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• Dynamics of unconventional Josephson junctions using RCSJ model  
- presence of odd Shapiro steps  
- presence of additional steps in the devil’s staircase structure  

• Entanglement measures in the Kitaev model on the honeycomb 
lattice  
- qualitative behaviour of the entanglement entropy  
- Schmidt gap is dependent on the presence of gapless edge modes  

Plan of the talk



Recent experiments detecting 
presence of Majorana modes



Recent proposal using one-dimensional nanowire

• Proximity induced effective p-wave pairing amplitude 
• Main ingredients:  

a) Strong spin-orbit (SO) coupling.  
b) spin polarization.  
c) proximity induced superconductivity. 

• Semiconductor nanowires
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⭐� Mourik et. al  Science (2012)

⭐� Das et. al  Nat. Phys (2012)
⭐� Deng et. al Nano Lett. (2012)
⭐� Finck et. al PRL (2013)

Position of the zero bias peaks

Mid-gap zero-bias states using 1-d nanowire



⭐� Rokhinson et. al Nat. Phys. (2012)

Position of the zero-bias Majorana modes

Fractional ac Josephson effect: Doubling of Shapiro steps



⭐� Nadj-Perge et. al  Science (2013)

Localised edge states on ferromagnetic atomic chains atop Pb 
superconductor



fractional Josephson effect



• Junctions with a layer of non-superconducting material sandwiched between 
two superconducting layers.

• Systems with s-wave pairing amplitude, e.g Nb, Al, Pb etc

S S IJ ⇠ sin(�)

✩ Josephson (1962)

Weak links

NS S

Tunnel junctions

BS S

superconducting current in the  
absence of any external bias :

Andreev bound statesproximity effect

Superconducting current is due to Superconducting current is due to 

Josephson effect in conventional junctions



Systems with unconventional pairing amplitude:

g(k) = (k
x

+ ik
y

)/k
F

BS S � = (�1 ⇠ �2)IJ ⇠ sin(�/2)

The current phase relation changes from to IJ ⇠ sin(�/2)IJ ⇠ sin(�)

Doubling of the periodicity of the phase in the current-phase relation!

Josephson effect in unconventional junctions

�(kF ) = �0g(kF ) exp(i�) g(kF ) : variation around the Fermi surface

� : global phase factor



Dynamics of unconventional 
Josephson junctions



Schematic representation of the junction
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V0Phase ɸ is has time dependence in  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The resistively and capacitively shunted Josephson junction

Current-Voltage characteristics
� 7 1 (underdamped/overdamped)

V = n~!/2e • Shapiro steps

 ⭐  Shapiro (1963)

V = !, 2!, 3!..



• Shapiro step structures are predicted to be different for Josephson junctions with 
sin(ɸ) and sin(ɸ/2) current phase relations.

• 4π periodic Josephson effect or appearance of Shapiro steps at even multiples of 
frequency of external radiation i.e

V = 2!, 4!, 6!..

• Recent theoretical works in the overdamped regions for sin(ɸ/2) current-phase 
relations using junctions of unconventional superconductors.

⭐� Domnguez et. al. PRB (2012)
⭐� Houzet et. al PRL (2013)

• Effect of including capacitance?

Shapiro steps in Josephson junction



D=0.4, A=20, β=0.2

dimensionless barrier strength

Appearance of both odd and even steps  
in the current-voltage (I-V) characteristics.  

    This is in contrast to the recent studies  
    where only even steps are observed in the  
    I-V characteristics.

Even steps are enhanced compared to the  
odd steps for a significant range of coupling  
~ the width of the odd steps are decreases  
gradually in the resistive junctions. :  Width of Shapiro steps

Appearance of odd Shapiro steps!
⭐  PRB 92, 224501 (2015)



Appearance of odd Shapiro steps!

C-V characteristics variation with frequency of external radiation:
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Condition for Shapiro steps
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• In the regime β𝜔, 𝜔, A >> 1, perturbative analysis of the non-linear term.
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Simulation:

Theory:

Plot of the ratio of the step width η as a function of 
dissipation parameter β:

⌘ = ↵0 exp(↵1�
2
)

• For p-wave junction η has exponential dependence on the junction capacitance C0 ~ 
presence of odd Shapiro steps do not signify absence of Majorana fermions.

• This provides a universal phase sensitive signature for the presence of Majorana 
fermions.



Devil’s staircase structure:
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Experimental proposal:

• Measurement of 𝜂 as a function of β in the RCSJ model ~ exponential dependence of 𝜂 
with β.

• Additional steps in the CV-characterstics for Josephson junctions hosting Majorana fermions



⭐� Kulikov et.al, accepted for publication in 
JETP (2017)

The step structures of the 4! periodic current prevails!

IJ =
p
(D) sin(�/2) + sin(�)

V = (N ± 2/n)!



Summary - I 

• Unconventional Josephson junctions Majorana quasiparticles subjected to external radiation ~ 
phase sensitive detectors. 

• The current-voltage characteristics of junctions with p-wave pairing symmetry shows presence 
of both odd and even steps in the Shapiro step structures. The origin of the odd Shapiro steps in 
the current-voltage characteristics are essentially of different origin and is shown to exist due 
to the sub-harmonics.  

