Probing Majorana modes using entanglement measures and fractional ac Josephson effect

Moitri Maiti Bogoliubov Laboratory of Theoretical Physics (BLTP),

Joint Institute for Nuclear Physics (JINR)

Novel Quantum States in Condensed Matter 20th November 2017

Plan of the talk

- Dynamics of unconventional Josephson junctions using RCSJ model
 presence of odd Shapiro steps
 - presence of additional steps in the devil's staircase structure
- Entanglement measures in the Kitaev model on the honeycomb lattice
 - qualitative behaviour of the entanglement entropy
 - Schmidt gap is dependent on the presence of gapless edge modes

Recent experiments detecting presence of Majorana modes

Recent proposal using one-dimensional nanowire

- *Proximity induced effective p-wave pairing amplitude*
- Main ingredients:
 a) Strong spin-orbit (SO) coupling.
 b) spin polarization.
 c) proximity induced superconductivity.
- Semiconductor nanowires

$$\epsilon(q_z) = \frac{\hbar^2 q_z^2}{2m_{eff}} \pm \alpha q_z$$

 Introduce in-plane magnetic field B opens a gap at q_z =0

$$\epsilon(q_z) = \frac{\hbar^2 q_z^2}{2m_{eff}} \pm \sqrt{\alpha^2 q_z^2 + B_z^2}$$

• Condition for topological phase hosting Majorana fermions:

$$\sqrt{\mu^2 + \Delta^2} < B_z$$

Mid-gap zero-bias states using 1-d nanowire

Fractional ac Josephson effect: Doubling of Shapiro steps

* Rokhinson et. al Nat. Phys. (2012)

Localised edge states on ferromagnetic atomic chains atop Pb superconductor

* Nadj-Perge et. al Science (2013)

fractional Josephson effect

Josephson effect in conventional junctions

- Junctions with a layer of non-superconducting material sandwiched between two superconducting layers.
- Systems with s-wave pairing amplitude, e.g Nb, AI, Pb etc
- $\Delta = \Delta_0 \exp(i\phi)$

superconducting current in the absence of any external bias :

 $I_{I} \sim \sin(\phi)$

☆ Josephson (1962)

Weak links

Superconducting current is due to

proximity effect

Tunnel junctions

Superconducting current is due to

Andreev bound states

Josephson effect in unconventional junctions

$$\Delta(k_F) = \Delta_0 g(k_F) \exp(i\phi)$$

 $g(k_F)$: variation around the Fermi surface ϕ : global phase factor

Systems with unconventional pairing amplitude:

$$g(\mathbf{k}) = (k_x + ik_y)/k_F$$

$$I_J \sim \sin(\phi/2) \qquad \phi = (\phi_1 \sim \phi_2)$$

The current phase relation changes from $I_J \sim \sin(\phi)$ to $I_J \sim \sin(\phi/2)$

Doubling of the periodicity of the phase in the current-phase relation!

Dynamics of unconventional Josephson junctions

The resistively and capacitively shunted Josephson junction

$$I + A\sin\omega t = I_J + C_0 \frac{\Phi_0}{2\pi} \frac{d^2\phi}{dt^2} + \frac{\Phi_0}{2\pi R} \frac{d\phi}{dt}$$

• Phase ϕ is has time dependence in presence of external radiation

$$\frac{d\phi}{dt} = 2eV/h$$

Current-Voltage characteristics

$$\begin{array}{l} \text{Dissipation parameter } \beta = \sqrt{\frac{\hbar}{2eR^2C_0}}\\ \beta \leqslant 1 \quad (\text{underdamped/overdamped})\\\\\hline V = n\hbar\omega/2e \quad \cdot \text{ Shapiro steps}\\\\V = \omega, 2\omega, 3\omega.. \end{array}$$

☆ *Shapiro* (1963)

Shapiro steps in Josephson junction

- Shapiro step structures are predicted to be different for Josephson junctions with $sin(\phi)$ and $sin(\phi/2)$ current phase relations.
- 4π periodic Josephson effect or appearance of Shapiro steps at even multiples of frequency of external radiation i.e

 $V = 2\omega, 4\omega, 6\omega..$

 Recent theoretical works in the overdamped regions for sin(φ/2) current-phase relations using junctions of unconventional superconductors.

