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I. Brief introduction to the tensor-network states and 

their renormalization

II. Tensor-network renormalization group study of the 

Kagome Heisenberg model
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I. Basic Idea of Renormalization Group

Scale transformation: refine the wavefunction by local RG transformations

To find a small but optimized set of basis states | ۧ𝑘
to represent accurately a wave function 



Physics： compression of basis space (phase space) 

i.e. compression of information

Mathematics: low rank approximation of matrix or tensor
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Optimization of Basis States

To find a small but optimized set of basis states | ۧ𝑘
to represent accurately a wave function 



RG versus Tensor-Network RG

Renormalization Group (analytical)

RG equation for charge, critical exponents and other 

coupling constants at critical regime

Tensor-Network Renormalization Group

Direct evaluation of quantum wave function or partition 

function at or away from critical points



Is Quantum Wave Function Compressible?

波函数 基矢
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Yes: Entanglement Entropy Area Law

S  𝑳B
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basis states 

Minimum number of basis states needed 

for accurately representing ground states



What Kind of Wavefunction Satisfies the Area Law?

The Answer: Tensor Network States
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Virtual basis state

 𝑚1, …𝑚𝐿 = 𝑇𝑟𝐴 𝑚1 ⋯𝐴 𝑚𝐿

Example: Matrix Product States (MPS) in 1D



Entanglement Entropy of MPS
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Virtual basis state

 𝑚1, …𝑚𝐿 = 𝑇𝑟𝐴 𝑚1 ⋯𝐴 𝑚𝐿

Example: Matrix Product States (MPS)

S  ~  log D



Affleck, Kennedy, Lieb, Tasaki, PRL 59, 799 (1987)

Example：S=1 AKLT valence bond solid state

A[m] : 

To project two virtual 

S=1/2 states,  and , 

onto a S=1 state m
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2D: Projected Entangled Pair State

F. Verstraete and J. Cirac, cond-mat/0407066 



Physical 

basis

Local 

tensor

Virtual 

basis
D

S =   L ~ L log D

Entanglement Entropy of PEPS

PEPS becomes exact in the limit  D 

L



PEPS versus MPS (DMRG)

PEPS is more suitable for studying large 2D lattice systems

S=1/2 

Heisenberg model on 

Lx  Ly square lattice

Stoudenmire and White,  Annu. Rev. CMP 3, 111(2012)

Reference energy: VMC 

Sandvik PRB 56, 11678 (1997)



➢ Ground state wave function can be represented as 

tensor-network state

➢ Partition functions of all classical and quantum lattice 

models can be represented as tensor network models

Tensor Network States

d-dimensional quantum system = (d+1)-dimensional classical model
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Partition Function: Tensor Representation of Ising model
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Higher-order singular value 

decomposition (HOSVD)

Truncation: 

Lower-rank approximation

How to renormalize a tensor-network model

Z. Y. Xie et al, PRB 86, 045139 (2012) 
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Relative difference is less than 10-5

HOTRG (D=14):   0.3295

Monte Carlo:         0.3262

Series Expansion:  0.3265

MC data: A. L. Talapov, H. W. J. Blote, J. Phys. A: Math. Gen. 29, 5727 (1996).

Magnetization of 3D Ising model

Xie et al, PRB 86,045139 (2012)



Solid line: Monte Carlo data from X. M. Feng, and H. W. J. Blote, Phys. Rev. E 81, 031103 (2010)

D = 14

Specific Heat of 3D Ising model



Critical Temperature of 3D Ising model

Bond dimension



Critical Temperature of 3D Ising model

method year Tc

HOTRG D = 16

D = 23                       

2012

2014

4.511544

4.51152469(1)

NRG of Nishino et al                2005 4.55(4)

Monte Carlo Simulation 2010 4.5115232(17)

2003 4.5115248(6)

1996 4.511516

High-temperature expansion     2000 4.511536



II. Ground State of Kagome Antiferromagnets

Is the ground state 

1. gapped or gapless?

2. quantum spin liquid?  

Herbertsmithite: ZnCu3(OH)6Cl2

S=1/2 Kagome Heisenberg

Liao et al, PRL 118, 137202 (2017)



Quantum Spin Liquid
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Quantum spin liquid has attracted great interests in recent years

✓ Novel quantum state possibly with topological order

✓ Mott insulator without antiferromagnetic order 

✓ Geometric or quantum frustrations are important



Herbertsmithite ZnCu3(OH)6Cl2 : Neutron scattering

Gapless spin liquid 

Along the (H, H, 0) 

direction, a broad

excitation continuum 

is observed over the 

entire range measured

Hints from Experiments

Nature 492 (2012) 406



NMR Knight shift

Gapped spin liquid 

Science 360 (2016) 655

Hints from Experiments



Valence-bond Crystal

Marston et al., J. Appl. Phys. 1991

Zeng et al., PRB  1995

Nikolic et al., PRB  2003

Singh et al., PRB  2008

Poilblanc et al., PRB  2010

Evenbly et al., PRL  2010

Schwandt et al., PRB 2011

Iqbal et al., PRB 2011

Poilblanc et al., PRB  2011

Iqbal et al., New J. Phys. 2012

……

Gapped

Jiang, et al., PRL 2008

Yan, et al., Science 2011

Depenbrock, et al., PRL 2012 

Jiang, et al., Nature Phys. 2012

Nishimoto, Nat. Commu. (2013)

