Floquet engineering of interactions

André Eckardt

Max-Planck-Institut für Physik komplexer Systeme Dresden

Long-term workshop "Novel Quantum States in Condensed Matter 2017" Yukawa Institute for Theoretical Physics November 23, 2017

Ultracold atomic quantum gases

Trap neutral atoms

Ultracold atomic quantum gases

Trap neutral atoms

Laboratory (room temperature)

Vacuum chamber atoms

Description

Spinless bosons:

$$\hat{H} = \int \mathrm{d}\boldsymbol{r}\,\hat{\psi}^{\dagger}(\boldsymbol{r}) \Big[\frac{-\hbar^2}{2m}\nabla^2 + \boldsymbol{V}(\boldsymbol{r})\Big]\hat{\psi}(\boldsymbol{r}) + \frac{\boldsymbol{g}}{2}\int \mathrm{d}\boldsymbol{r}\,\hat{\psi}^{\dagger}(\boldsymbol{r})\hat{\psi}^{\dagger}(\boldsymbol{r})\hat{\psi}(\boldsymbol{r})\hat{\psi}(\boldsymbol{r})$$

- clean & well isolated from environment
- universal contact interactions

$$=\frac{4\pi\hbar^2 a_s}{m}$$

 \boldsymbol{g}

• Tailorable, control also during experiment

$$V(\boldsymbol{r}) \to V(\boldsymbol{r}, \boldsymbol{t}) \qquad \boldsymbol{g} \to \boldsymbol{g}(\boldsymbol{t})$$

• additional "features" possible fermions, spin, dissipation, disorder, ..., *artificial magnetic fields, ...*

Optical Lattices

Large time and length scales

Lattice spacing $\sim 0.1 - 1 \, \mu m$

Tunneling times $\sim 1 - 10 \text{ ms}$

Measure and manipulate system on its intrinsic length and time scales!

Fukuhara et al., Nature 502, 76 (2013)

Atomic quantum gas in optical lattice

- **clean & tunable** realizations of minimal many-body lattice models
- strong interactions possible
- well isolated from environment
- time-dependent control/ time-resolved measurements

⇒ Ideal platform for studying coherent quantum many-body dynamics

This talk:

Controlling atomic quantum gases via strong time-periodic forcing

Colloquium: Atomic quantum gases in periodically driven optical lattices, A.E., Rev. Mod. Phys. **89**, 011004 (2017)

Periodically driven quantum systems

Hamiltonian

$$H(t) = H(t+T) = \sum_{m=-\infty}^{\infty} H_m e^{im\omega t}$$

One-cycle time-evolution operator defines an effective time-independent Hamiltonian H_{eff}

$$U(T,0) = \mathcal{T}\exp\left(-\frac{i}{\hbar}\int_0^T \mathrm{d}t \ H(t)\right) \equiv \exp\left(-\frac{i}{\hbar} \ T H_{\text{eff}}\right)$$

Time evolution in steps of the driving period:

$$|\psi(nT)\rangle = \exp\left(-\frac{i}{\hbar} nTH_{\text{eff}}\right)|\psi(0)\rangle$$

Useful concept? Yes! If *H*_{eff} has simple form (at least approximately on relevant time scale)

Floquet engineering Engineer driving protocol that realizes the desired H_{eff} !

Periodically driven quantum systems

Hamiltonian

$$H(t) = H(t+T) = \sum_{m=-\infty}^{\infty} H_m e^{im\omega t}$$

 ∞

Quasi stationary states: Floquet states [Shirley 1965]

Quasienergy

$$|\psi_{n}(t)\rangle = |u_{n}(t)\rangle \ e^{-\frac{i}{\hbar}\varepsilon_{n}t} = |u_{nm}(t)\rangle \ e^{-\frac{i}{\hbar}\varepsilon_{nm}t}$$

Floquet mode $|u_{n}(t)\rangle = |u_{n}(t+T)\rangle$

1

 $\varepsilon_{nm} = \varepsilon_n + m\hbar\omega$

 $|u_{nm}(t)\rangle = |u_n(t)\rangle e^{im\omega t}$

Time evolution

$$|\psi(t)\rangle = \sum_{n} c_{n} |u_{n}(t)\rangle e^{-i\varepsilon_{n}t/\hbar}$$
 with $c_{n} = \langle u_{n}(0)|\psi(0)\rangle$

