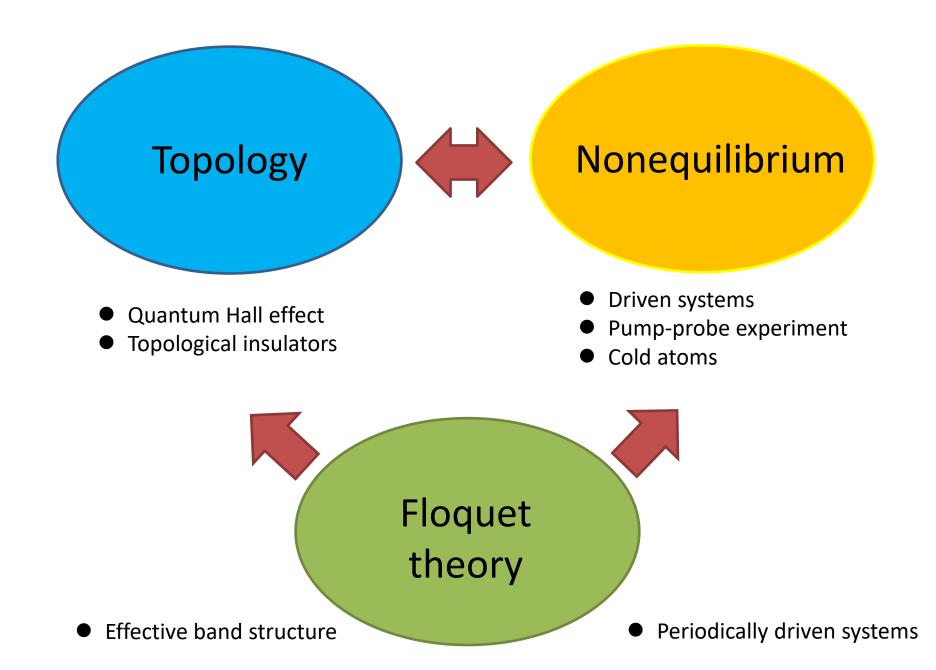
Floquet topological phases protected by dynamical symmetry

Takahiro Morimoto UC Berkeley



Plan of this talk

Introduction

- Floquet topological phases
- Anomalous Hall state without Chern number
- Floquet topological phases in noninteracting systems
 - Time glide symmetry
 - Ten-fold way classification

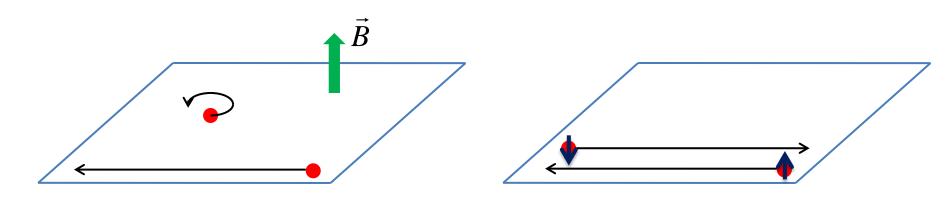
Morimoto, Po, Vishwanath, PRB (2017)

- Floquet topological phases in interacting systems
 - Group cohomology classification
 - 1D and 2D models
 Potter, Morimoto, Vishwanath, PRX (2016)

Topological phases

Quantum Hall effect

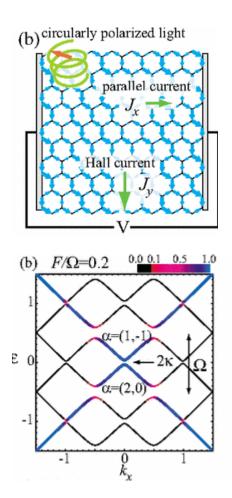
2D topological insulator

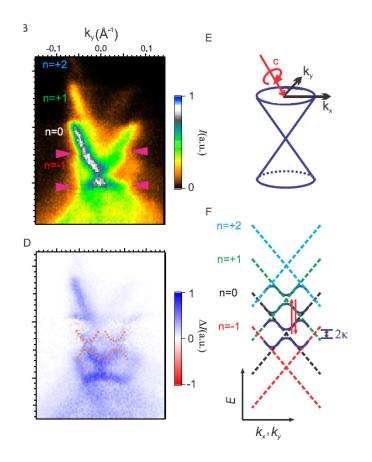


- Ground states with
 - Bulk excitation gap
 - Nontrivial gapless surface state

Topological phases in nonequilibrium states?

