceptibility $\chi_{
m loc}$ and its dynamic contribution $\Delta\chi_{
m loc}$



Crossover regime is characterized by large local moment fluctuations

"quasi-particle weight" z

from De' Medici, Mravlje & Georges, PRL (2011)

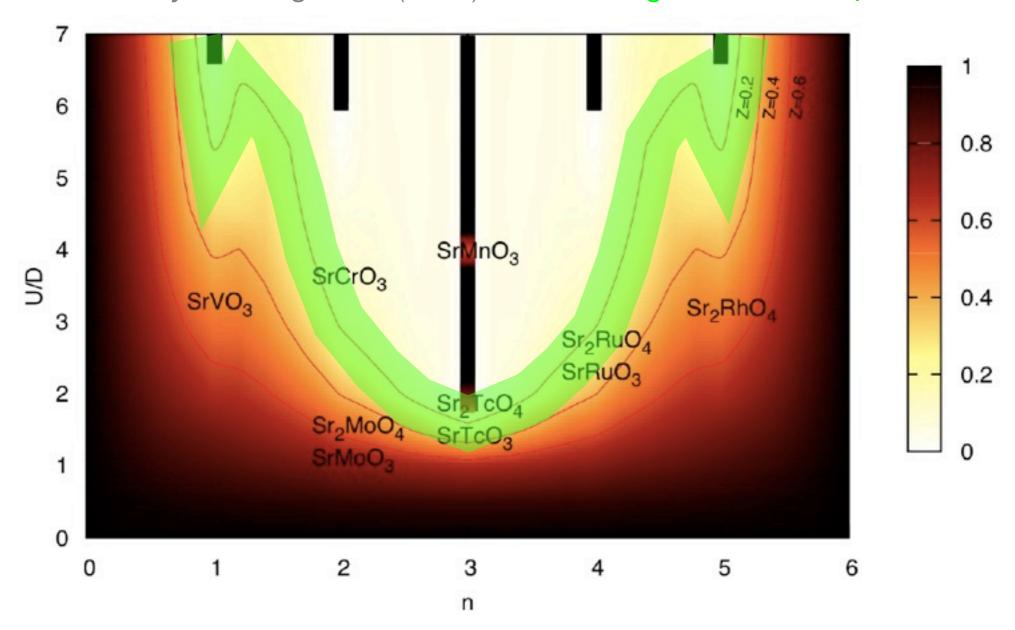


• Hund coupling J: Strongly correlated metal far from the Mott transition

"quasi-particle weight" z

from De' Medici, Mravlje & Georges, PRL (2011)

large local moment fluctuations



• Hund coupling J: Strongly correlated metal far from the Mott transition

• A self-energy with frequency dependence $\Sigma(\omega)\sim\omega^{1/2}$ implies an optical conductivity $\sigma(\omega)\sim 1/\omega^{1/2}$

VOLUME 81, NUMBER 12

PHYSICAL REVIEW LETTERS

21 September 1998

Non-Fermi-Liquid Behavior of SrRuO₃: Evidence from Infrared Conductivity

P. Kostic, Y. Okada,* N. C. Collins, and Z. Schlesinger

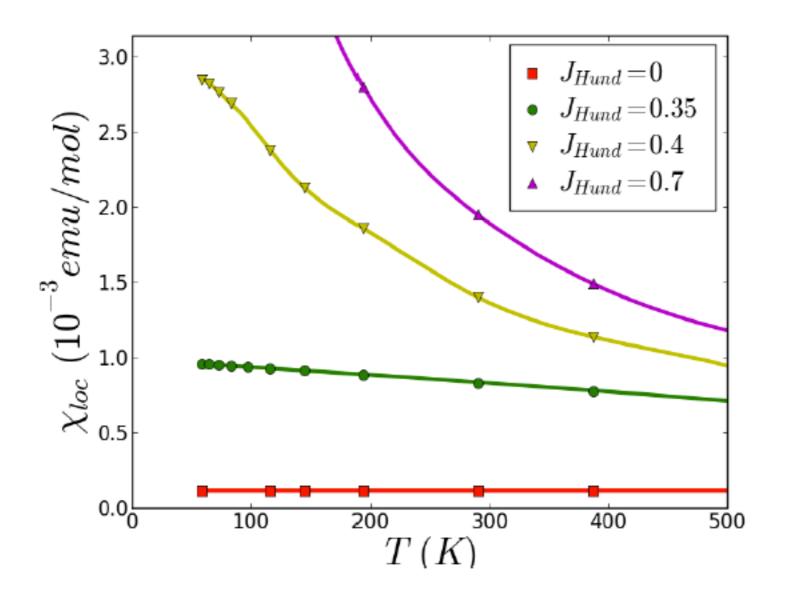
Department of Physics, University of California, Santa Cruz, California 95064

J. W. Reiner, L. Klein, A. Kapitulnik, T. H. Geballe, and M. R. Beasley Edward L. Ginzton Laboratories, Stanford University, Stanford, California 94305 (Received 13 March 1998)

The reflectivity of the itinerant ferromagnet $SrRuO_3$ has been measured between 50 and 25 000 cm⁻¹ at temperatures ranging from 40 to 300 K, and used to obtain conductivity, scattering rate, and effective mass as a function of frequency and temperature. We find that at low temperatures the conductivity falls unusually slowly as a function of frequency (proportional to $1/\omega^{1/2}$), and at high temperatures it even appears to increase as a function of frequency in the far-infrared limit. The data suggest that the charge dynamics of $SrRuO_3$ are substantially different from those of Fermi-liquid metals.

Pnictides

Strongly correlated despite moderate U

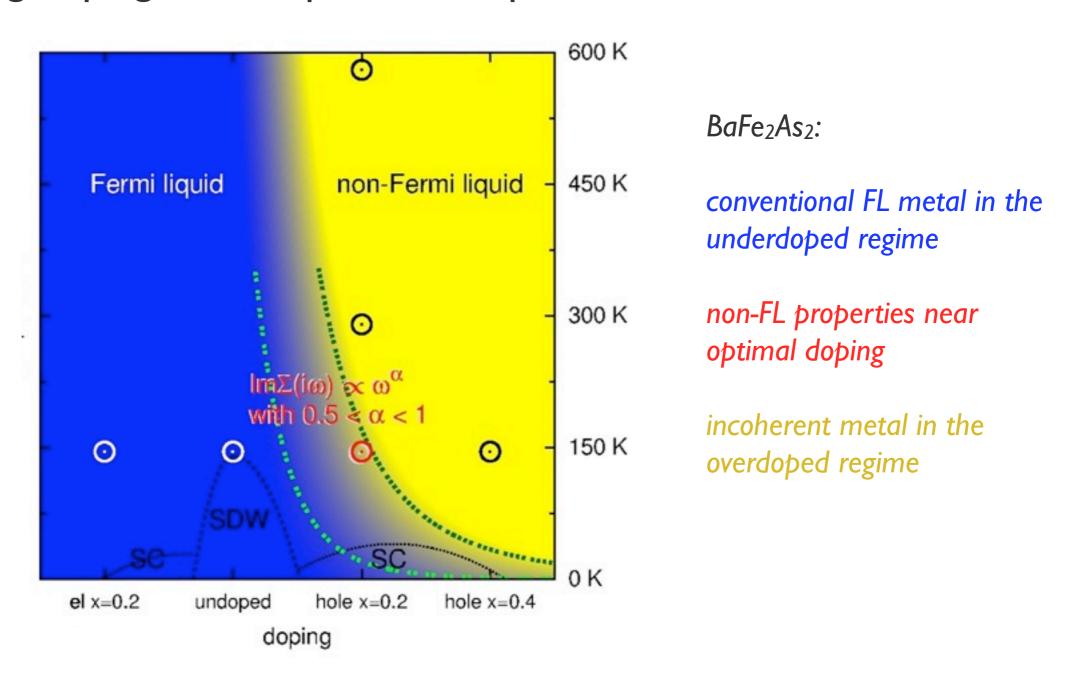


incoherent metal state resulting from Hund's coupling

Haule & Kotliar, NJP (2009)