Periodically driven quantum systems

Hamiltonian

$$H(t) = H(t+T) = \sum_{m=-\infty}^{\infty} H_m e^{im\omega t}$$

 \sim

Quasi stationary states: Floquet states [Shirley 1965]

Quasienergy

$$|\psi_{n}(t)\rangle = |u_{n}(t)\rangle \ e^{-\frac{i}{\hbar}\varepsilon_{n}t} = |u_{nm}(t)\rangle \ e^{-\frac{i}{\hbar}\varepsilon_{nm}t}$$

Floquet mode $|u_{n}(t)\rangle = |u_{n}(t+T)\rangle$

 $\varepsilon_{nm} = \varepsilon_n + m\hbar\omega$

 $|u_{nm}(t)\rangle = |u_n(t)\rangle e^{im\omega t}$

Eigenvalue problem of hermitian quasienergy operator Q [Sambe 73]

$$\underbrace{[H(t) - i\hbar\partial_t]}_{l} |u_{nm}\rangle\rangle = \varepsilon_{nm} |u_{nm}\rangle\rangle$$

in Floquet space (space of time-periodic states):

basis $|\alpha m\rangle$: $|\alpha\rangle e^{im\omega t}$

 $\langle\langle \alpha'm'|Q|\alpha m\rangle\rangle=\langle \alpha'|H_{m-m'}|\alpha\rangle+\delta_{m'm}\delta_{\alpha'\alpha}m\hbar\omega$

Moderately large freq.

Intermediate freq.

High frequencies

Shaken optical lattice

$$\boldsymbol{F}(t) = F_0 \left[\cos(\omega t) \boldsymbol{e}_x + \sin(\omega t) \boldsymbol{e}_y \right]$$

Inertial force via circular lattice shaking

 $+\delta F_0 \sin(2\omega t) \mathbf{e}_y$

 $\alpha = \frac{F_0 d}{\hbar \omega}$

High frequencies

$$H_{\text{eff}} \simeq H_0 = \frac{1}{T} \int_0^T \mathrm{d}t \ H(t) = -\sum_{\langle ij \rangle} J_{\text{eff}} a_i^{\dagger} a_j$$

Dynamic localization (coherent destruction of tunneling): $J_{eff} = 0$ Dunlap & Kenkre 1986, Großmann & Hänggi 1991, Holthaus 1992

Kinetic Frustration: $J_{eff} < 0$ in non-bipartite lattice A.E. et al.: EPL 2010, Struck et al., Science 2011

Artificial magnetic fields: requires complex J_{eff}

Struck et al. PRL 2012, Hauke et al. PRL 2012, Struck et al. Nat. Phys. 2013

Dynamic localization (coherent destruction of tunneling): $J_{eff} = 0$ Dunlap & Kenkre 1986, Großmann & Hänggi 1991, Holthaus 1992

 $T_{\rm eff} = 0$

Kinetic Frustration: $J_{eff} < 0$ in non-bipartite lattice A.E. et al.: EPL 2010, Struck et al., Science 2011

Artificial magnetic fields: requires complex J_{eff}

Struck et al. PRL 2012, Hauke et al. PRL 2012, Struck et al. Nat. Phys. 2013

Dunlap & Kenkre 1986, Großmann & Hänggi 1991, Holthaus 1992

Driving amplitude α

Kinetic Frustration: $J_{eff} < 0$ in non-bipartite lattice A.E. et al.: EPL 2010, Struck et al., Science 2011

Artificial magnetic fields: requires complex J_{eff}

Struck et al. PRL 2012, Hauke et al. PRL 2012, Struck et al. Nat. Phys. 2013

High frequencies

$$H_{\rm eff} \simeq H_0 = \frac{1}{T} \int_0^T H(t) dt$$

Common strategy: control tunneling

$$H(t) = -\sum_{\langle ij \rangle} Je^{i\theta_{ij}(t)} a_i^{\dagger} a_j$$
conservative forcing

$$H_{\rm eff} \simeq -\sum_{\langle ij \rangle} J_{ij}^{\rm eff} e^{i\theta_{ij}^{\rm eff}} a_i^{\dagger} a_j$$

Quantum-gas experiments: Arimondo, Tino, Sengstock, Nägerl, Bloch, Ketterle, Greiner

Moderately large freq.

$$H_{\rm eff} \simeq H_0 + \sum_{m \neq 0} \frac{H_m H_{-m}}{m \hbar \omega} + \cdots$$

Floquet topological insulator

Oka & Aoki 2009, Kitagawa et. al. 2010/'11, Lindner et al. 2011, ...