Gong, et al., Sci. Rep. 2014

Li, arXiv 2016

Mei, et al.,  PRB 2017

……

Gapless

Hastings, PRB 2000

Hermele, et al., PRB 2005

Ran, et al., PRL 2007

Hermele, et al., PRB 2008

Tay, et al., PRB 2011

Iqbal, et al., PRB 2013

Hu, et al., PRB 2015 

Jiang, et al., arXiv 2016

Liao, et al., PRL 2017 

He, et al., PRX 2017

……

Not Spin Liquid

Kagome AFM: Theoretical Study

Spin Liquid

A question under debate for many years 



Problems in the theoretical studies

Depenbrock et al, PRL 

109, 067201 (2012) 

-0.4379(3)

-0.4386(5) 

✓ Density Matrix Renormalization Group (DMRG): 

strong finite size effect

error grows exponentially with the system size



✓ Density Matrix Renormalization Group (DMRG): 

strong finite size effect

error grows exponentially with the system size

✓ Variational Monte Carlo (VMC)

need accurate guess of the wave function

✓ Quantum Monte Carlo 

Minus sign problem

Problems in the theoretical studies



Can we solve this problem using PEPS?

Projected Entangled Pair State (PEPS):

Virtual spins at two neighboring sites form a maximally entangled state

Local tensors

Rank-5 tensors 



Can we solve this problem using PEPS?

✓ There is a serious cancellation in the tensor elements if three 

tensors on a simplex (triangle here) are contracted 

✓ 3-body (or more-body) entanglement is important

Max (                    ) ~ 1

Max (                    ) < 10-6



Cancellation in the PEPS

Max (                    )



Solution: Projected Entangled Simplex States (PESS)

Projection tensor

Simplex tensor

✓ Virtual spins at each simplex form a maximally entangled state

✓ Remove the geometry frustration: The PESS is defined on the 

decorated honeycomb lattice

✓ Only 3 virtual bonds, low cost

Z. Y. Xie et al, PRX 4, 011025 (2014)



PESS: exact wave function of Simplex Solid States

D. P. Arovas, Phys. Rev. B 77, 104404 (2008)

Example: S = 2 spin model on the Kagome lattice

A S = 2 spin is a symmetric superposition of two virtual S = 1 spins

Three virtual spins at each triangle form a spin singlet

Projection tensor

Simplex tensor



S=2 Simplex Solid State

𝐴𝑎𝑏[𝜎] =
1 1 2
𝑎 𝑏 𝜎

antisymmetric tensor

C-G coefficients

Local tensors

Projection tensor

Simplex tensor



1. No finite size effect: PESS can be defined on an infinite lattice

2. More accurate for studying large lattice size systems

3. The ground state energy converges fast with the increase of the 

bond dimension D

• Converge exponentially with D if the ground state is gapped

• Converge algebraically with D if the ground state is gapless

This property is used to determine whether the ground state 

is gapped or gapless

Advantage for using PESS



Main Difficulty in the Calculation of TNS

| ۧ |ۦ ∗ | ۧ  

D D

D

D2

Conventional Double-Layer Contraction Approach

Computational time scales as D12

maximal D that can be handle is 13



Solution

Reduce the Cost by Dimension Reduction

| ۧ |ۦ ∗ | ۧ  

D D

D

D

Shifted Single-Layer Approach: Nested Honeycomb Lattice

Computational time scales as D8

maximal D reaches 25



Kagome Heisenberg: Ground State Energy

Ground state energy shows a power law behavior

Question: Is D=25 large enough?
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✓ Tree Structure

✓ Tensor renormalization is 

rigorous, D can reach 1000

Gain insight for the 

kagome system

Take A Reference: Husimi lattice

Same local structure

✓ Highly frustrated

✓ D is generally small

Make comparison between Kagome and Husimi results



Energy algebraically converge with the bond dimension 

S=1/2 Husimi Lattice: Gapless Ground State

S = 1/2 Husimi Heisenberg model



S=1/2  Husimi Lattice: Magnetization Free

𝛼 =0.588
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Energy converges exponentially with the bond dimension 

S=1 Husimi: Gapped Ground State

Ground state: trimerized



Kagome Heisenberg: Gapless
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Energy converges algebraically with the bond dimension 

Upper bound of 

the energy Gap:  

less than 10-4



𝑴𝑲𝒂𝒈𝒐𝒎𝒆 < 𝑴𝑯𝒖𝒔𝒊𝒎𝒊

Magnetization: decays algebraically with D

Kagome Antiferromagnetic: Magnetic free?



Kagome Antiferromagnetic: Magnetic free?
M
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Kagome Heisenberg model

The magnetic long-

range order vanishes in 

the infinite D limit

The ground state of the 

Kagome Heisenberg 

model is a spin liquid. 



Stability against other interactions



Bond dimension dependence of the magnetic order

𝑞 = 3 × 3 𝑞 = 0SL



Bond dimension dependence of the magnetic order

𝑞 = 3 × 3 𝑞 = 0SL



Bond dimension dependence of the magnetic order

𝑞 = 3 × 3 𝑞 = 0SL



Phase Diagram

𝑞 = 3 × 3 𝑞 = 0SL



Summary

➢ Tensor-network renormalization provides a powerful tool 

for studying correlated many body problems

➢ The ground state of the Kagome Heisenberg model is likely 

a gapless spin liquid
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