Pnictides

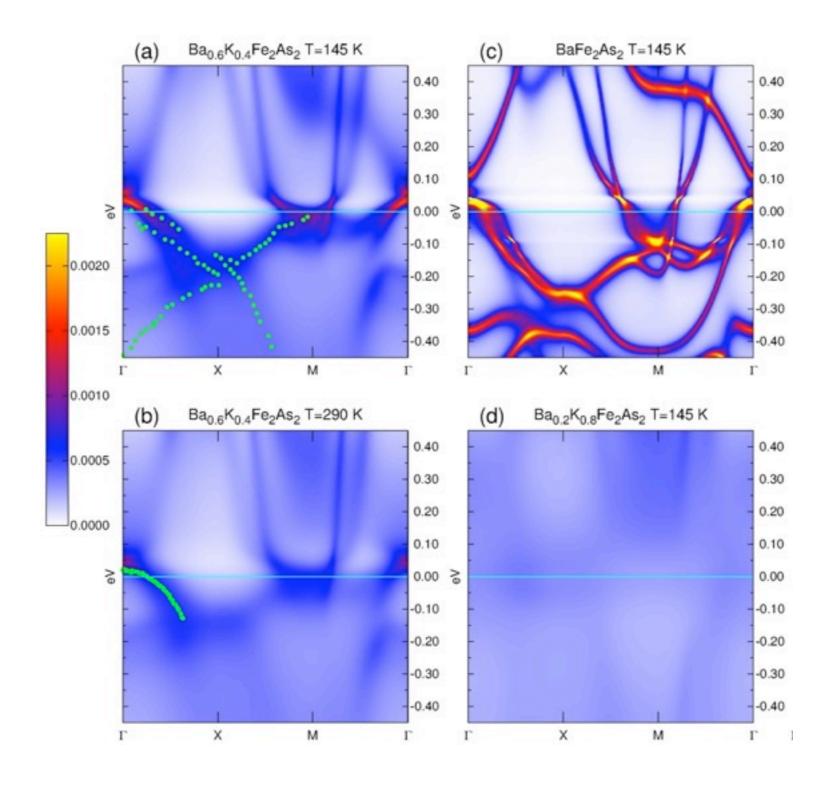
Strong doping and temperature dependence of electronic structure



Werner et al., Nat. Phys. (2012)

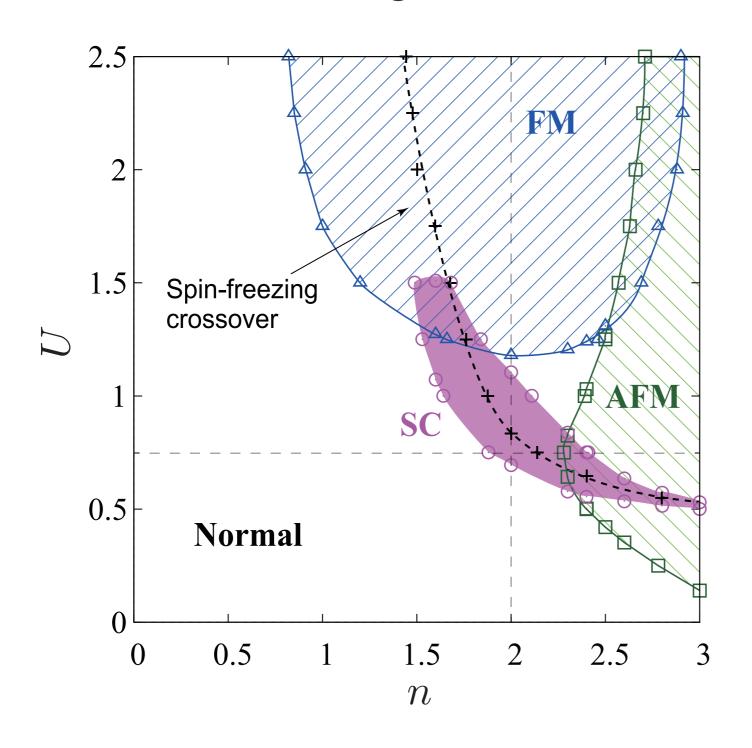
Pnictides

Strong doping and temperature dependence of electronic structure



- Identify ordering instabilities by divergent lattice susceptibilities
 - Calculate local vertex from impurity problem
 - Approximate vertex of the lattice problem by this local vertex
 - Solve Bethe-Salpeter equation to obtain lattice susceptibility
- The following orders (staggered and uniform) are considered:
 - diagonal orders:
 charge, spin, orbital, spin-orbital
 - off-diagonal orders:
 orbital-singlet-spin-triplet SC, orbital-triplet-spin-singlet SC

3-orbital model, Ising interactions

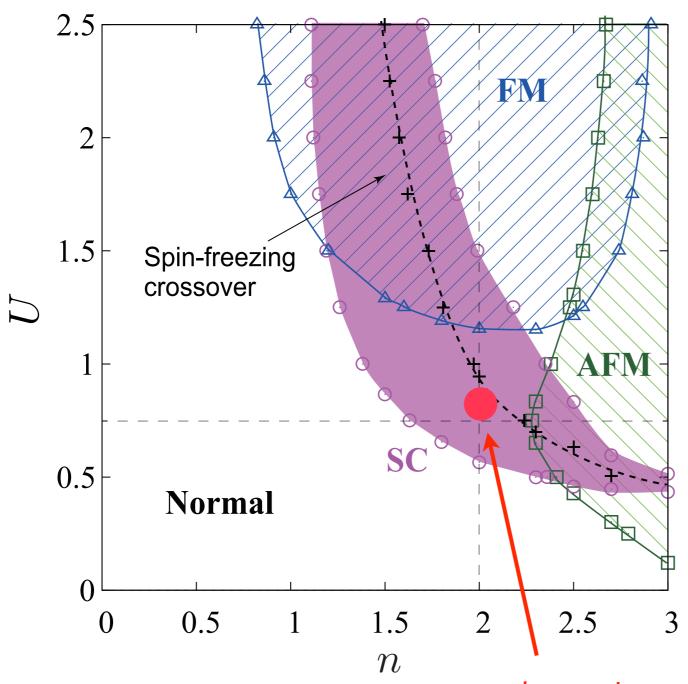


AFM near half-filling

FM at large U away from half-filling

spin-triplet superconductivity in the spin-freezing crossover region

3-orbital model, Ising interactions (lower temperature)



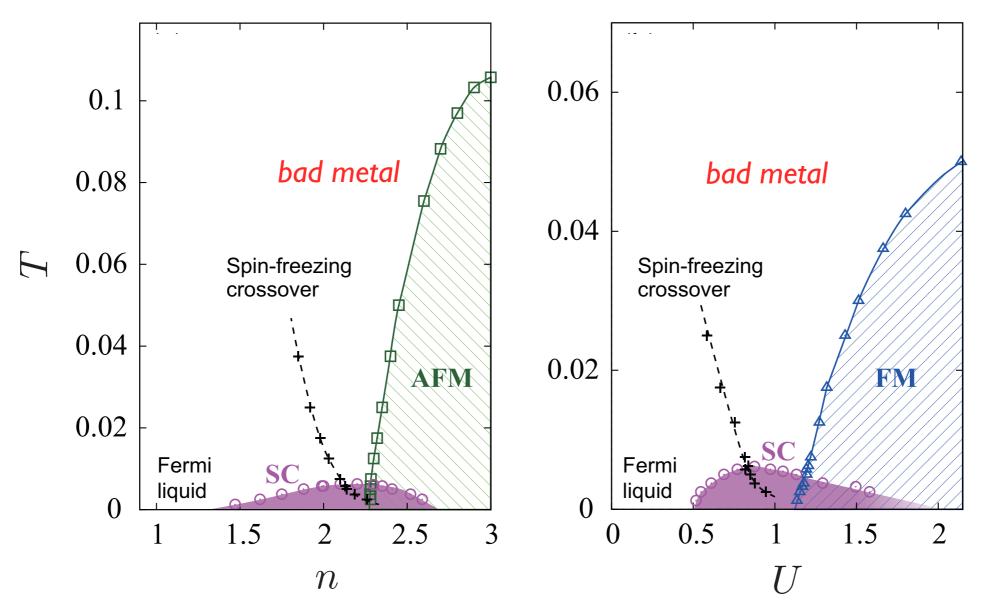
AFM near half-filling

FM at large U away from half-filling

spin-triplet superconductivity in the spin-freezing crossover region

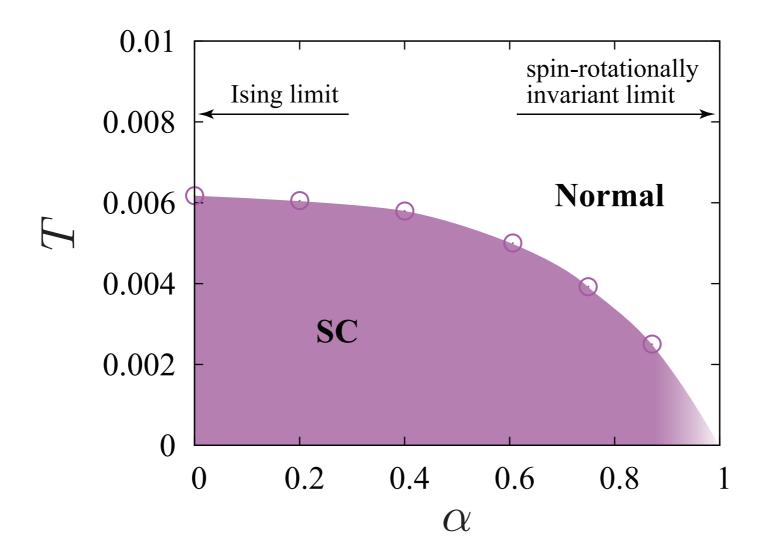
parameter regime relevant for Sr₂RuO₄

T_c dome and non-FL metal phase next to magnetic order



Generic phasediagram of unconventional SC without QCP!