Cold-atom experiment: Jotzu et al. 2014 wave guides: Rechtsman et al. 2013

Intermediate freq.

Moderately large freq.

$$H_{\rm eff} \simeq H_0 + \sum_{m \neq 0} \frac{H_m H_{-m}}{m \hbar \omega} + \cdots$$

Intermediate freq.

 $H_{\rm eff} \simeq H_0 = \frac{1}{T} \int_0^T H(t) dt$

High frequencies

Common strategy: control tunneling

$$H(t) = -\sum_{\langle ij \rangle} J e^{i\theta_{ij}(t)} a_i^{\dagger} a_j$$

conservative forcing

$$H_{\rm eff} \simeq -\sum_{\langle ij\rangle} J_{ij}^{\rm eff} e^{i\theta_{ij}^{\rm eff}} a_i^{\dagger} a_j$$

Quantum-gas experiments: Arimondo, Tino, Sengstock, Nägerl, Bloch, Ketterle, Greiner

Floquet topological insulator

Oka & Aoki 2009, Kitagawa et. al. 2010/'11, Lindner et al. 2011, ...

Cold-atom experiment: Jotzu et al. 2014 wave guides: Rechtsman et al. 2013

Anomalous topological edge states

Kx Kitagawa et al. 2010, Jiang et al. 2011, Rudner et al 2013, ...

Wave-guides: Mukherjee et al. 2015, Maczewesky et al. 2016

High frequencies

 $H_{\rm eff} \simeq H_0 = \frac{1}{T} \int_0^T H(t) dt$

Moderately large freq.

$$H_{\rm eff} \simeq H_0 + \sum_{m \neq 0} \frac{H_m H_{-m}}{m \hbar \omega} + \cdots$$

Intermediate freq.

Role of Interactions?

- Heating
- Interplay with modified kinetics
- Modification of interactions

Heating

 $H_{\rm eff} \approx H_0$ before heating sets in on time scale t_h [A.E. et al. 2005]

Exponential growth of t_h with ω :

- Perturbation theory for bosonic Mott state [A.E., Holthaus 2008]
- Proof for spin systems [Abanin et al. 2016, Kwahara et al. 2016]

Heating

 $\begin{array}{c}
\mu_{0} + \hbar\omega \\
0 \\
-\hbar\omega \\
-\hbar\omega \\
-2\hbar\omega
\end{array}$ $\begin{array}{c}
H_{-1} \\
H_{1} \\
H_{0} \\$

Moderately large freq.

Intermediate freq.

$H_{\rm eff} \simeq H_0 = \frac{1}{T} \int_0^T H(t) dt$

High frequencies

Role of Interactions?

- Heating
- Interplay with modified kinetics
- Modification of interactions

Dynamically induced quantum phase transition

experiment: Zenesini et al., PRL (2009) proposal: A.E. et al., PRL (2005)

Mimic quantum antiferromagnetism

$$H_{\rm eff} \simeq + |J_{\rm eff}| \sum_{\langle ij \rangle} a_i^{\dagger} a_j + \frac{U}{2} \sum_i n_i (n_i - 1)$$

Hard-core bosons ($U \gg J$) map to spin-1/2 model:

$$n_i = 1: \quad S_i^z = \uparrow$$
$$n_i = 0: \quad S_i^z = \downarrow$$

$$a_j \to S_j^+ \quad a_j^\dagger \to S_j^-$$

$$H_{\rm eff} \simeq + |J_{\rm eff}| \sum_{\langle ij \rangle} \left(S_i^x S_j^x + S_i^y S_j^y \right)$$

might be larger

|J_{eff}| Temperature

than for Heisenberg magnetism in Mott insualtor of fermionic atoms.

A.E. et al. EPL 2010

Interesting observation: Frustrated XY and Heisenberg models can share low-energy properties:

Heisenberg vs. XY for Kagomé lattice [Läuchli & Moessner arXiv:1504.04380]

 $\begin{array}{c}
\mu_{0} \\
\mu_{-\hbar\omega} \\
-\hbar\omega \\
-\hbar\omega \\
-2\hbar\omega
\end{array}$ $\begin{array}{c}
H_{-1} \\
H_{-1} \\
H_{0} \\
H_{-1} \\
H_{0} \\
-\hbar\omega \\
H_{0} \\
\mu_{0} \\
H_{0} \\
\mu_{0} \\$

Moderately large freq.