Dynamical Chern insulator with circularly polarized light



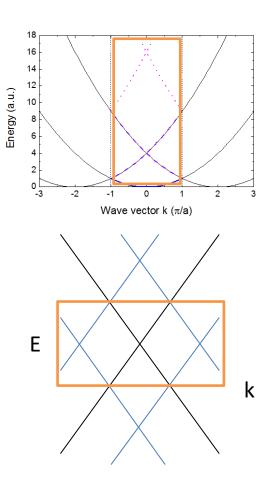


Oka, Aoki, PRB (2009)

Wang et al, Science (2013)

Floquet theory

- Time direction analog of Bloch theorem
- Bloch: H(x+L) = H(x) $\psi(x) = e^{ikx}u(x), \qquad u(x+a) = u(x),$
- Floquet: H(t+T) = H(t) $\psi(t) = e^{-i\epsilon t/\hbar}\phi(t), \qquad \phi(t+T) = \phi(t),$



Floquet theory

• Time dependent Schroedinger equation

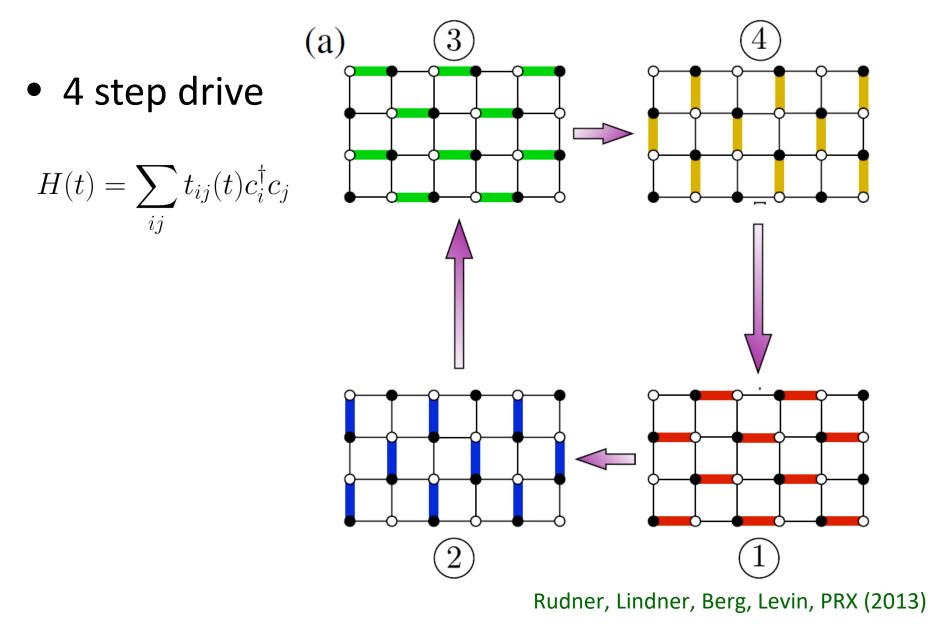
 $i\hbar\partial_t\psi(t) = H_0(t)\psi(t)$

$$\psi(t) = e^{-i\epsilon t/\hbar}\phi(t), \qquad \Longrightarrow \qquad (i\hbar\partial_t + \epsilon)\phi(t) = H_0(t)\phi(t).$$
$$\phi(t) = \sum_m e^{-im\Omega t}\phi_m, \qquad \Longrightarrow \qquad (m\hbar\Omega + \epsilon)\phi_m = \widetilde{H_0}_{mn}\phi_n,$$
$$\widetilde{H_0}_{mn} = \frac{1}{T}\int_0^T dt e^{i(m-n)\Omega t}H_0(t).$$

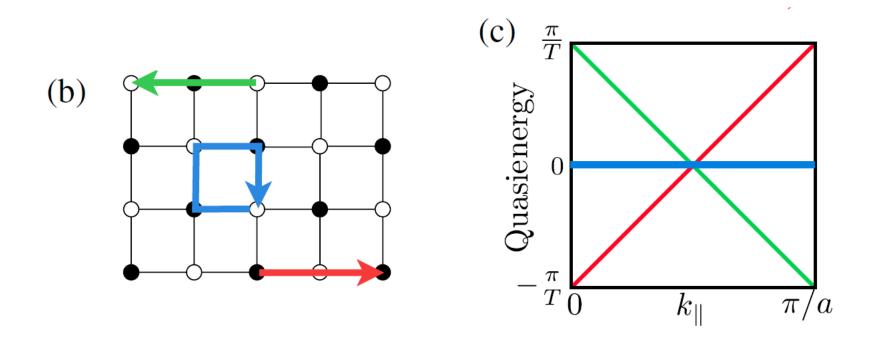
• Floquet Hamiltonian: $H_F \phi = \epsilon \phi$,

$$(H_F)_{mn} = \frac{1}{T} \int_0^T dt e^{i(m-n)\Omega t} H_0(t) - \delta_{mn} m\hbar\Omega.$$