T_c dome and non-FL metal phase next to magnetic order



Need spin-anisotropy (SO coupling) for high T_c
 probably relevant for: Sr₂RuO₄, UGe₂, URhGe, UCoGe, ...

Pairing induced by local spin fluctuations

Weak-coupling argument inspired by Inaba & Suga, PRL (2012)

Effective interaction which includes bubble diagrams:

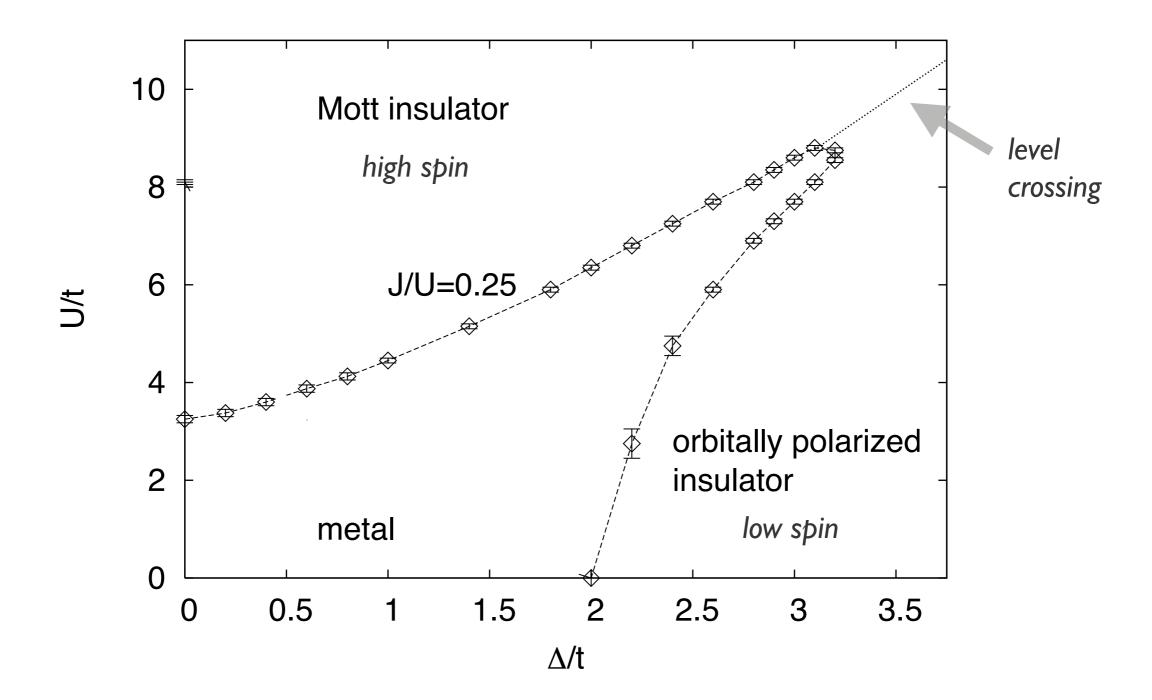
$$\tilde{U}_{\alpha\beta}(q) = U_{\alpha\beta} - \sum_{\gamma} U_{\alpha\gamma} \chi_{\gamma}(q) \tilde{U}_{\gamma\beta}(q)$$

Effective inter-orbital same-spin interaction

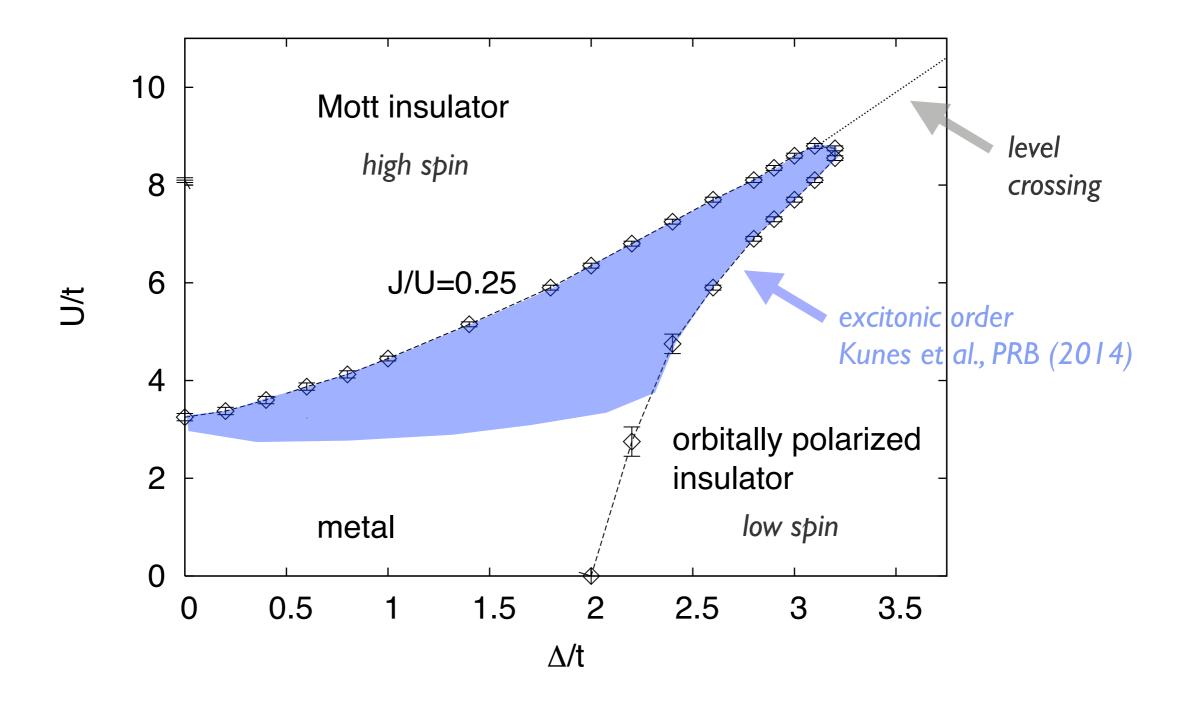
$$\tilde{U}_{1\uparrow,2\uparrow}(0) = U' - J - [2UU' + (U' - J)^2 + U'^2]\chi_{loc}$$

in the weak-coupling regime: $\chi_{\mathrm{loc}} = \Delta \chi_{\mathrm{loc}}$

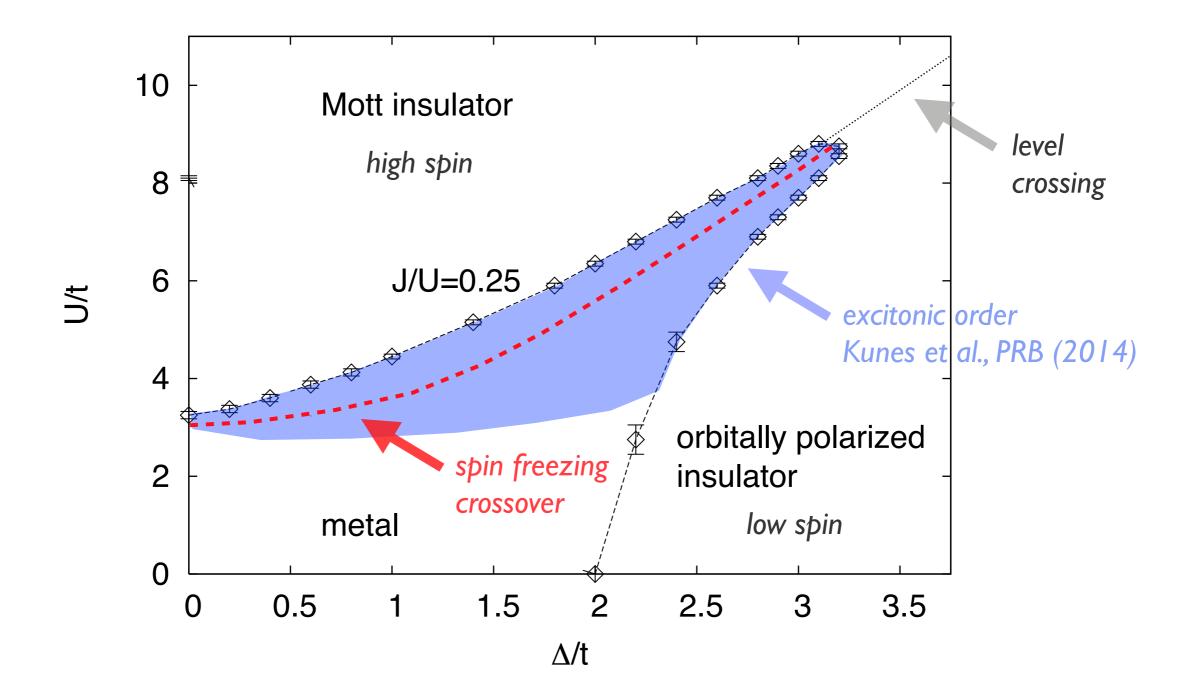
- Complicated phase diagrams, even in the two-orbital case
 - High-spin/low-spin transitions Werner & Millis, PRL (2007)