 $H_{\rm eff} \simeq H_0 = \frac{1}{T} \int_0^T H(t) dt$

High frequencies

Intermediate freq.

Role of Interactions?

- Heating
- Interplay with modified kinetics
- Modification of interactions

NON-LOCAL INTERACTIONS FROM REAL-SPACE MICROMOTION AND THEIR IMPACT ON A FRACTIONAL CHERN INSULATOR

Impact on stabilization of Fractional Chern insulator?

Bosonic case?

Bosons with on-site interactions

Moderately large freq.

$$H_{\text{eff}} \simeq H_0 + \sum_{m \neq 0} \frac{H_m H_{-m}}{m \hbar \omega} + H_{\text{int}} + \sum_{m \neq 0} \frac{[H_{-m}, [H_{\text{int}}, H_m]]}{2(m \hbar \omega)^2}$$

Interaction corrections

A.E. & Anisimovas NJP 2015

Chern insulator

Oka & Aoki PRB 2009 Kitagawa et al. 2011: Fermionic fractional Chern insualtor ($\nu = 1/3$) (without interaction corrections) Grushin et al. 2014:

Impact on stabilization of Fractional Chern insulator?

Bosonic case?

$$H_{\rm eff} \simeq H_0 + \sum_{m \neq 0} \frac{H_m H_{-m}}{m \hbar \omega} + H_{\rm int} + \sum_{m \neq 0} \frac{[H_{-m}, [H_{\rm int}, H_m]]}{2(m \hbar \omega)^2}$$

Bosons with on-site interactions

E.g. for spinless bosons:

$$\sum_{m\neq 0} \frac{[H_{-m,}[H_{\mathrm{int}},H_m]]}{2(m\hbar\omega)^2} = 8W_a \left[-z\sum_{\ell} \frac{1}{2}n_{\ell}(n_{\ell}-1) + \sum_{\langle \ell'\ell \rangle} n_{\ell'}n_{\ell} \right] + W_b \sum_{\langle \ell'\ell \rangle} a_{\ell'}^{\dagger} a_{\ell'}^{\dagger} a_{\ell} a_{\ell} - W_c \sum_{\langle \ell'k\ell \rangle} a_{\ell'}^{\dagger} (4n_k - n_{\ell'} - n_{\ell}) a_{\ell} - W_d \sum_{\langle \ell'k\ell \rangle} \left(a_{\ell'}^{\dagger} a_{\ell}^{\dagger} a_k a_k + h.c. \right)$$

$$W_{\chi} = \frac{UJ^2}{2\hbar\omega} J_1^2 \left(\frac{K}{\hbar\omega}\right) + O\left(\left(\frac{K}{\hbar\omega}\right)^4\right)$$

A.E. & Anisimovas NJP 2015

from exact diagonalization + band projection

8 bosons, $\nu = 1/2$,

Anisimovas, Žlabys, Anderson, Juzeliūnas, A.E. PRB 2015, Račiūnas, Žlabys, A.E., Anisimovas, PRA 2016

Impact on stabilization of Fractional Chern insulator?

Bosonic case?

$$H_{\text{eff}} \simeq H_0 + \sum_{m \neq 0} \frac{H_m H_{-m}}{m \hbar \omega} + H_{\text{int}} + \sum_{m \neq 0} \frac{[H_{-m}, [H_{\text{int}}, H_m]]}{2(m \hbar \omega)^2}$$

Bosons with on-site interactions

Spectrum and spectral flow

Topological gap

6 bosons, $\nu = 1/2$, from exact diagaonal. + band projection

Anisimovas, Žlabys, Anderson, Juzeliūnas, A.E. PRB 2015,

Račiūnas, Žlabys, A.E., Anisimovas, PRA 2016

Impact on stabilization of Fractional Chern insulator?

Bosonic case?

$$H_{\rm eff} \simeq H_0 + \sum_{m \neq 0} \frac{H_m H_{-m}}{m \hbar \omega} + H_{\rm int} + \sum_{m \neq 0} \frac{[H_{-m}, [H_{\rm int}, H_m]]}{2(m \hbar \omega)^2}$$

