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Generic phase diagram of unconventional superconductors 
Superconducting dome next to a magnetically ordered phase
Non-Fermi liquid metal above the superconducting dome 

Introduction 

magnetic order

superconductivity
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pressure, doping, ...
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Method 

Dynamical mean field theory DMFT: mapping to an impurity problem

Impurity solver: computes the Green’s function of the correlated site

Bath parameters = “mean field”: optimized in such a way that the 
bath mimics the lattice environment
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lattice model impurity model 

Georges and Kotliar, PRB (1992)



CT-QMC solvers allow efficient simulation of multiorbital models

Relevant cases:

4 electrons in 3 orbitals: SrRu2O4

3 electrons in 3 orbitals, J<0: A3C60

6 electrons in 5 orbitals: Fe-pnictides
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Phase diagram for 

Metallic phase: “transition” from Fermi liquid to spin-glass
Narrow crossover regime with self-energy

3-orbital model
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3-orbital model Werner, Gull, Troyer & Millis, PRL (2008)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

in
te

rc
ep

t C
, e

xp
on

en
t α

U/t

exponent α (βt=50)
intercept C

exponent α (βt=100)
intercept C

�Im⌃(i!n) = C + A(!n)↵Fit self-energy by 

Square-root self-energy coincides with on-set of frozen moments



Spin-freezing leads to a small “quasi-particle weight” z

3-orbital model Hoshino & Werner, PRL (2015)
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Spin-spin and orbital-orbital correlation functions 

3-orbital model Werner, Gull, Troyer & Millis, PRL (2008)
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Consider the local susceptibility        

and its dynamic contribution

3-orbital model Hoshino & Werner, PRL (2015)

subtract the (frozen) long-time value
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Consider the local susceptibility        and its dynamic contribution

Crossover regime is characterized by large local moment fluctuations

3-orbital model Hoshino & Werner, PRL (2015)
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“quasi-particle weight” z

Hund coupling J: Strongly correlated metal far from the Mott transition 

3-orbital model Werner, Gull, Troyer & Millis, PRL (2008)

from De’ Medici, Mravlje & Georges, PRL (2011)



“quasi-particle weight” z

Hund coupling J: Strongly correlated metal far from the Mott transition 

3-orbital model Werner, Gull, Troyer & Millis, PRL (2008)

large local moment fluctuationsfrom De’ Medici, Mravlje & Georges, PRL (2011)



Strontium Ruthenates

A self-energy with frequency dependence                      implies an 
optical conductivity 

�(�) � �1/2

�(⇥) � 1/⇥1/2

Werner, Gull, Troyer & Millis, PRL (2008)



Strongly correlated despite moderate U

                   

Pnictides
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Strong doping and temperature dependence of electronic structure

                   

Pnictides

BaFe2As2:

conventional FL metal in the
underdoped regime

non-FL properties near 
optimal doping

incoherent metal in the 
overdoped regime

Werner et al., Nat. Phys. (2012)



Strong doping and temperature dependence of electronic structure

                   

Pnictides



Identify ordering instabilities by divergent lattice susceptibilities

Calculate local vertex from impurity problem
Approximate vertex of the lattice problem by this local vertex
Solve Bethe-Salpeter equation to obtain lattice susceptibility

The following orders (staggered and uniform) are considered:

diagonal orders: 
charge, spin, orbital, spin-orbital

off-diagonal orders: 
orbital-singlet-spin-triplet SC, orbital-triplet-spin-singlet SC

Long-range order Hoshino & Werner, PRL (2015)
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Long-range order

AFM near half-filling

FM at large U away from 
half-filling

spin-triplet superconductivity 
in the spin-freezing 
crossover region
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3-orbital model, Ising interactions (lower temperature)
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Tc dome and non-FL metal phase next to magnetic order

Generic phasediagram of unconventional SC without QCP!
            