Floquet anomalous Hall insulator



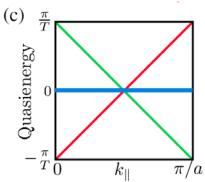
Floquet anomalous Hall insulator



Rudner, Lindner, Berg, Levin, PRX (2013)

Topological number?

- No Chern number
 - An alternative way to obtain Floquet Hamiltonian: $H_F = i \log U(0 \rightarrow T)$ (c) $\frac{\pi}{T}$
 - U=1 in the bulk \rightarrow H_F=0
 - Trivial bulk band



Protection of edge states does not come from H_F.
 Instead, it originates from t dependence of U(t).

Winding number of U

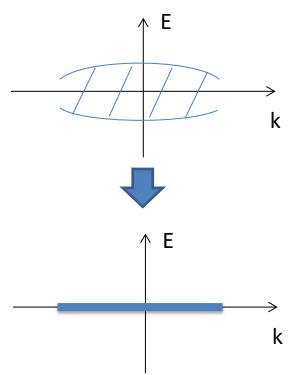
• Spectral flattening

$$\tilde{H}(t) = \begin{cases} H(t), & 0 < t < T\\ -H_F, & T < t < 2T \end{cases}$$
$$\tilde{U}(t) = \mathcal{T} \exp[-i \int_0^t H(t') dt']$$

— U(t=T)=U(t=0)=1, periodic for (t,k)

• Winding number $\pi_3(U(N))=Z$

$$W = \frac{\epsilon_{ab}}{8\pi^2} \int dt dk d\lambda \operatorname{tr}[(\tilde{U}^{\dagger} \partial_t \tilde{U})(\tilde{U}^{\dagger} \partial_a \tilde{U})(\tilde{U}^{\dagger} \partial_b \tilde{U})],$$



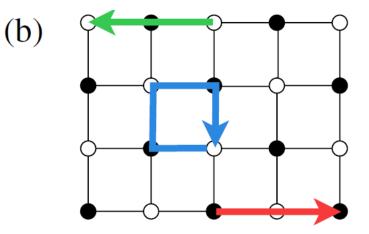
Meaning of W

$$W = \frac{\epsilon_{ab}}{8\pi^2} \int dt dk d\lambda \mathrm{tr}[(\tilde{U}^{\dagger} \partial_t \tilde{U})(\tilde{U}^{\dagger} \partial_a \tilde{U})(\tilde{U}^{\dagger} \partial_b \tilde{U})],$$

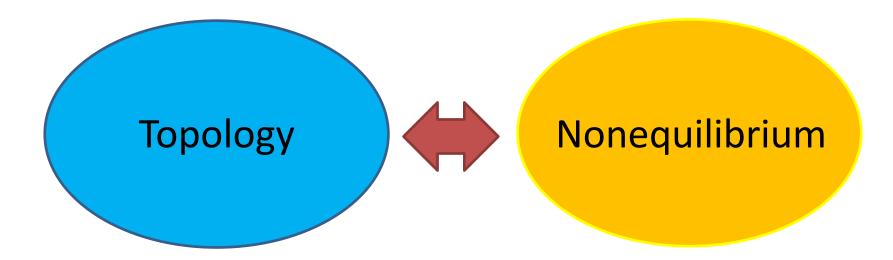
a,b=kx,ky

Integrand ~ i[H,x] y – i[H,y] x ~ px y – py x ~ orbital magnetization

 Quantized magnetization in the bulk



Nathan et al., PRL (2017)



Floquet topological phases protected by time glide symmetry

Morimoto, Po, Vishwanath, PRB (2017)

Adrian Po Ashvin Vishwanath

Symmetries that protect TIs

- Ten fold way
 - Time reversal symmetry
 - Particle-hole symmetry
 - Chiral symmetry