Bosons with on-site interactions

Spectrum and spectral flow

6 bosons, $\nu = 1/2$, from exact diagaonal. + band projection

Anisimovas, Žlabys, Anderson, Juzeliūnas, A.E. PRB 2015,

Quasihole spectrum

from exact diagonalization + band projection

Račiūnas, Žlabys, A.E., Anisimovas, PRA 2016

REALIZATION AND SIGNATURES OF 1D ANYONS

1D anyons on a lattice

Keilmann, Lanzmich, Mc Culloch, Roncaglia, Nat. Comm. 2011

Tight-binding chain

$$H = -J \sum_{j=2}^{M} (a_j^{\dagger} a_{j-1} + h.c.)$$

Bosons

 $a_j a_i^{\dagger} - a_i^{\dagger} a_k = \delta_{kj}$ $a_j a_i^{\dagger} - a_i^{\dagger} a_k = 0$

1D Anyons

$$a_j a_k^{\dagger} - e^{i\theta \operatorname{sgn}(k-j)} a_k^{\dagger} a_j = \delta_{kj}$$

 $a_j a_k - e^{i\theta \operatorname{sgn}(k-j)} a_k a_j = 0$

Fermions

$$a_j a_k^{\dagger} + a_k^{\dagger} a_j = \delta_{kj}$$
$$a_j a_k^{\dagger} + a_k^{\dagger} a_j = 0$$

interpolate between Bosons ($\theta = 0$) & Pseudo-Fermions ($\theta = \pi$)

1D anyons represented by bosons b_i with number-dependent tunneling:

Jordan-Wigner transformation $a_i = b_i \exp(i\theta \sum_{i>k} n_i)$

$$H = -J \sum_{j=2}^{M} (b_{j}^{\dagger} b_{j-1} e^{i\theta n_{j}} + h.c.)$$

How to realize 1D anyons?

Bosonic representation of anyonic Hubbard model

$$H = -J \sum_{j=2}^{M} (b_j^{\dagger} b_{j-1} e^{i\theta n_j} + \text{h.c.}) + \frac{U}{2} \sum_j n_j (n_j - 1)$$

Proposals relying on Raman-assisted tunneling

[Keilmann et al. 2011, Greschner & Santos 2015]

experimentally involved (require additional lasers)

Here: implementation based on simple lattice-shaking

Sträter, Srivastava, A.E. PRL 117, 205303 (2016)

See also scheme based on modulation of lattice depth. Cardarelli, Greschner & Santos PRA 2016

Realization

Coherent tunneling via resonant lattice shaking

$$H(t) = -J \sum_{j=2}^{M} (\hat{b}_{j}^{\dagger} \hat{b}_{j-1} e^{i\omega t \hat{v}_{j,j-1} - i\chi(t)} + \text{h.c.})$$

$$H_{\rm eff} \approx H_0 = -\sum_{j=2}^{M} (\hat{b}_j^{\dagger} \hat{b}_{j-1} J_{\rm eff}(\hat{v}_{j,j-1}) + {\rm h.c.})$$

Low-density regime: three basic processes

Suppress tunneling: Strong lattice tilt + strong interactions

 $\Delta E_{j,j-1}^{\mathrm{tun}} = \hbar \omega \hat{\nu}_{j,j-1}$

$$\hat{v}_{j,j-1} = 2(\hat{n}_j - \hat{n}_{j-1}) + 3$$

= $\pm 1, \pm 3, \dots$

 $\chi(t) = \chi(t + T) \propto \text{lattice velocity}$

 $= A\cos(\omega t) + B\cos(2\omega t)$

$$J_{\text{eff}}(\nu) = \frac{J}{T} \int_0^T \mathrm{d} t \ e^{i\omega t\nu - i\chi(t)}$$

Realization

Coherent tunneling via resonant lattice shaking

$$H(t) = -J \sum_{j=2}^{M} (\hat{b}_{j}^{\dagger} \hat{b}_{j-1} e^{i\omega t \hat{v}_{j,j-1} - i\chi(t)} + h.c.)$$

$$H_{\rm eff} \approx H_0 = -\sum_{j=2}^{M} (\hat{b}_j^{\dagger} \hat{b}_{j-1} J_{\rm eff}(\hat{v}_{j,j-1}) + {\rm h.c.})$$

 $\chi(t) = \chi(t + T) \propto \text{lattice velocity}$

 $= A\cos(\omega t) + B\cos(2\omega t)$

$$J_{\text{eff}}(\nu) = \frac{J}{T} \int_0^T \mathrm{d} t \; e^{i\omega t\nu - i\chi(t)}$$

Signature of smooth fermionization

Anyonic momentum distribution not measurable (not invariant under Jordan-Wigner transf.)

Real-space density (identical for bosons and anyons)

Thank you!