- Complicated phase diagrams, even in the two-orbital case
 - High-spin/low-spin transitions Werner & Millis, PRL (2007)



- Complicated phase diagrams, even in the two-orbital case
 - High-spin/low-spin transitions Werner & Millis, PRL (2007)



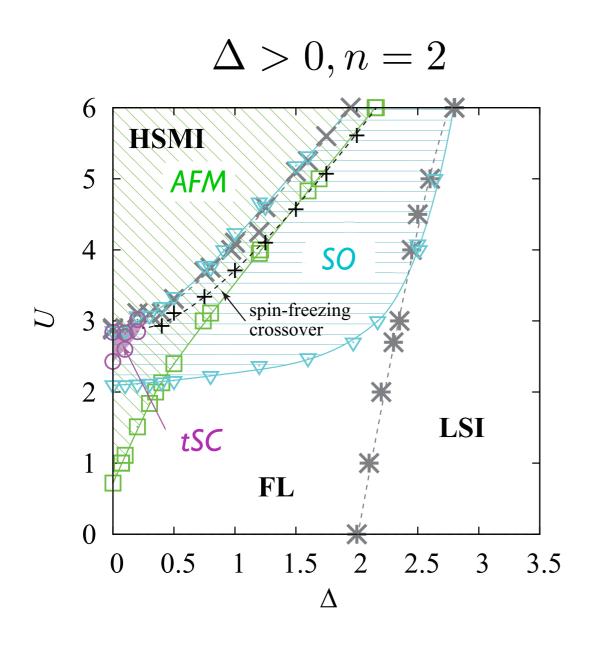
- Complicated phase diagrams, even in the two-orbital case
 - High-spin/low-spin transitions Werner & Millis, PRL (2007)
 - Excitonic (spin-orbital) order
 Kunes et al., PRB (2014)
- Exact mapping: $c_{i2\sigma} \to \sum_{\sigma'} \sigma^x_{\sigma\sigma'} c^\dagger_{i2\sigma'} e^{\mathrm{i}Q \cdot R_i}$

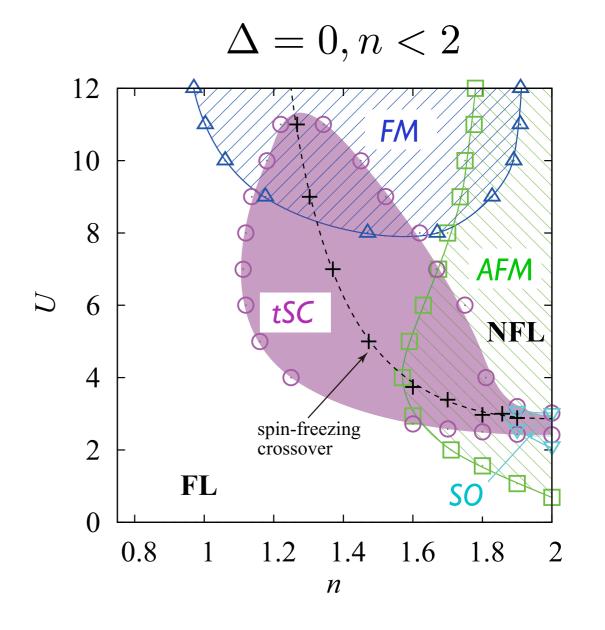
half-filled model with $\Delta > 0 \quad \to \quad$ doped model with $\Delta = 0$ crystal field splitting $\Delta \quad \to \quad$ chemical potential shift μ spin-orbital order $\quad \to \quad$ spin-triplet SC

 Spin-orbital order and spin-triplet SC instabilities driven by fluctuating local moments

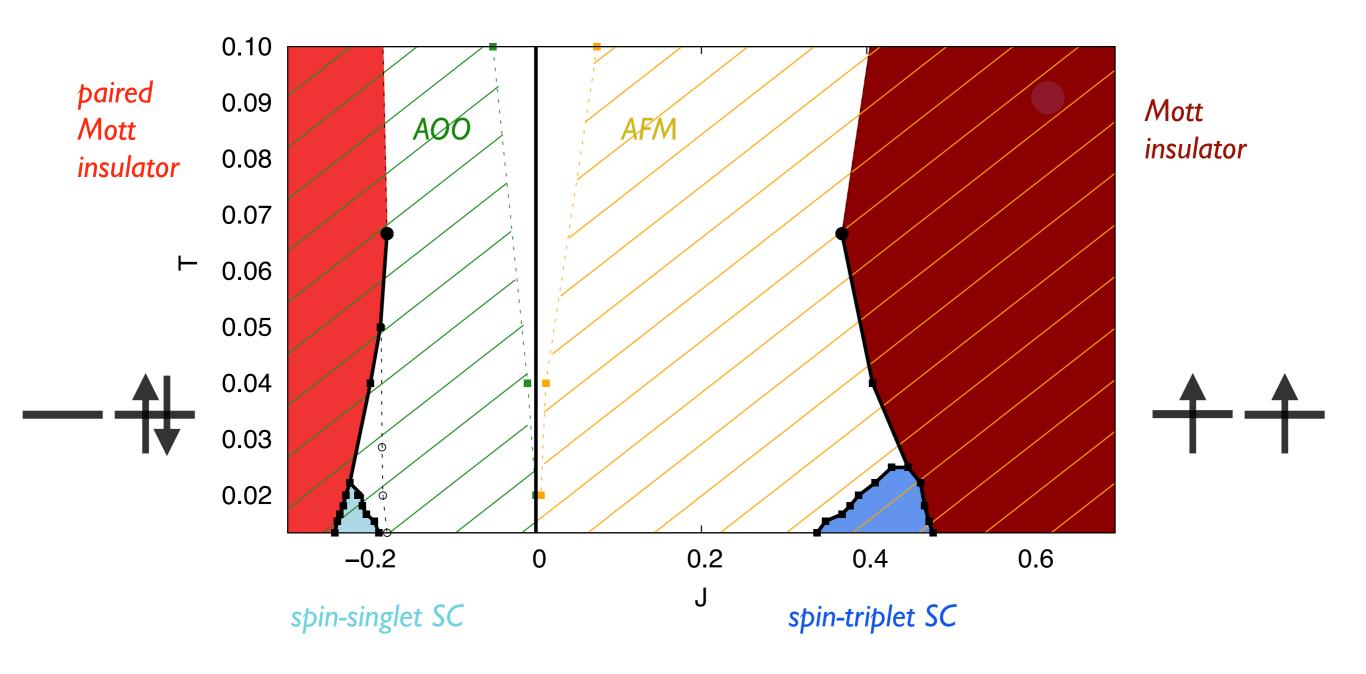
Hoshino & Werner, PRB (2016)

- Complicated phase diagrams, even in the two-orbital case
 - High-spin/low-spin transitions Werner & Millis, PRL (2007)
 - Spin-orbital order (excitonic insulator phases) Kunes et al., PRB (2014)





2-orbital model (*U*=bandwidth=4)



- 2-orbital model (*U*=bandwidth=4)
- Mapping between J<0 and J>0:

$$\begin{pmatrix} d_{i,1\downarrow} \\ d_{i,2\uparrow} \end{pmatrix} \longrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} d_{i,1\downarrow} \\ d_{i,2\uparrow} \end{pmatrix}$$

J<0: J>0:

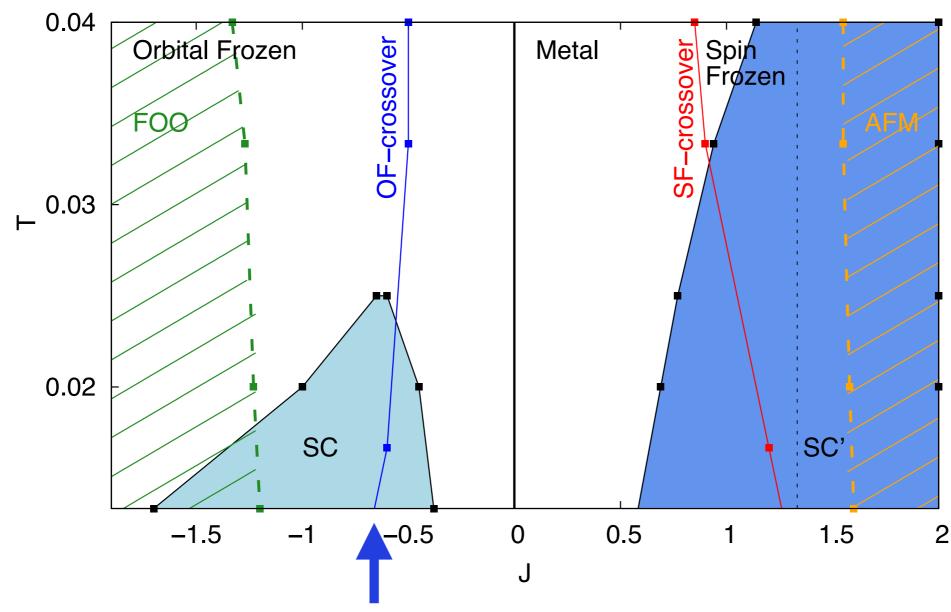
 $spin-singlet SC \rightarrow spin-triplet SC$