☆ Domnguez et. al. PRB (2012)
 ☆ Houzet et. al PRL (2013)

• Effect of including capacitance?

Appearance of odd Shapiro steps!

☆ PRB 92, 224501 (2015)

- Appearance of both odd and even steps in the current-voltage (I-V) characteristics.
 This is in contrast to the recent studies where only even steps are observed in the I-V characteristics.
- Even steps are *enhanced* compared to the odd steps for a significant range of coupling ~ the width of the odd steps are decreases gradually in the resistive junctions.

 $D = 1/(1 + (2V_0/\hbar v_F k_F)^2/4)$

dimensionless barrier strength

$$\eta = W_{even}(2\omega)/W_{odd}(\omega)$$

 $W_{even(odd)}$: Width of Shapiro steps

Appearance of odd Shapiro steps!

C-V characteristics variation with frequency of external radiation:

Perturbative analysis

•

In the regime $\beta\omega$, ω , A >> 1, perturbative analysis of the non-linear term.

$$\phi = \sum_{n} \epsilon^{n} \phi_{n}, \quad I = \sum_{n} \epsilon^{n} I_{n}$$

☆ Kornev et. al, J Phys. Conf. Ser., 43, 1105 (2006)

- $I_0 \sim$ applied current, $I_{n>0} \sim$ determined from

$$\langle \dot{\phi}_{n>0} \rangle = 0$$

For
$$n < 2$$
 $\ddot{\phi}_n + \beta \dot{\phi}_n = f_n(t) + I_n$

where
$$f_0 = A \sin(\omega t)$$

 $f_1 = -\sin(\phi_0/2)$
In first order, $\phi_0(t) = \phi' + I_0 t/\beta + \frac{A}{\omega\gamma} \sin(\omega t + \alpha_0)$
 $a_0 = \arccos(\omega/\gamma),$
 $\gamma = \sqrt{\beta^2 + \omega^2}$
 $I_s^{(0)} \sim \sin(\phi_0(t)/2)$
 $= \operatorname{Im} \sum_{n=-\infty}^{\infty} J_n(A/2\gamma\omega) e^{(i[I_0/(2\beta) + n\omega]t + n\alpha_0 + \phi'/2)}$
 $I_0 = 2|n|\omega\beta$
 $\Delta I_s^{even} = 2J_n(\frac{A}{2\omega\sqrt{\beta^2 + \omega^2}})$ ~ contribution from the harmonics

$$\phi_1 = \sum_{n=-\infty}^{\infty} J_n(x)(\gamma_n \omega_n)^{-1} \cos(\omega_n t + n\alpha_0 + \delta_0 + n\phi'/2)$$

$$\omega_n = I_0/(2\beta) + n\omega, \delta_n = \arccos(\omega_n/\gamma_n), \gamma_n = \sqrt{\omega_n^2 + \beta^2}$$

$$\begin{split} I_s^{(1)} &\sim \frac{1}{2} \phi_1(t) \cos(\phi_0(t)/2) \\ &= \sum_{n_1, n_2} J_{n_1}(x) J_{n_2}(x) (4\gamma_{n_1} \omega_{n_1})^{-1} \\ &\times \left[\sin([\omega_{n_1} + \omega_{n_2}]t + [n_1 + n_2](\alpha_0 + \phi'/2) + \delta_{n_1}) + \sin([\omega_{n_1} - \omega_{n_2}]t + [n_1 - n_2](\alpha_0 + \phi'/2) + \delta_{n_1}) \right] \end{split}$$