- Reflection symmetry
- Rotation symmetry
- Static symmetries:

$$gH(t)g^{\dagger} = H(t)$$

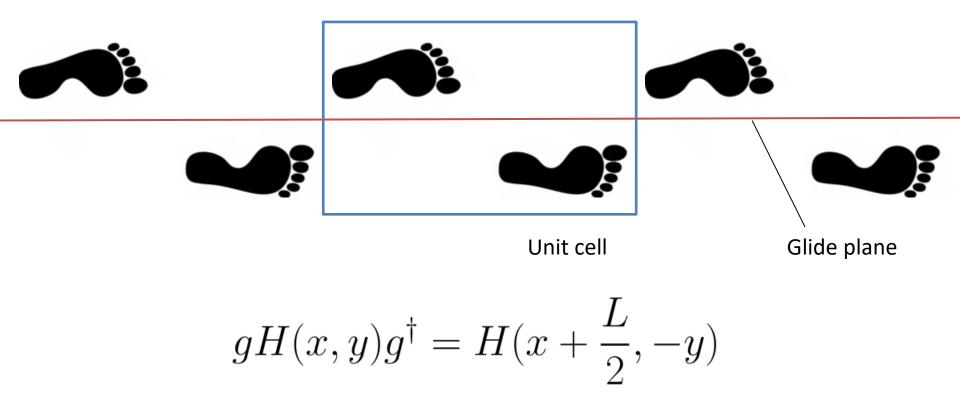
$$gH(t,k)g^{\dagger}=H(t,g(k))$$

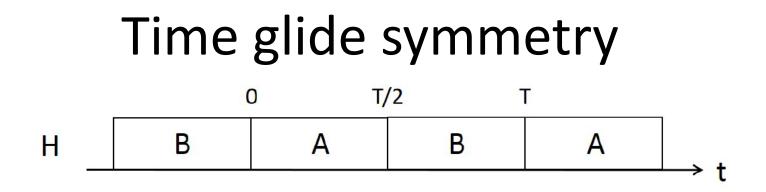
Symmetry that only appears in dynamical systems?

$$gH(t,k)g^{\dagger} = H(\mathbf{g}(t),g(k))$$

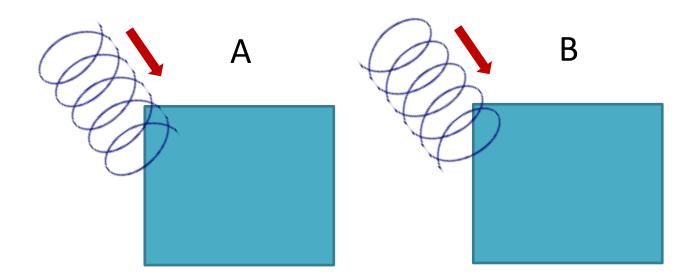
Partial time translation: g(t)=t+t0
 Time nonsymmorphic symmetry