antiferro OO \rightarrow AFM

ferro OO \rightarrow FM

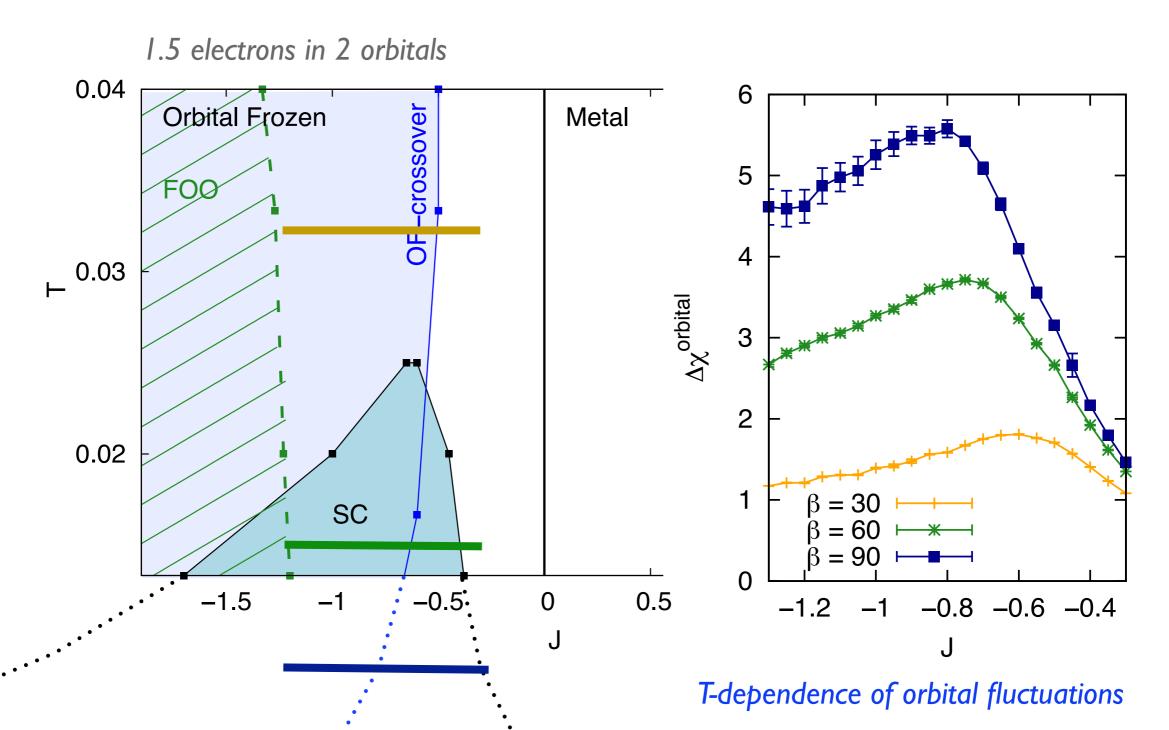
orbital freezing \rightarrow spin freezing

Away from half-filling: SC dome peaks near orbital freezing line



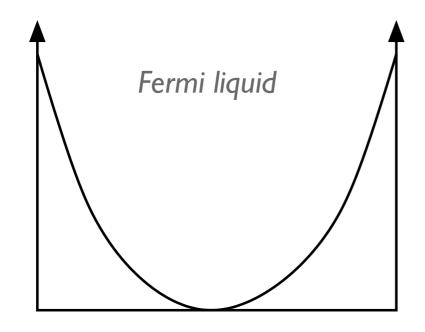
line of maximum orbital fluctuations

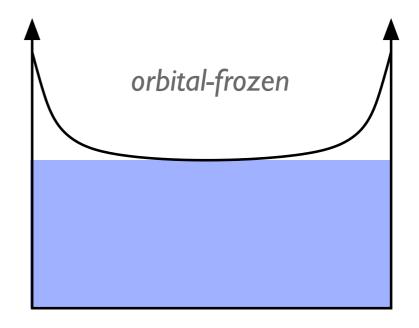
Away from half-filling: SC dome peaks near orbital freezing line



- Orbital freezing seen in the decay of the (imaginary-time) orbital-orbital correlation function $\langle o(\tau)o(0)\rangle,\ o=n_1-n_2$
 - fermi liquid metal: $\langle o(\tau)o(0)\rangle \sim 1/\tau^2 \ (\tau \text{ large})$
 - orbital-frozen metal: $\langle o(\tau)o(0)\rangle \sim \text{const} > 0$
- Orbital freezing crossover line: maximum of orbital fluctuations

$$\Delta \chi_{\rm orb} \equiv \int_0^\beta d\tau [\langle o(\tau)o(0)\rangle - \langle o(\beta/2)o(0)\rangle]$$





- Orbital freezing seen in the decay of the (imaginary-time) orbital-orbital correlation function $\langle o(\tau)o(0)\rangle,\ o=n_1-n_2$
 - fermi liquid metal: $\langle o(\tau)o(0)\rangle \sim 1/\tau^2 \ (\tau \text{ large})$
 - orbital-frozen metal: $\langle o(\tau)o(0)\rangle \sim \text{const} > 0$
- Orbital freezing crossover line: maximum of orbital fluctuations

$$\Delta \chi_{\rm orb} \equiv \int_0^\beta d\tau [\langle o(\tau)o(0)\rangle - \langle o(\beta/2)o(0)\rangle]$$

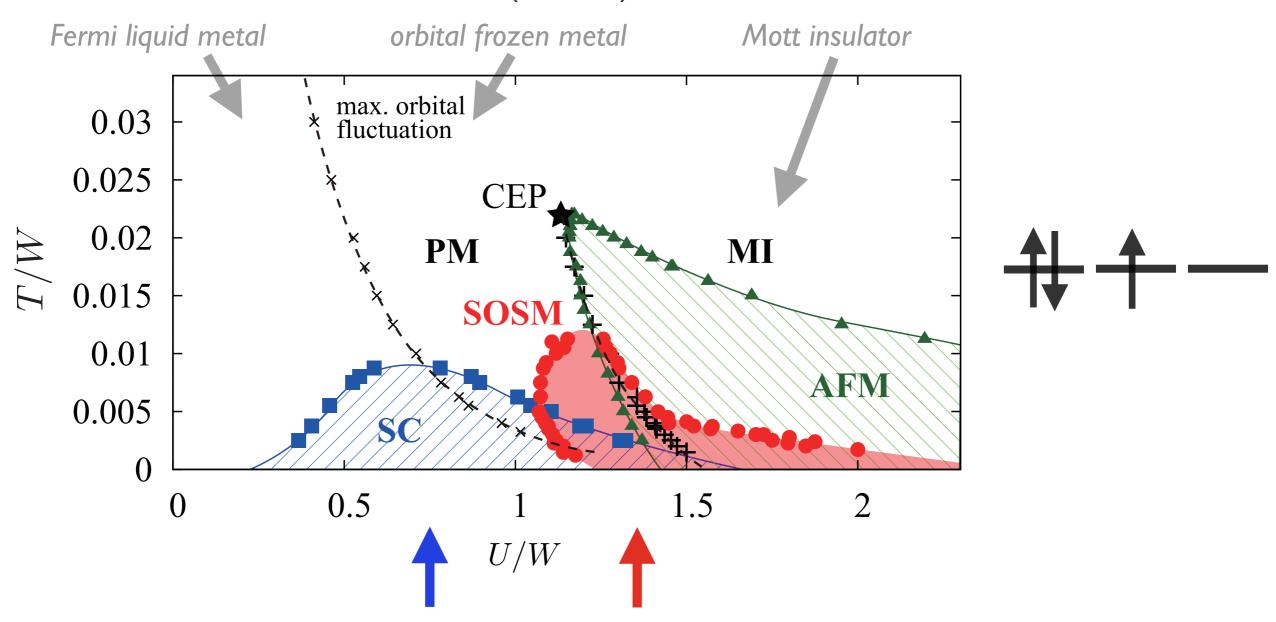
- Orbital fluctuations induce attractive interaction for on-site pairs
 - Effective interaction which includes bubble diagrams:

analogous to: Inaba & Suga, PRL (2012)

$$\tilde{U}_{\alpha\beta}(q) = U_{\alpha\beta} - \sum_{\gamma} U_{\alpha\gamma} \chi_{\gamma}(q) \tilde{U}_{\gamma\beta}(q)$$

$$\Rightarrow \tilde{U} = U - 4U'[U' + |J|]\Delta\chi_{\rm orb} + O(U^3)$$

Half-filled 3-orbital model (A₃C₆₀)