Long-range order
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Tc dome and non-FL metal phase next to magnetic order

Need spin-anisotropy (SO coupling) for high Tc

probably relevant for: Sr2RuO4, UGe2, URhGe, UCoGe, ...            

Long-range order Hoshino & Werner, PRL (2015)
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Pairing induced by local spin fluctuations

Effective interaction which includes bubble diagrams: 

Effective inter-orbital same-spin interaction

Long-range order

Weak-coupling argument inspired by Inaba & Suga, PRL (2012)

Ũ↵�(q) = U↵� �
X

�

U↵���(q)Ũ��(q)

Ũ
1",2"(0) = U 0 � J � [2UU 0 + (U 0 � J)2 + U 02]�

loc

in the weak-coupling regime: �
loc

= ��
loc

Hoshino & Werner, PRL (2015)

Supplementary material for
“Superconductivity from emerging magnetic moments”
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2Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
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Effective attraction from purely repulsive interactions

Here, we explain how local fluctuations can induce a pairing among repulsively interacting electrons. We follow
Ref. 1 that deals with a three-component fermion system. In the weak-coupling regime, the effective interactions that
incorporate bubble diagrams can be written in general form as

Ũαβ(q) = Uαβ −
∑

α1

Uαα1χα1(q)Ũα1β(q), (1)

where q = (q, iνm) with q denoting the wave vector and νm = 2πmT a bosonic Matsubara frequency. For the present
three orbital Hubbard model, the indices are given by α = (γ,σ) where γ = 1, 2, 3 and σ =↑, ↓. The bare interactions
are given by Uγσ-γσ = 0, Uγ↑-γ↓ = U , Uγ↑-γ′↓ = U ′, Uγ↑-γ′↑ = U ′−J (γ ̸= γ′). The dynamical susceptibility is defined
by χα(q) = −

∑
k gα(k)gα(k+ q) where gα(k) is the single-particle Green function for electrons with flavor α. For the

case of degenerate orbitals considered in our paper, we do not need the index α in the susceptibility.
In the DMFT approximation, only the local part of the vertex corrections is taken into account [2]. Hence we

replace the susceptibility by the local one, χloc(iνm). (This replacement is not essential for the pairing: the effective
attraction can be derived even when we consider the q-dependent susceptibility, as discussed in Ref. 1.) By solving
Eq. (1), the static interaction among 1 ↑ and 2 ↑ electrons can be explicitly derived as

Ũ1↑-2↑(0) =
U ′ − J + (J2 − 2UU ′ − 2U ′J)χloc + (U ′ − J)(U2 − 2J2 + 4U ′J)χ2

loc

[1− (U − J)χloc][1− (U + 2J)χloc][1 + (U − 2U ′ + J)χloc][1 + (U + 4U ′ − 2J)χloc]
, (2)

where we consider the static component: χloc = χloc(0). The diagrams up to second-order in the interactions are
shown in Fig. 1. In this approximation the effective interaction is given by

Ũ1↑-2↑(0) ≃ U ′ − J − [2UU ′ + (U ′ − J)2 + U ′2]χloc. (3)

Thus if the second-order terms dominate the bare interaction U ′ − J , the effective interaction Ũ1↑-2↑ can become
attractive even though the bare interaction is repulsive. Hence, Eq. (3) shows that strong local fluctuations induce a
pairing among electrons. This argument is valid in the case of weak interactions, where no local moments are formed.
In this regime, the relation ∆χloc = χloc holds (see Eq. (2) in the main text for the definition of ∆χloc).
In the above argument, the local susceptibility can be identified as the magnetic and charge susceptibilities, which

have the same value in the weak-coupling limit. With increasing repulsive Coulomb interactions, the magnetic
susceptibility is enhanced and the charge one is suppressed. Hence we expect that in the regime considered in the
main text, the local magnetic fluctuations primarily contribute to the pairing among electrons in the multi-orbital
Hubbard model. Indeed our DMFT+CTQMC calculations demonstrate a clear connection between superconductivity
and local spin susceptibility. We note that the present discussion cannot be applied to the local-moment regime with
∆χloc ̸= χloc. In this case the expansion from the strong-coupling limit should work as an effective theory.

