Gapless Spin-Liquid Ground State in the Kagome Antiferromagnets

Tao Xiang

Institute of Physics
Chinese Academy of Sciences
txiang@iphy.ac.cn

Outline

 Brief introduction to the tensor-network states and their renormalization

II. Tensor-network renormalization group study of the Kagome Heisenberg model

$$H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j, \quad J > 0$$

Road Map of Renormalization Group

Computational RG

Tensor-network renormalization

1982

White **Density-matrix renormalization**

Phase transition and Critical phenomena

Quantum field theory

Stueckelberg Gell-Mann Low

QED 1965

EW 1999

QCD 2004

1950

1970

1990

2010

year

I. Basic Idea of Renormalization Group

$$\ket{\psi} = \sum_{k=1}^{N} a_k \ket{k} pprox \sum_{k=1}^{N \ll N_{total}} a_k \ket{k}$$

To find a small but optimized set of basis states $\{|k\rangle\}$ to represent accurately a wave function

Scale transformation: refine the wavefunction by local RG transformations

Optimization of Basis States

$$\ket{\psi} = \sum_{k=1}^{N} a_k \ket{k} pprox \sum_{k=1}^{N \ll N_{total}} a_k \ket{k}$$

To find a small but optimized set of basis states $\{|k\rangle\}$ to represent accurately a wave function

Physics: compression of basis space (phase space)

i.e. compression of information

Mathematics: low rank approximation of matrix or tensor

RG versus Tensor-Network RG

Renormalization Group (analytical)

RG equation for charge, critical exponents and other coupling constants at critical regime

Tensor-Network Renormalization Group

Direct evaluation of quantum wave function or partition function at or away from critical points

Is Quantum Wave Function Compressible?

$$N_{\text{total}} = 2^{L^2}$$

$$|\psi\rangle = \sum_{k=1}^{N_{\mathrm{total}}} a_k |k\rangle$$
basis states

Yes: Entanglement Entropy Area Law

$$S \propto L \propto \log N$$

$$N \sim 2^L << 2^{L^2} = N_{\text{total}}$$

Minimum number of basis states needed for accurately representing ground states

$$|\psi\rangle pprox \sum_{k=1}^{N\ll N_{\mathrm{total}}} a_k |k\rangle$$
basis states

What Kind of Wavefunction Satisfies the Area Law?

The Answer: Tensor Network States

Example: Matrix Product States (MPS) in 1D

 m_1 m_2 m_3 ... m_{L-1} m_L α β d d d $A_{lphaeta}[m_2]$ D Virtual basis state

 $\psi(m_1, ... m_L)$

 $\psi(m_1, \dots m_L) = TrA[m_1] \cdots A[m_L]$

 d^L parameters

 dD^2L parameters

Entanglement Entropy of MPS

$S \sim \log D$

Example: Matrix Product States (MPS)

$$\psi(m_1, ... m_L)$$

$$\psi(m_1, \dots m_L) = TrA[m_1] \cdots A[m_L]$$

 d^L parameters

 dD^2L parameters

Example: S=1 AKLT valence bond solid state

$$H = \sum_{i} \frac{1}{2} \left[S_{i} \cdot S_{i+1} + \frac{1}{3} (S_{i} \cdot S_{i+1})^{2} + \frac{2}{3} \right]$$

$$|\Psi\rangle = \sum_{m_1 \perp m_L} Tr(A[m_1]...A[m_L]) |m_1...m_L\rangle$$

$$A[-1] = \begin{pmatrix} 0 & 0 \\ \sqrt{2} & 0 \end{pmatrix} \qquad A[0] = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \qquad A[1] = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}$$

 $A_{\alpha\beta}[m]$:

To project two virtual S=1/2 states, α and β , onto a S=1 state m

Affleck, Kennedy, Lieb, Tasaki, PRL 59, 799 (1987)

2D: Projected Entangled Pair State

Entanglement Entropy of PEPS

$$S = \alpha L \sim L \log D$$

PEPS becomes exact in the limit $D \rightarrow \infty$

PEPS versus MPS (DMRG)

PEPS is more suitable for studying large 2D lattice systems

S=1/2Heisenberg model on $L_x \times L_y$ square lattice

Reference energy: VMC

Sandvik PRB **56**, 11678 (1997)

Stoudenmire and White, Annu. Rev. CMP 3, 111(2012)