Condition for Shapiro steps

$$I_0 = |n_1 + n_2|\omega\beta$$

 $(n_1 + n_2) = 2m + 1$

$$\Delta I_s^{odd} = \sum_{n>m} \frac{J_n(\frac{A}{2\omega\sqrt{\beta^2 + \omega^2}})J_{2m+1-n}(\frac{A}{2\omega\sqrt{\beta^2 + \omega^2}})}{2(\beta^2 + (2m+1-2n)^2\omega^2/4)} \sim \text{contribution from the sub-harmonics}$$
$$\eta = \frac{\Delta I_s^{even}}{\Delta I_s^{odd}}$$

Plot of the ratio of the step width η *as a function of dissipation parameter* β *:*

$$\eta = \alpha_0 \exp(\alpha_1 \beta^2)$$

Simulation: $lpha_0=6.09, lpha_1=0.31$ Theory: $lpha_0=5.98, lpha_1=0.32$

- For p-wave junction η has exponential dependence on the junction capacitance $C_0 \sim$ presence of odd Shapiro steps do not signify absence of Majorana fermions.
- This provides a universal *phase sensitive signature* for the presence of Majorana fermions.

Devil's staircase structure:

s-wave junctions $V = (N \pm 1/n)\omega$ p-wave junctions $V = (N \pm 2/n)\omega$

Experimental proposal:

- Measurement of η as a function of β in the RCSJ model ~ exponential dependence of η with β .
- Additional steps in the CV-characterstics for Josephson junctions hosting Majorana fermions

$$I_J = \sqrt{(D)}\sin(\phi/2) + \sin(\phi)$$

☆ Kulikov et.al, accepted for publication in JETP (2017)

The step structures of the 4 π periodic current prevails! $V = (N \pm 2/n)\omega$

Summary - I

- Unconventional Josephson junctions Majorana quasiparticles subjected to external radiation ~ phase sensitive detectors.
- The current-voltage characteristics of junctions with p-wave pairing symmetry shows presence of both odd and even steps in the Shapiro step structures. **The origin of the odd Shapiro steps in the current-voltage characteristics are essentially of different origin and is shown to exist due to the sub-harmonics.**
- Presence of additional step sequences in the Devil- staircase structure.

entanglement in the Kitaev model

• Following Kitaev's prescription, we introduce a set of four Majorana fermions: $\{b_k^x, b_k^y, b_k^z, c_k\}$

$$\tilde{H} = \frac{i}{2} \sum_{\langle j,k \rangle_{\alpha}} J_{\alpha j k} \hat{u}_{j k} c_j c_k$$

 $\hat{u}_{jk} = i b_j^{\alpha j k} b_k^{\alpha j k}$ link operators defined on a given link <jk>

☆Kitaev, 2006 Ann. Phys.

• Gapped quantum phases robust to any small (local) perturbation quasiparticle excitations which obey fractional statistics

topological entanglement entropy γ : leading order correction to the universal area law

$$S_A = S_{A,F} + S_{A,G} - \ln 2$$

 $S_{A,F}$ Contribution from the Majorana fermions $S_{A,G}$ Contribution from the Z₂ gauge field $\ln 2$ topological entanglement entropy

$$B$$

☆ Yao et. al. 2010 PRL

$$S_{A,F} = -\mathrm{Tr}[\rho_{A,F} \ln \rho_{A,F}]$$

reduced density matrix with eigenvalues ϵ_k

$$\zeta_k = (exp(\epsilon_k) + 1)^{-1}$$

$$S_{A,F} = \sum_{i=1}^{N_A} \frac{1+\zeta_i}{2} \ln \frac{1+\zeta_i}{2} + \frac{1-\zeta_i}{2} \ln \frac{1-\zeta_i}{2}$$

Entanglement spectra

Eigenvalues of the reduced density matrix

$$\Gamma = \prod_{i=1}^{N_A} \frac{(1+\zeta_i)}{2} \frac{(1-\zeta_i)}{2}$$

Entanglement (Schmidt) gap

$$\Delta_A = -\left(\ln \Gamma_M - \ln \Gamma_{M'}\right)$$

$$\int_{\substack{\text{largest} \\ \text{eigenvalue}}} \int_{\substack{\text{second largest} \\ \text{eigenvalue}}} \int_{\substack{\text{second largest} \\ \text{eigenvalue}}} \left(\Delta_A = \ln \frac{(1 + |\zeta|_{\min})}{(1 - |\zeta|_{\min})} \right)$$

$$\zeta_k = (exp(\epsilon_k) + 1)^{-1}$$

 \Leftrightarrow Li et. al. 2008 PRL

 N_x : Number of sites along the x-axis

N_y: Number of sites along the y-axis

• Numerically analyse the entanglement entropy and the entanglement spectrum and corroborate with perturbative analysis.