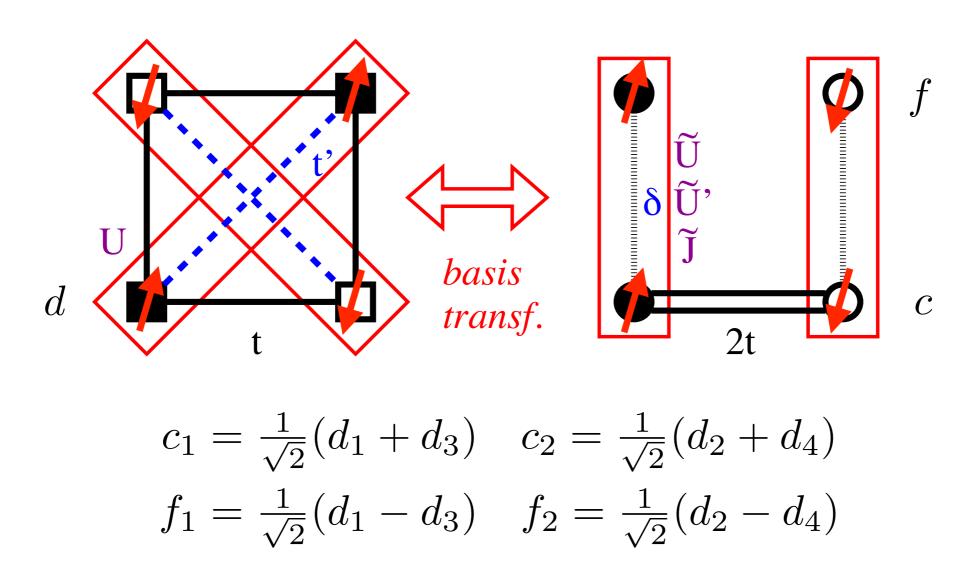
SC dome peaks in the region of maximum orbital fluctuations

spontaneous symmetry breaking into an orbital selective Mott phase ("Jahn-Teller metal")

Cuprates

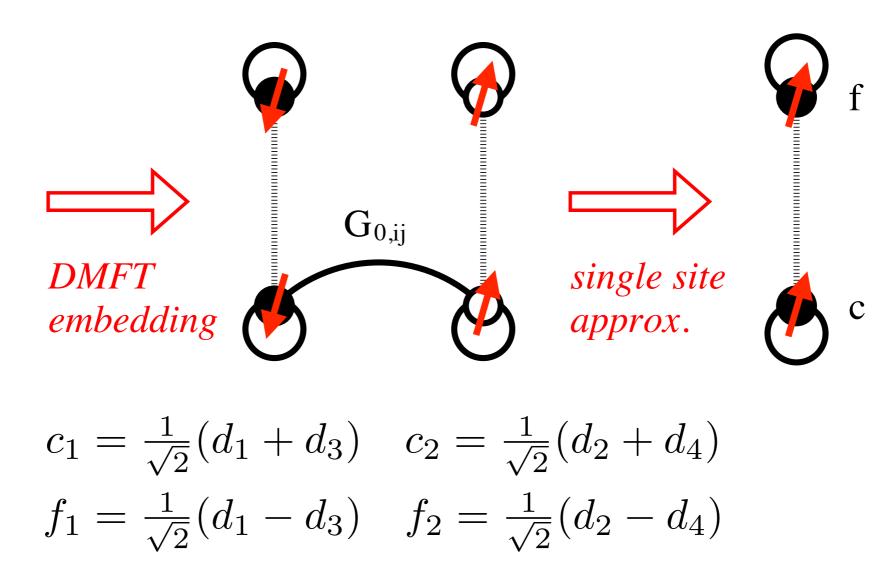
- Unconventional SC in the spin-freezing regime
 - Strontium ruthenates
 - Uranium-based SC
 - Pnictides
 - CrAs
 - ...
- Unconventional SC in the orbital-freezing regime
 - Alkali-doped fullerides
- What about cuprates? Can spin-freezing play any role in a single-band 2D Hubbard model?
 - naive answer: NO, correct answer: YES

• Mapping to an effective two-orbital model:



• Slater-Kanamori interaction with $\tilde{U}=\tilde{U}'=\tilde{J}=U/2$ nnn hopping translates into a crystal-field splitting $\delta=2t'$

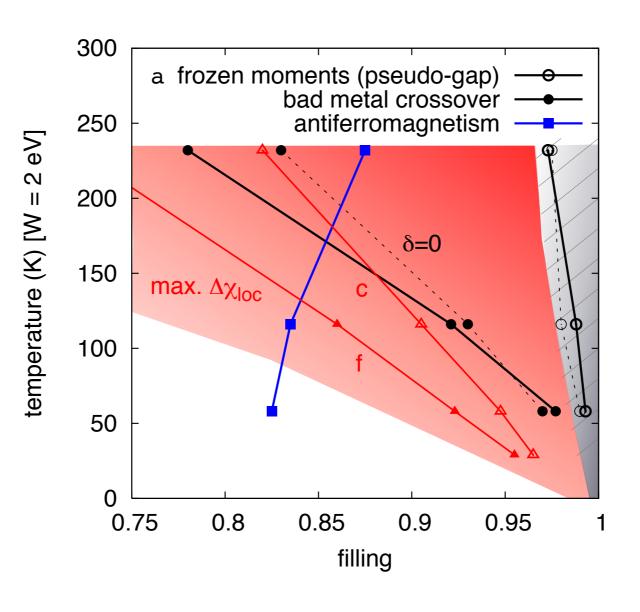
• Mapping to an effective two-orbital model:



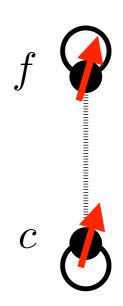
ullet Slater-Kanamori interaction with $\tilde{U}=\tilde{U}'=\tilde{J}=U/2$ nnn hopping translates into a crystal-field splitting $\delta=2t'$

Phasediagram (I-site/2-orbital DMFT)

emerging (fluctuating)local moments= bad metal regime

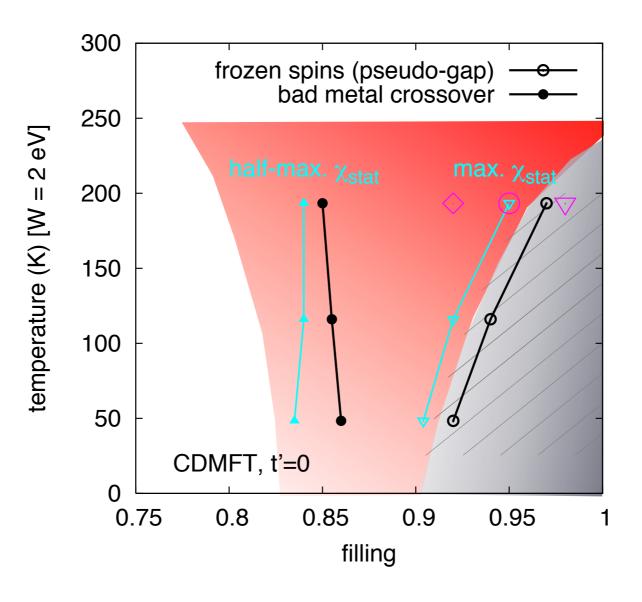


frozen moments =pseudo-gap phase

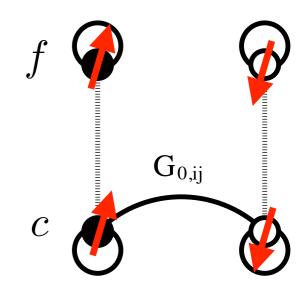


Phasediagram (2-site/2-orbital cluster DMFT)

emerging (fluctuating)local moments= bad metal regime

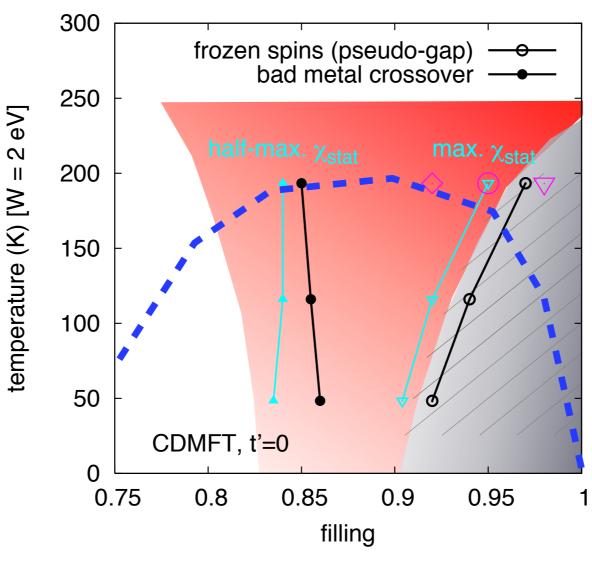


frozen moments =pseudo-gap phase



Phasediagram (2-site/2-orbital cluster DMFT)

emerging (fluctuating)local moments= bad metal regime



frozen moments =pseudo-gap phase

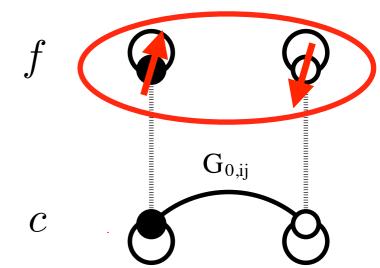
SC dome [4-site cluster DMFT, Maier et al, (2005)] induced by fluctuating local moments?