Nonsymmorphic symmetry: glide symmetry

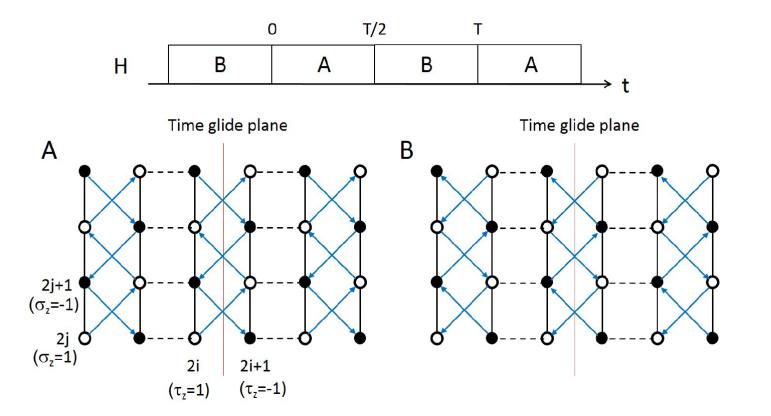




$$gH(t,k_x,k_y)g^{\dagger} = H(t + \frac{T}{2}, -k_x, k_y)$$

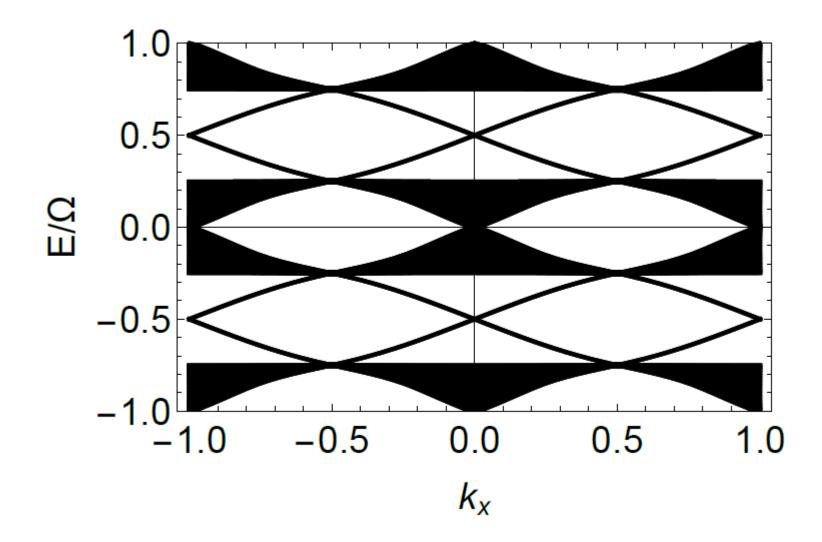


2D toy model: time glide + sublattice symmetry



$$\begin{aligned} H(\boldsymbol{k},t) &= 2t\sigma_x \cos\frac{k_y}{2} + 2t\eta(t)\sigma_y\tau_y \sin\frac{k_y}{2} \\ &+ t'\tau_x \cos k_x + t'\tau_y \sin k_x, \end{aligned} \qquad \eta(t) = \begin{cases} +1, & (0 \le t < \frac{T}{2}) \\ -1, & (\frac{T}{2} \le t < T) \end{cases} \end{aligned}$$

Quasienergy spectrum



Topological number for 1D class AllI

- Action of chiral symmetry: $\Gamma H(t)\Gamma = -H(-t)$, $\Gamma U(k, 0 \rightarrow T/2)\Gamma = U^{\dagger}(k, T/2 \rightarrow T).$
- When $U(0 \rightarrow T)=1$ (with spectral flattening), $U(k, 0 \rightarrow T/2) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, and $\Gamma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, commute b = c = 0.
- We can define winding number as

$$\nu_{\pi} = \nu[d]. \qquad \nu[g(k)] = \frac{1}{2\pi i} \int dk \operatorname{tr}\left(g^{\dagger} \frac{dg}{dk}\right),$$

Topological number for time glide symmetric 2D model

• Focus on glide invariant plane (at kx=0)

$$M_T H(0, k_y, t) M_T^{-1} = H\left(0, k_y, t + \frac{T}{2}\right).$$

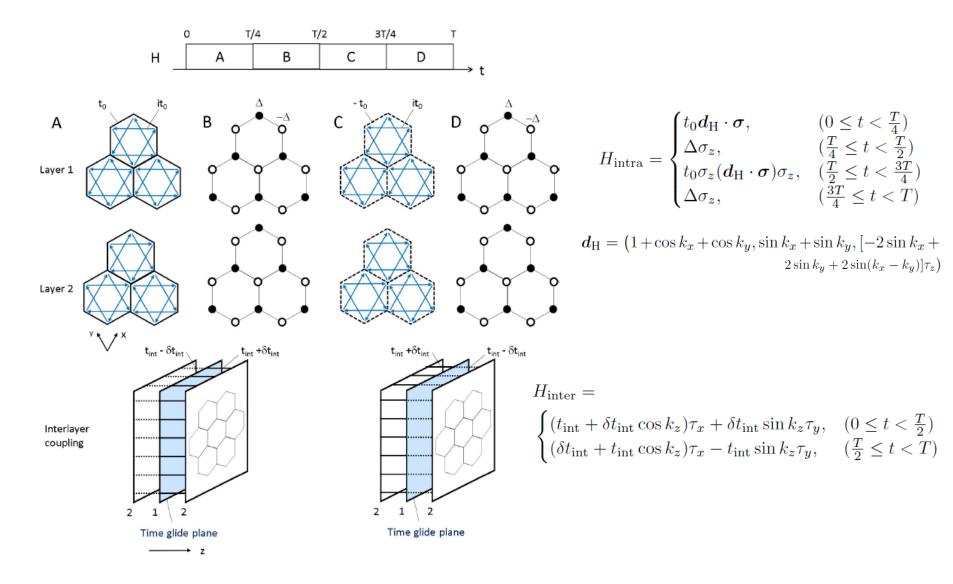
$$\Gamma M_T H(0, k_y, t) (\Gamma M_T)^{-1} = -H(0, k_y, T/2 - t),$$

$$\Gamma M_T U\left(0, -\frac{T}{4} \to \frac{T}{4}\right) (\Gamma M_T)^{-1} = U^{\dagger} \left(0, -\frac{T}{4} \to \frac{T}{4}\right)$$
$$U\left(0, -\frac{T}{4} \to \frac{T}{4}\right) = \begin{pmatrix}a' & b'\\ a' & b'\end{pmatrix} \qquad \Gamma M_T = \begin{pmatrix}1 & 0\\ a & d\end{pmatrix}$$