FIG. 1: Effective attractive interactions from bubble diagrams up to second order.



Complicated phase diagrams, even in the two-orbital case 

High-spin/low-spin transitions

Crystal field splitting 

Werner & Millis, PRL (2007)

Hoshino & Werner, PRB (2016)
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Complicated phase diagrams, even in the two-orbital case 

High-spin/low-spin transitions

Crystal field splitting 

Werner & Millis, PRL (2007)

Hoshino & Werner, PRB (2016)
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Complicated phase diagrams, even in the two-orbital case 

High-spin/low-spin transitions

Crystal field splitting 

Werner & Millis, PRL (2007)

Hoshino & Werner, PRB (2016)

 0

 2

 4

 6

 8

 10

 0  0.5  1  1.5  2  2.5  3  3.5

U
/t

∆/t

J/U=0 J/U=0.25

Mott insulator
(spin triplet for J/U=0.25)

metal

orbitally polarized
insulator

level
crossing

spin freezing
crossover

excitonic order
Kunes et al., PRB (2014)

low spin

high spin



Complicated phase diagrams, even in the two-orbital case 

High-spin/low-spin transitions
Excitonic (spin-orbital) order  

Exact mapping:

Spin-orbital order and spin-triplet SC instabilities driven by 
fluctuating local moments

half-filled model with � > 0 ! doped model with � = 0

crystal field splitting � ! chemical potential shift µ

spin-orbital order ! spin-triplet SC

Crystal field splitting 

Werner & Millis, PRL (2007)

Kunes et al., PRB (2014)

Hoshino & Werner, PRB (2016)
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2-orbital model (U=bandwidth=4)

Negative J and orbital freezing

spin-triplet SCspin-singlet SC
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2-orbital model (U=bandwidth=4)

Mapping between J<0 and J>0:

Negative J and orbital freezing Steiner et al., PRB (2016)
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Away from half-filling: SC dome peaks near orbital freezing line 

Negative J and orbital freezing

line of maximum orbital fluctuations
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Away from half-filling: SC dome peaks near orbital freezing line 

Negative J and orbital freezing
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Orbital freezing seen in the decay of the (imaginary-time) orbital-
orbital correlation function 

fermi liquid metal:

orbital-frozen metal:

Orbital freezing crossover line: maximum of orbital fluctuations 

Negative J and orbital freezing Steiner et al., PRB (2016)

ho(⌧)o(0)i, o = n1 � n2

ho(⌧)o(0)i ⇠ 1/⌧2 (⌧ large)

Fermi liquid orbital-frozen

ho(⌧)o(0)i ⇠ const > 0
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orb
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Orbital freezing seen in the decay of the (imaginary-time) orbital-
orbital correlation function 

fermi liquid metal:

orbital-frozen metal:

Orbital freezing crossover line: maximum of orbital fluctuations

Orbital fluctuations induce attractive interaction for on-site pairs
Effective interaction which includes bubble diagrams: 

Negative J and orbital freezing Steiner et al., PRB (2016)
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analogous to:  Inaba & Suga, PRL (2012)



Hoshino & Werner (2016)50
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Hoshino & Werner (2016)Cuprates Werner, Hoshino & Shinaoka, PRB (2016)

Unconventional SC in the spin-freezing regime
Strontium ruthenates 
Uranium-based SC
Pnictides
CrAs
...

Unconventional SC in the orbital-freezing regime
Alkali-doped fullerides 

What about cuprates? Can spin-freezing play any role in a single-band 
2D Hubbard model?

naive answer: NO,  correct answer: YES



Cuprates

Mapping to an effective two-orbital model:

Slater-Kanamori interaction with                                                 
nnn hopping translates into a crystal-field splitting 
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Mapping to an effective two-orbital model:

Slater-Kanamori interaction with                                                 
nnn hopping translates into a crystal-field splitting 

Hoshino & Werner (2016)Cuprates
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Phasediagram (1-site/2-orbital DMFT)
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Spin/orbital freezing as a universal phenomenon in unconventional 
superconductors

Strontium ruthenates 
Uranium-based SC
Pnictides
Fulleride compounds
Cuprates
...