- d-wave SC induced by local spin fluctuations
- Transformation of the d-wave order parameter:

$$\begin{array}{c} (d_{1\uparrow}^{\dagger}d_{2\downarrow}^{\dagger} - d_{1\downarrow}^{\dagger}d_{2\uparrow}^{\dagger}) - (d_{2\uparrow}^{\dagger}d_{3\downarrow}^{\dagger} - d_{2\downarrow}^{\dagger}d_{3\uparrow}^{\dagger}) \\ + (d_{3\uparrow}^{\dagger}d_{4\downarrow}^{\dagger} - d_{3\downarrow}^{\dagger}d_{4\uparrow}^{\dagger}) - (d_{4\uparrow}^{\dagger}d_{1\downarrow}^{\dagger} - d_{4\downarrow}^{\dagger}d_{1\uparrow}^{\dagger}) \end{array} \longrightarrow 2(f_{1\uparrow}^{\dagger}f_{2\downarrow}^{\dagger} - f_{1\downarrow}^{\dagger}f_{2\uparrow}^{\dagger})$$

• Effective attractive interaction:

$$\tilde{U}_{(1,f,\uparrow),(2,f,\downarrow)}^{\text{eff}} = 2\tilde{U}^3 \chi_{\text{loc}}^{(f)} \chi_{12}^{(c)} + O(\tilde{U}^5)$$

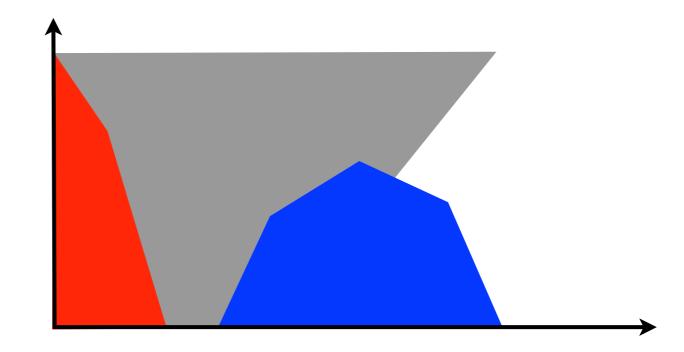


Leading contribution:

local spin fluctuations (needed because U'-J=0)

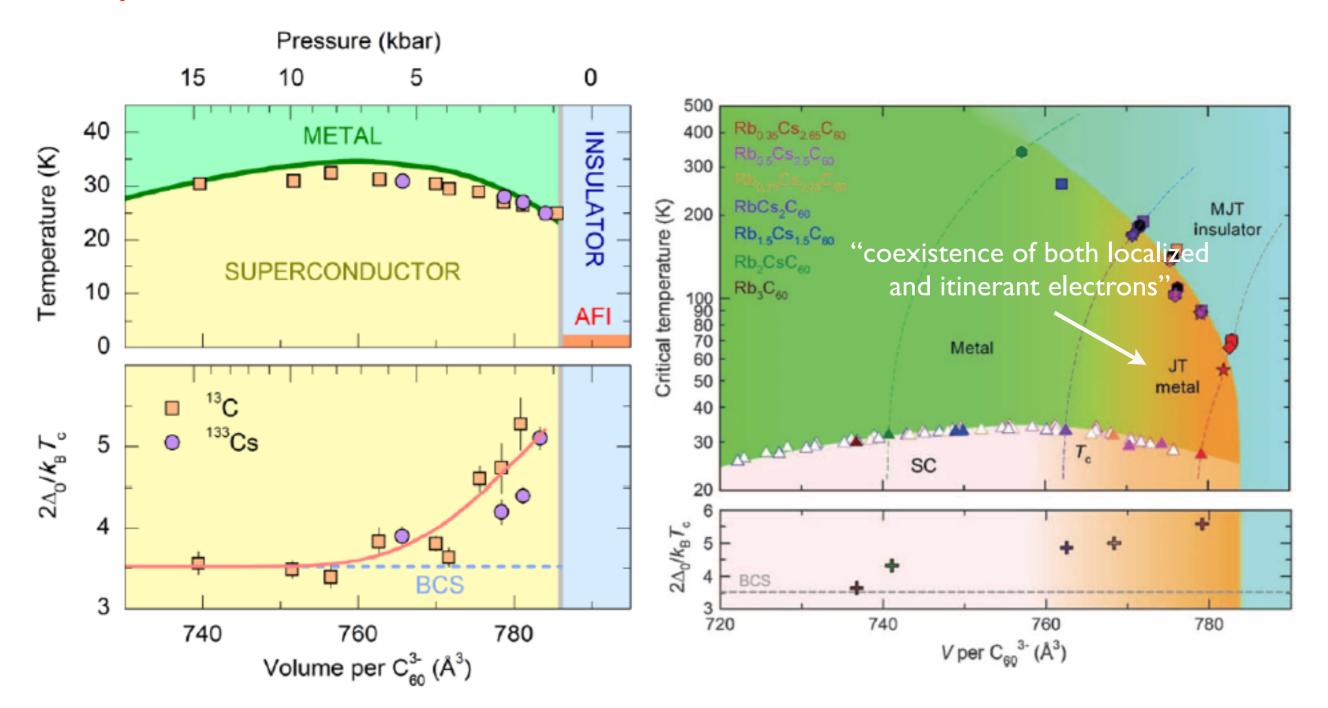
Summary I

- Spin/orbital freezing as a universal phenomenon in unconventional superconductors
 - Strontium ruthenates
 - Uranium-based SC
 - Pnictides
 - Fulleride compounds
 - Cuprates
 - ...



- Pairing induced by <u>local</u> spin or orbital fluctuations
- Bad metal physics originates from fluctuating/frozen moments

Experimental results for Cs₃C₆₀ and Rb_xCs_{3-x}C₆₀



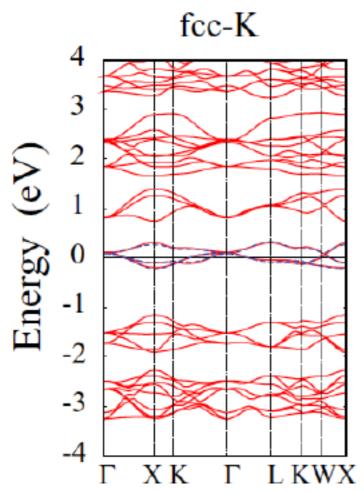
Potocnik et al., Sci. Rep. (2014)

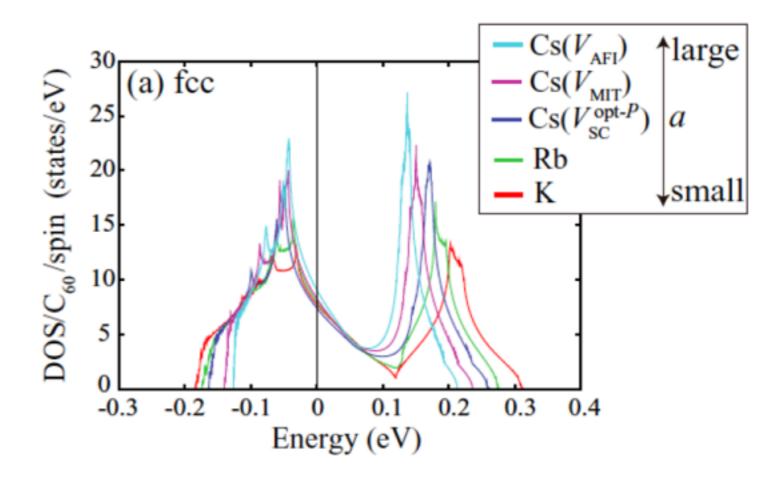
Zadik et al., Sci. Express (2015)

3-band model of A₃C₆₀

Bandstructure

- 3 bands near Fermi level
- half-filling
- bandwidth ~ 0.4 eV, increasing correlations from A=K to Cs



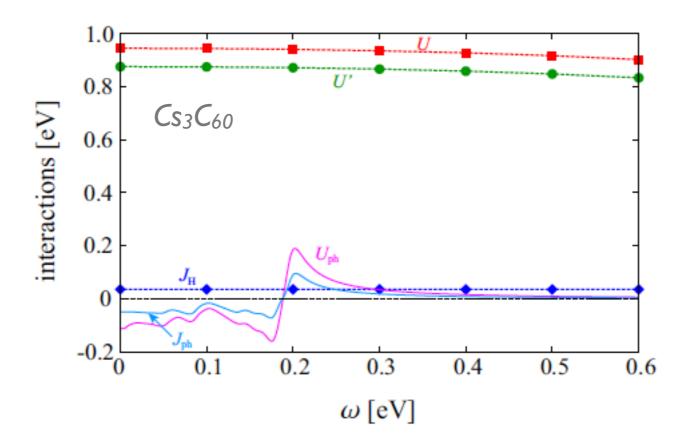


Nomura et al. (2012)