• Presence of additional step sequences in the Devil- staircase structure.
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entanglement in the Kitaev model



Kitaev model

x-x 

y-y

z-z

⭐Kitaev, 2006 Ann. Phys.

H = �
X
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↵
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Dimensionless coupling constant
𝛼 component of Pauli matrices

A two dimensional quantum spin model which is exactly solvable
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Following Kitaev’s prescription, we introduce a set of four Majorana fermions:
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Kitaev model

• Gapped quantum phases robust to any small (local) perturbation  
 
quasiparticle excitations which obey fractional statistics  
 
topological entanglement entropy 𝜸 : leading  
order correction to the universal area law

B
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A

A

Jx=1 Jy=1

Jz=1

A

B

Gapped phase

Gapless phase



SA = SA,F + SA,G � ln 2

Contribution from the Majorana fermions

Contribution from the Z2 gauge field

topological entanglement entropy

SA,F

SA,G

ln 2

A

B

⭐Yao et. al. 2010 PRL

Entanglement entropy

⇣k = (exp(✏k) + 1)�1SA,F = �Tr[⇢A,F ln ⇢A,F ]
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⭐ Peschel (2002) JPhys A: Math Gen.reduced density matrix with eigenvalues ϵk 
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Entanglement spectra

⇣k = (exp(✏k) + 1)�1

⭐ Li et. al. 2008 PRL

Eigenvalues of the reduced density matrix 

Entanglement (Schmidt) gap

�A = �(ln�M � ln�M 0)

largest 
eigenvalue

second largest 
eigenvalue

�A = ln
(1 + |⇣|min)

(1� |⇣|min)

� =
NAY

i=1

(1 + ⇣i)

2
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Square/rectangular region Half-region

Nx: Number of sites along the x-axis

Ny: Number of sites along the y-axis

Sub-systems we consider:

• Impose periodic boundary conditions 

• Numerically analyse the entanglement entropy  
and the entanglement spectrum and corroborate with perturbative analysis. 

⭐  PRB 94, 045421 (2016)



Results



Half-region

(a) Plot of entanglement entropy as function of coupling strength Jz
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Gapless phase

(b) Plot of derivative of the correlation functions (obtained analytically)  
as function of coupling strength Jz

J
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• Ny coupled one-dimensional chains 
• Aspect ratio Ny /Nx =10

Prominent cusps at Jz=Jx+Jy : Transition from gapless to gapped 
phase; Non-monotonic behaviour in the gapless region.

Oscillations in the two- point correlation function corresponding to those 
in entanglement entropy
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Half-region
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(a) Plot of entanglement gap as function of coupling strength Jz

Entanglement gap is finite in the gapped phase and zero in the 
gapless phase. However, it still remains zero even in the large Jz 
limit!

Presence of zero energy edge modes in the gapless and in the  
large Jz limit

⭐ Thakurati et. al 2014 PRB



Square/rectangular region

• Ny coupled one-dimensional chains 
• Aspect ratio Ny /Nx =10
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Gapless
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(a) Plot of entanglement entropy as function of coupling strength Jz

The qualitative behaviour of the entanglement entropy (non-
monotonic/monotonic) in the gapless region depends on system 
parameters (transverse coupling, geometry).

J
y

= J
x



 (b) Plot of nearest-neighbour correlation functions with varying Jz

Open: Jy/Jx=1 
Solid: Jy/Jx=0.3

Non-monotonic behaviour of different correlation functions - 
ratio of the x- and z-bonds depends on system size.



 (c) Plot of entanglement gap with varying Jz
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△	12	x	18	
⨀	18	x	12	
▲	18	x	18	
●	18	x	30	
☐		30	x	18

• Non-monotonic behaviour of entanglement gap within the gapless region. 
• Localised gapless edge modes for small and large Jz values with small extensions in the bulk. 
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 (c) Plot of edge states with varying Jz (with the value of Schmidt gap) 



Perturbative analysis: small Jz limit (weakly coupled chain limit)

H = H0 +H0

• Ny coupled one-dimensional chains with periodic boundary condition
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• Unperturbed Hamiltonian of the mth one-dimensional chain.

• Interchain coupling :
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• Ground state of the system:

|G1i = |Gi
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• 1st order corrections: 

• Eigenvalues of the reduced density matrix
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Perturbative analysis: small Jz limit (weakly coupled chain limit)



Perturbative analysis: Large Jz limit

• Isolated z-bonds

H =
X

n

Jzicn,1cn,2 +
X

n

J↵icn,1cn+�↵,2, ↵ = x, y

perturbation: hopping of the 
Majorana fermions between 
nearest neighbour dimers

• 1st order corrections to the 
ground state of the system: |G1i =
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unperturbed ground state filled states at nth nearest 
neighbour dimers.

 ~ linear combination of  c 
fermions

• Calculation of the reduced density matrix: ⇢E



Perturbative analysis: Large Jz limit
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⇒ Nz degenerate values

⇒ Vanishing Schmidt gap



• The extensive study of the entanglement entropy and spectra for the vortex free ground state 
of the Kitaev model. 

• For the half-region, entanglement gap is found to be finite in small coupling limit, while it 
was shown to be zero in the large coupling limit. Presence of gapless edge modes were 
attributed. 

• For the square/rectangular block, non-monotonic behaviour of entanglement entropy 
attributed to the competition between the correlation functions in different kind of bonds.

Summary - II
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