Pairing induced by local spin or orbital fluctuations

Bad metal physics originates from fluctuating/frozen moments

Hoshino & Werner (2016)Summary I 



Experimental results for Cs3C60 and RbxCs3-xC60

Jahn-Teller metal 

bad metal

Potocnik et al., Sci. Rep. (2014) Zadik et al., Sci. Express (2015)

“coexistence of both localized 
and itinerant electrons”



3-band model of A3C60 

Bandstructure 
3 bands near Fermi level
half-filling

bandwidth ~ 0.4 eV, increasing correlations from A=K to Cs

Nomura et al. (2012)



3-band model of A3C60 

Inverted Hund coupling
U~1eV > bandwidth       strongly correlated 
Extended molecular orbitals       small bare J (~0.035 eV)
Reduction of J by 0.05 eV due to Jahn-Teller phonons: 

Nomura et al. (2012)

Cs3C60

Je↵ = JH(0)� Jph(0) ⇡ �0.02 eV



3-band model of A3C60 

Inverted Hund coupling
Lowest energy atomic state has paired electrons (“seed” for SC)

|J| small compared to bandwidth, but Ekin strongly reduced by 
large U: cooperation between correlation and phonon effects

For superconductivity, pairs have to be mobile: important role of 
pair-hopping term

U

U � 2J > U

U � 3J > U

Capone et al., Science (2002)
Nomura et al., Science Expr. (2015)
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SC dome peaks in the region of maximum
orbital fluctuations

spontaneous symmetry breaking into an
orbital selective Mott phase (“Jahn-Teller metal”)

Hoshino & Werner, PRL (2017)

Fermi liquid metal              orbital frozen metal             Mott insulator     

Half-filled 3-orbital model (A3C60) 
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Half-filled 3-orbital models with negative J exhibit a symmetry-
broken phase characterized by a composite order parameter 

completely degenerate bands

no ordinary orbital moment (all orbitals half-filled)

but: orbital-dependent double-occupation

coexistence of Mott insulating and metallic orbitals

Jahn-Teller metal Hoshino & Werner, PRL (2017)



DMFT results for                  , density-density interaction 
orbital-dependent double occupation (a), kinetic energy (b), and 
self-energy (c)

Hoshino & Werner (2016)Jahn-Teller metal

J = �U/4

enhanced D in the
(paired) Mott insulator

paired Mott insulatororbital-selective Mott insulator metal 

Hoshino & Werner, PRL (2017)



Define the time-dependent orbital moment 

Odd time/frequency component characterizes the SOSM state 

“diagonal order” version of odd-frequency superconductivity                               

Hoshino & Werner (2016)Odd-frequency order

Gell-Mann matrix        

oribtal-dependent  Ekin   and   double occupation

Hoshino & Werner, PRL (2017)

ordinary orbital 
moment (=0)        

T 8

odd

=

X

�

�8

��(K� + 2UD�) + terms depending on U 0, J

Berezinskii (1974), Kirkpatrick & Belitz (1991)
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X

i��0�
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⌘
��0ci�0�(⌧)i = T ⌘

even

+ T ⌘
odd

⌧ +O(⌧2)



Summary II 

A3C60: 3-band system with strong U and inverted J

Tc dome: enhanced pairing in the orbital-freezing crossover region
Analogous to unconventional superconductivity induced by spin-
freezing in systems with J>0

Jahn-Teller metal: symmetry-broken state with a composite order 
parameter (orbital-dependent double occupation)

Coexistence of 2 Mott insulating and 1 metallic orbital
Diagonal-order analogue of odd-frequency superconductivity