Tensor Network States

➤ Partition functions of all classical and quantum lattice models can be represented as tensor network models

$$Z = Tr \prod_{i} T_{x_i x_i' y_i y_i'}$$

➤ Ground state wave function can be represented as tensor-network state

$$|\Psi\rangle = Tr \prod T_{x_i x_i' y_i y_i'} [m_i] |m_i\rangle$$

d-dimensional quantum system = (d+1)-dimensional classical model

Partition Function: Tensor Representation of Ising model

$$H = -J \sum_{\langle ij
angle} oldsymbol{\sigma}_i^z oldsymbol{\sigma}_j^z$$

$$\sigma_i^z = -1, 1$$

$$Z = \operatorname{Tr} \exp(-\beta H)$$

$$= \operatorname{Tr} \prod_{\bullet} \exp(-\beta H_{\bullet})$$

$$= \operatorname{Tr} \prod_{S_i S_j S_k S_l} T_{S_i S_j S_k S_l}$$

$$S_{i} \longrightarrow S_{j}$$

$$S_{k} = T_{S_{i}S_{j}S_{k}S_{l}} = \exp(-\beta H_{\bullet})$$

How to renormalize a tensor-network model

Z. Y. Xie et al, PRB **86**, 045139 (2012)

Magnetization of 3D Ising model

Xie et al, PRB 86,045139 (2012)

Relative difference is less than 10⁻⁵

MC data: A. L. Talapov, H. W. J. Blote, J. Phys. A: Math. Gen. 29, 5727 (1996).

Specific Heat of 3D Ising model

Solid line: Monte Carlo data from X. M. Feng, and H. W. J. Blote, Phys. Rev. E 81, 031103 (2010)

Critical Temperature of 3D Ising model

Critical Temperature of 3D Ising model

method	year	T_{c}
HOTRG $D = 16$	2012	4.511544
$\mathbf{D} = 23$	2014	4.51152469(1)
NRG of Nishino et al	2005	4.55(4)
Monte Carlo Simulation	2010	4.5115232(17)
	2003	4.5115248(6)
	1996	4.511516
High-temperature expansion	2000	4.511536

II. Ground State of Kagome Antiferromagnets

Liao et al, PRL **118**, 137202 (2017)

S=1/2 Kagome Heisenberg

$$H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j, \quad J > 0$$

Is the ground state

- 1. gapped or gapless?
- 2. quantum spin liquid?

Quantum Spin Liquid

- ✓ Novel quantum state possibly with topological order
- ✓ Mott insulator without antiferromagnetic order
- ✓ Geometric or quantum frustrations are important

Quantum spin liquid has attracted great interests in recent years

Publication Number

Web of Science

Hints from Experiments

Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet

Nature 492 (2012) 406

Tian-Heng Han¹, Joel S. Helton², Shaoyan Chu³, Daniel G. Nocera⁴, Jose A. Rodriguez-Rivera^{2,5}, Collin Broholm^{2,6} & Young S. Lee¹

Gapless spin liquid

Along the (H, H, 0) direction, a broad excitation continuum is observed over the entire range measured

Herbertsmithite $ZnCu_3(OH)_6Cl_2$: Neutron scattering

Hints from Experiments

Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

Science 360 (2016) 655

Mingxuan Fu,¹ Takashi Imai,¹,2* Tian-Heng Han,³,4 Young S. Lee^{5,6}

Gapped spin liquid

NMR Knight shift

$$\Delta(0)/J = 0.03$$
 to 0.07

Kagome AFM: Theoretical Study

A question under debate for many years

Not Spin Liquid

Valence-bond Crystal

Marston et al., J. Appl. Phys. 1991

Zeng et al., PRB 1995

Nikolic et al., PRB 2003

Singh et al., PRB 2008

Poilblanc et al., PRB 2010

Evenbly et al., PRL 2010

Schwandt et al., PRB 2011

Iqbal et al., PRB 2011

Poilblanc et al., PRB 2011

Iqbal et al., New J. Phys. 2012

•••••

Spin Liquid

Gapped

Jiang, et al., PRL 2008

Yan, et al., Science 2011

Depenbrock, et al., PRL 2012

Jiang, et al., Nature Phys. 2012

Nishimoto, Nat. Commu. (2013)

Gong, et al., Sci. Rep. 2014

Li, arXiv 2016

Mei, et al., PRB 2017

• • • • •

Gapless

Hastings, PRB 2000

Hermele, et al., PRB 2005

Ran, et al., PRL 2007

Hermele, et al., PRB 2008

Tay, et al., PRB 2011

Iqbal, et al., PRB 2013

Hu, et al., PRB 2015

Jiang, et al., arXiv 2016

Liao, et al., PRL 2017

He, et al., PRX 2017

• • • • •

Problems in the theoretical studies

✓ Density Matrix Renormalization Group (DMRG):

strong finite size effect

error grows exponentially with the system size

Depenbrock et al, PRL **109**, 067201 (2012)