3-band model of A₃C₆₀

- Inverted Hund coupling
 - $U\sim IeV > bandwidth \longrightarrow strongly correlated$
 - Extended molecular orbitals \rightarrow small bare J (~0.035 eV)
 - Reduction of J by 0.05 eV due to Jahn-Teller phonons:

$$J_{\rm eff} = J_H(0) - J_{\rm ph}(0) \approx -0.02 \text{ eV}$$

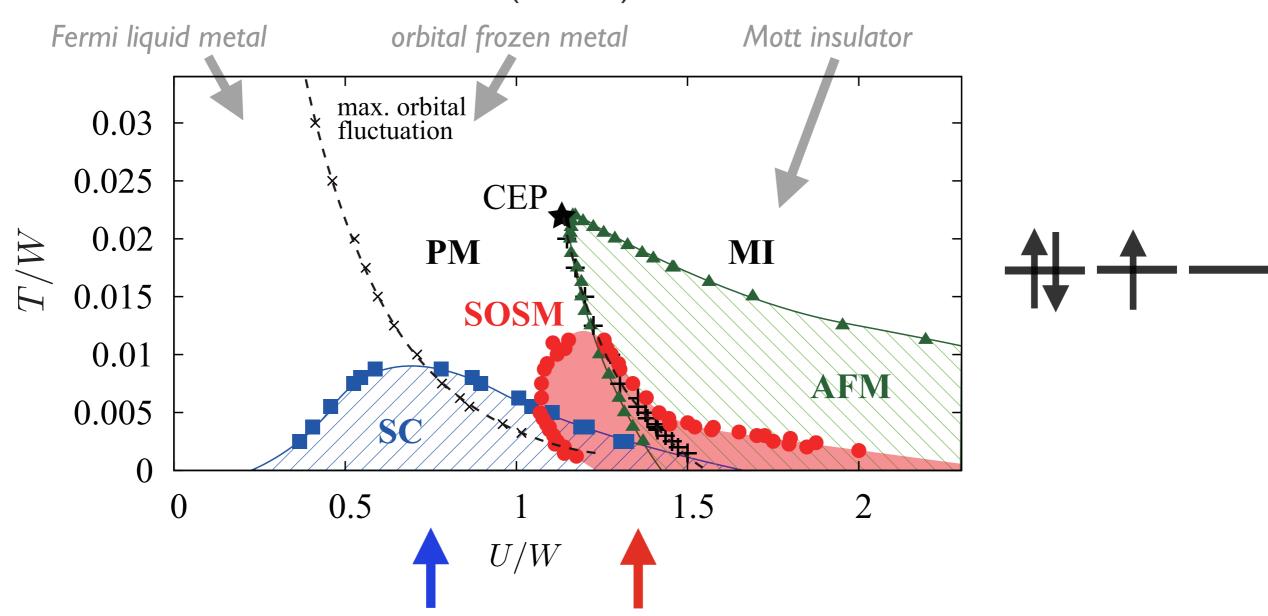


Nomura et al. (2012)

- Inverted Hund coupling
 - Lowest energy atomic state has paired electrons ("seed" for SC)

- |/| small compared to bandwidth, but E_{kin} strongly reduced by large U: cooperation between correlation and phonon effects
- For superconductivity, pairs have to be mobile: important role of pair-hopping term

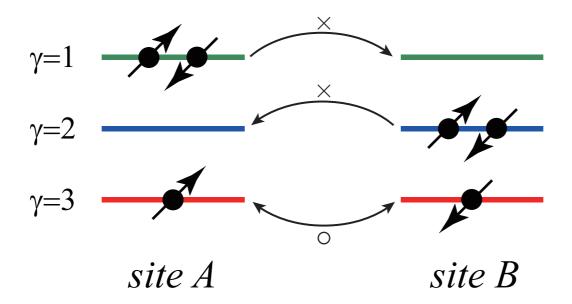
Half-filled 3-orbital model (A₃C₆₀)



SC dome peaks in the region of maximum orbital fluctuations

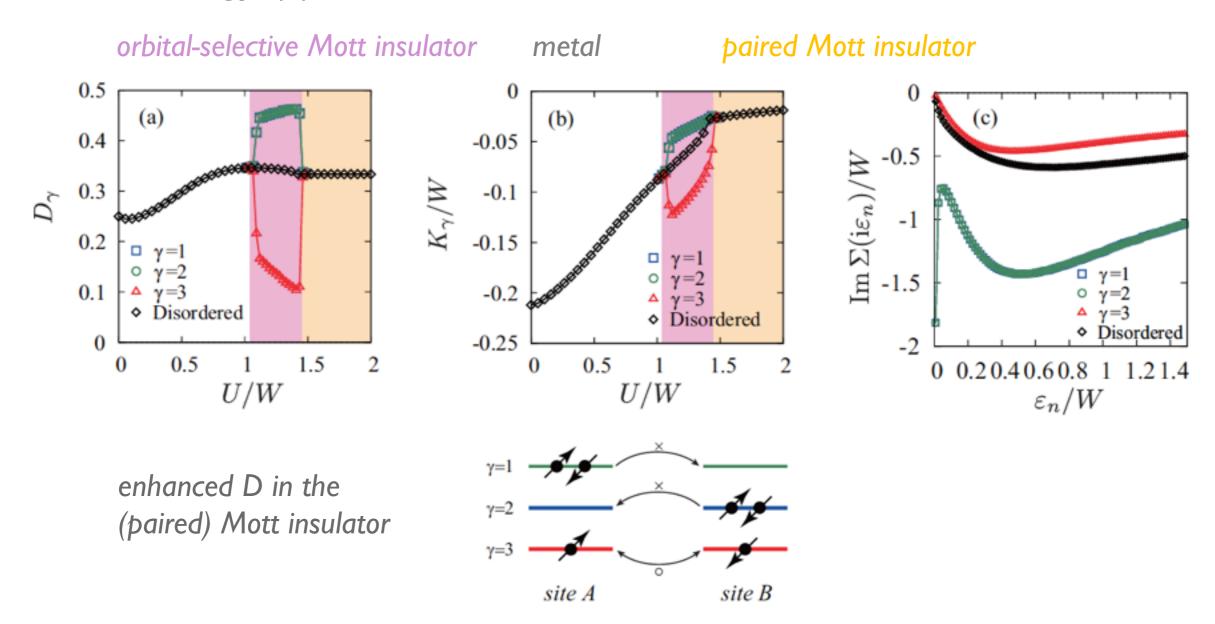
spontaneous symmetry breaking into an orbital selective Mott phase ("Jahn-Teller metal")

- Half-filled 3-orbital models with negative J exhibit a symmetrybroken phase characterized by a composite order parameter
 - completely degenerate bands
 - no ordinary orbital moment (all orbitals half-filled)
 - but: orbital-dependent double-occupation



coexistence of Mott insulating and metallic orbitals

- ullet DMFT results for J=-U/4 , density-density interaction
 - orbital-dependent double occupation (a), kinetic energy (b), and self-energy (c)



Odd-frequency order

Define the time-dependent orbital moment

$$T^{\eta}(\tau) = \sum_{i\gamma\gamma'\sigma} \langle c^{\dagger}_{i\gamma\sigma} \lambda^{\eta}_{\gamma\gamma'} c_{i\gamma'\sigma}(\tau) \rangle = T^{\eta}_{\mathrm{even}} + T^{\eta}_{\mathrm{odd}} \tau + O(\tau^2)$$

$$\uparrow \qquad \qquad \uparrow$$

$$\mathsf{Gell-Mann\ matrix} \qquad \mathsf{ordinary\ orbital\ moment\ (=0)}$$

Odd time/frequency component characterizes the SOSM state

$$T_{\text{odd}}^8 = \sum_{\gamma} \lambda_{\gamma\gamma}^8 (K_{\gamma} + 2UD_{\gamma}) + \text{terms depending on } U', J$$

oribtal-dependent E_{kin} and double occupation

"diagonal order" version of odd-frequency superconductivity

Berezinskii (1974), Kirkpatrick & Belitz (1991)

Summary II

- A₃C₆₀: 3-band system with strong U and inverted J
- T_c dome: enhanced pairing in the orbital-freezing crossover region
 - Analogous to unconventional superconductivity induced by spinfreezing in systems with J>0
- Jahn-Teller metal: symmetry-broken state with a composite order parameter (orbital-dependent double occupation)
 - Coexistence of 2 Mott insulating and 1 metallic orbital
 - Diagonal-order analogue of odd-frequency superconductivity