☆ PRB 94, 045421 (2016)

Results

• Aspect ratio $N_y / N_x = 10$

(a) Plot of entanglement entropy as function of coupling strength J_z

Prominent cusps at $J_z=J_x+J_y$: Transition from gapless to gapped phase; Non-monotonic behaviour in the gapless region.

(b) Plot of derivative of the correlation functions (obtained analytically) as function of coupling strength J_z

Oscillations in the two-point correlation function corresponding to those in entanglement entropy

$$C_{zz} = \frac{Re[J_{x}e^{ik_{x}} + J_{y}e^{ik_{y}} + J_{z}]}{|J_{x}e^{ik_{x}} + J_{y}e^{ik_{y}} + J_{z}|}$$

(a) Plot of entanglement gap as function of coupling strength J_z

Entanglement gap is finite in the gapped phase and zero in the gapless phase. However, it still remains zero even in the large J_z limit!

Presence of zero energy edge modes in the gapless and in the large J_z limit

 \Leftrightarrow Thakurati et. al 2014 PRB

Square/rectangular region Gapped phase A $J_z=1$ $N_x = N_y$ Gapless phase Ny Α J_y J_x А В J_y $\langle J_x = 0.3 \rangle$ Nx А *N_y* coupled one-dimensional chains ٠

• Aspect ratio $N_y / N_x = 10$

(a) Plot of entanglement entropy as function of coupling strength J_z

 $J_y=1$

 $J_x=1$

The qualitative behaviour of the entanglement entropy (nonmonotonic/monotonic) in the gapless region depends on system parameters (transverse coupling, geometry). (b) Plot of nearest-neighbour correlation functions with varying J_z

Non-monotonic behaviour of different correlation functions - ratio of the x- and z-bonds depends on system size.

(c) Plot of entanglement gap with varying J_z

- Non-monotonic behaviour of entanglement gap within the gapless region.
- Localised gapless edge modes for small and large J_z values with small extensions in the bulk.

(c) Plot of edge states with varying J_z (with the value of Schmidt gap)

Perturbative analysis: small J_z limit (weakly coupled chain limit)

• N_y coupled one-dimensional chains with periodic boundary condition

 $\mathcal{H} = \mathcal{H}_0 + \mathcal{H}'$

• Unperturbed Hamiltonian of the mth one-dimensional chain.

$$\mathcal{H}_0 = \sum_m^{N_y} \mathcal{H}_0^m, \qquad \mathcal{H}_0^m = \sum_n \left(i J_x c_{n,a}^m c_{n,b}^m + i J_y c_{n,b}^m c_{n+1,a}^m \right)$$

• Interchain coupling :

$$\mathcal{H}' = \sum_{m} \mathcal{H}'_{m,m+1}, \quad \mathcal{H}'_{m,m+1} = \sum_{n} i J_z c^m_{n,a} c^{m-1}_{n,b}$$

• Diagonalising we get:

$$\begin{aligned} \mathcal{H}_{0}^{m} &= \sum |\epsilon_{k}| \left(\alpha_{k}^{m\dagger} \alpha_{k}^{m} - \beta_{k}^{m\dagger} \beta_{k}^{m} \right), \\ \mathcal{H}_{p}^{m,m+1} &= \sum_{k \ge 0} \frac{J_{z} e^{i\theta_{k}}}{4} \left(\alpha_{k}^{m\dagger} \alpha_{k}^{m-1} - \alpha_{k}^{m\dagger} \beta_{k}^{m-1} + \beta_{k}^{m\dagger} \alpha_{k}^{m-1} - \beta_{k}^{m\dagger} \beta_{k}^{m-1} \right) + \text{h.c.} \end{aligned}$$

$$\begin{pmatrix} c_{k,a}^m \\ c_{k,b}^m \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} ie^{i\theta_k} & ie^{i\theta_k} \\ 1 & -1 \end{pmatrix} \quad \theta_k = \tan^{-1} \left(\frac{J_y \sin k}{J_x + J_y \cos k} \right), \quad \epsilon_k = |J_x + J_y e^{ik}|$$