Problems in the theoretical studies

✓ Density Matrix Renormalization Group (DMRG):

strong finite size effect

error grows exponentially with the system size

✓ Variational Monte Carlo (VMC)

need accurate guess of the wave function

✓ Quantum Monte Carlo

Minus sign problem

Can we solve this problem using PEPS?

$$|\Psi\rangle = Tr \prod T_{x_i x_i' y_i y_i'}[m_i]|m_i\rangle$$

Local tensors
Rank-5 tensors

Projected Entangled Pair State (PEPS):

Virtual spins at two neighboring sites form a maximally entangled state

Can we solve this problem using PEPS?

$$|\Psi\rangle = Tr \prod T_{x_i x_i' y_i y_i'}[m_i]|m_i\rangle$$

- ✓ There is a serious cancellation in the tensor elements if three tensors on a simplex (triangle here) are contracted
- ✓ 3-body (or more-body) entanglement is important

Cancellation in the PEPS

$$H = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j, \quad J > 0$$

Solution: Projected Entangled Simplex States (PESS)

Z. Y. Xie et al, PRX 4, 011025 (2014)

Projection tensor

Simplex tensor

- ✓ Virtual spins at each simplex form a maximally entangled state
- ✓ Remove the geometry frustration: The PESS is defined on the decorated honeycomb lattice
- ✓ Only 3 virtual bonds, low cost

PESS: exact wave function of Simplex Solid States

D. P. Arovas, Phys. Rev. B 77, 104404 (2008)

Example: S = 2 spin model on the Kagome lattice

A S = 2 spin is a symmetric superposition of two virtual S = 1 spins

Three virtual spins at each triangle form a spin singlet

S=2 Simplex Solid State

Local tensors

$$|0,0\rangle = \frac{1}{\sqrt{6}} \sum_{s_i s_j s_k} \varepsilon_{s_i s_j s_k} |s_i\rangle |s_j\rangle |s_k\rangle$$

$$S_{ijk} = \varepsilon_{ijk}$$

 $S_{ijk} = \varepsilon_{ijk}$ antisymmetric tensor

$$A_{ab}[\sigma] = \begin{pmatrix} 1 & 1 & 2 \\ a & b & \sigma \end{pmatrix}$$
 C-G coefficients

Projection tensor

Simplex tensor

Advantage for using PESS

1. No finite size effect: PESS can be defined on an infinite lattice

- 2. More accurate for studying large lattice size systems
- 3. The ground state energy converges fast with the increase of the bond dimension *D*
 - Converge exponentially with D if the ground state is gapped
 - Converge algebraically with *D* if the ground state is gapless

This property is used to determine whether the ground state is gapped or gapless

Main Difficulty in the Calculation of TNS

Computational time scales as $m{D}^{12}$ maximal $m{D}$ that can be handle is $m{13}$

Solution

Reduce the Cost by Dimension Reduction

Computational time scales as $m{D}^8$ maximal $m{D}$ reaches 25

Kagome Heisenberg: Ground State Energy

Ground state energy shows a power law behavior Question: Is D=25 large enough?

Take A Reference: Husimi lattice

Make comparison between Kagome and Husimi results

Same local structure

Gain insight for the kagome system

- √ Highly frustrated
- ✓ D is generally small

- ✓ Tree Structure
- ✓ Tensor renormalization is rigorous, D can reach 1000

S=1/2 Husimi Lattice: Gapless Ground State

S = 1/2 Husimi Heisenberg model

Energy algebraically converge with the bond dimension

S=1/2 Husimi Lattice: Magnetization Free

S=1 Husimi: Gapped Ground State

Ground state: trimerized

Energy converges exponentially with the bond dimension

Kagome Heisenberg: Gapless

Energy converges algebraically with the bond dimension

Kagome Antiferromagnetic: Magnetic free?

$M_{Kagome} < M_{Husimi}$

Magnetization: decays algebraically with *D*

Kagome Antiferromagnetic: Magnetic free?

The magnetic longrange order vanishes in the infinite *D* limit

The ground state of the Kagome Heisenberg model is a spin liquid.

Stability against other interactions

$$H = J_1 \sum_{\langle i,j \rangle} S_i \cdot S_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} S_i \cdot S_j$$

Bond dimension dependence of the magnetic order

Bond dimension dependence of the magnetic order

Bond dimension dependence of the magnetic order

Phase Diagram

Summary

- > Tensor-network renormalization provides a powerful tool for studying correlated many body problems
- > The ground state of the Kagome Heisenberg model is likely a gapless spin liquid

Bruce Normand

Haijun Liao

Haidong Xie

Ruizhen Huang

Zhiyuan Xie

PSI

Institute of Physics, CAS

Renmin Univ China