Perturbative analysis: small J_z limit (weakly coupled chain limit)

• Ground state of the system:

for the unperturbed Hamiltonian

$$\left. \mathcal{G} \right\rangle = \prod_{m=1}^{N_y} \prod_k \beta_k^{m\dagger} |0\rangle$$

ground state of the

mth chain

• 1st order corrections:

$$\begin{aligned} |\mathcal{G}_1\rangle &= |\mathcal{G}\rangle \Big(1 - N_y \sum_k \frac{J_z^2}{64} \frac{1}{\epsilon_k^2} \Big) - \sum_m \quad \frac{(-1)^{N_y - m} J_z}{8\epsilon_k} \Big(e^{-i\theta_k} |0,0;m-1\rangle |1,1;m\rangle |\mathcal{G}:m,m-1\rangle \\ &- e^{i\theta_k} |0,0;m+1\rangle |1,1;m\rangle |\mathcal{G}:m+1,m\rangle \Big) \end{aligned}$$

• *Eigenvalues of the reduced density matrix*

Perturbative analysis: Large Jz limit

• Isolated z-bonds

$$H = \sum_{n} J_z i c_{n,1} c_{n,2} + \sum_{n} J_\alpha i c_{n,1} c_{n+\delta_\alpha,2}, \quad \alpha = x, y$$

$$perturbation: hopping of the Majorana fermions between nearest neighbour dimers$$

• 1st order corrections to the ground state of the system:

$$|\mathcal{G}_1\rangle = \left(1 - \tilde{N}\frac{J^2}{8J_z^2}\right)|\mathcal{O}\rangle + \sum_{\langle i, i+\delta_\alpha \rangle} \frac{J_\alpha}{2J_z}|1_n, 1_{n+\delta_\alpha}\rangle$$

unperturbed ground state

filled states at nth nearest neighbour dimers.

- Calculation of the reduced density matrix: ho_E

 ψ ~ linear combination of c fermions

Perturbative analysis: Large Jz limit

$$\rho_E = \left(1 - N\frac{J^2}{4J_z^2}\right) |\mathcal{O}\rangle\langle\mathcal{O}| + \sum_i \left(\frac{J^2}{4J_z^2}|\tilde{\mathcal{O}}, 1_i\rangle\langle\tilde{\mathcal{O}}, 1_i| + \sum_{i,j} \left[\frac{J^2}{4J_z^2}|\tilde{\mathcal{O}}, 1_i, 1_j\rangle\langle\tilde{\mathcal{O}}, 1_i, 1_j| + \frac{J}{2J_z}|\mathcal{O}\rangle\langle\tilde{\mathcal{O}}, 1_i, 1_j|\right]\right)$$

 \Rightarrow N_z degenerate values

 \Rightarrow Vanishing Schmidt gap

Summary - II

- The extensive study of the entanglement entropy and spectra for the vortex free ground state of the Kitaev model.
- For the half-region, entanglement gap is found to be finite in small coupling limit, while it was shown to be zero in the large coupling limit. Presence of gapless edge modes were attributed.
- For the square/rectangular block, non-monotonic behaviour of entanglement entropy attributed to the competition between the correlation functions in different kind of bonds.

Collaborators

- K. Sengupta (IACS, India)
- Y. M Shukrinov (BLTP, JINR)
- K. M Kulikov (BLTP, JINR)
- S. Mandal (Institute of Physics, India)
- V. K Varma (ICTP, Italy)

- PRB 92 224501 (2015).
- *PRB* 94, 045421 (2016).