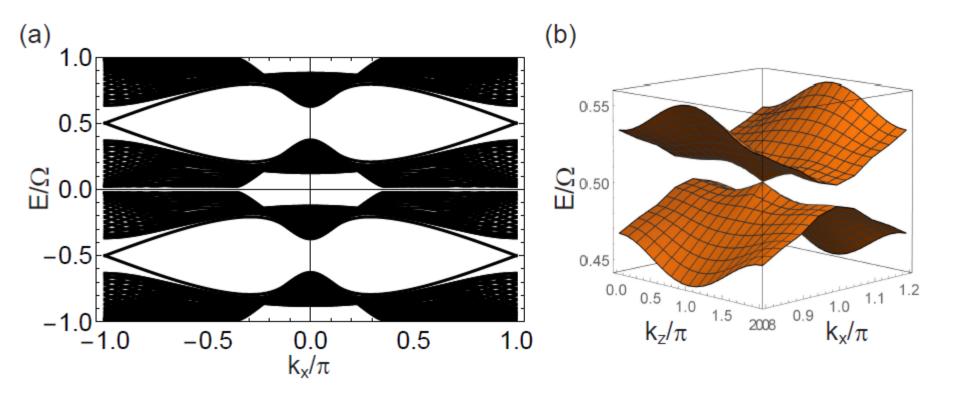
$$U\left(0, -\frac{1}{4} \to \frac{1}{4}\right) = \begin{pmatrix} a & b \\ c' & d' \end{pmatrix}, \qquad \Gamma M_T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• Topological number: v[d']

3D model with time glide



Band structure



Energy spectrum at kz=pi

Topological number

• With time glide symmetry,

$$M^{T}H(k_{x}, k_{y}, k_{z}^{0}, t)(M^{T})^{-1} = H(k_{x}, k_{y}, k_{z}^{0}, t + T/2).$$
(22)

we can write U(0 \rightarrow T) with half period evolution operator U_h as

 $U(k_x, k_y, 0 \to T) = g_T U_h g_T U_h, \qquad U_h(k_x, k_y) = U\left(k_x, k_y, 0 \to \frac{T}{2}\right).$

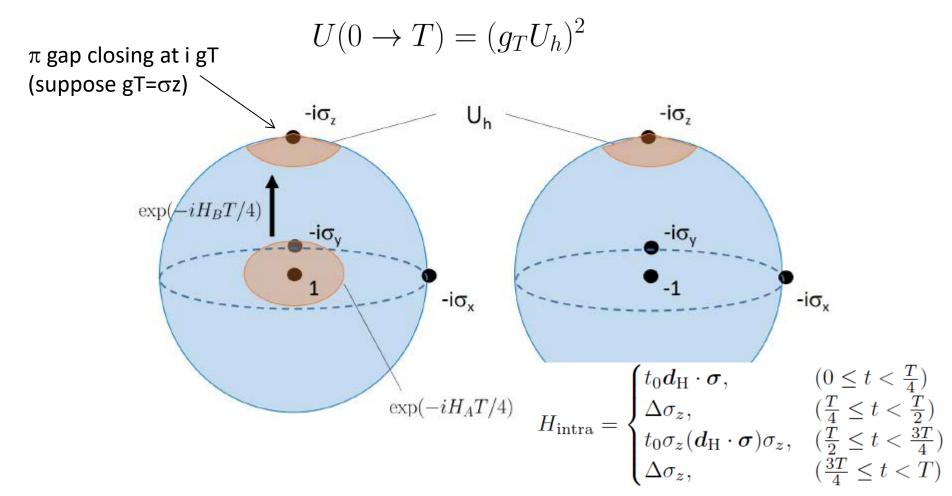
• When $U(0 \rightarrow T)=1$, $g_T U_h$ becomes hermitian:

$$g_T U_h = (g_T U_h)^\dagger,$$

• We can define a Chern number for $g_T U_h$ (kx,ky)

Topological characterization

• U_h belongs to SU(2) and defines a point in S³



General classification of Floquet TIs?

Ten fold way in the equilibrium

	d												
Cartan	0	1	2	3	4	5	6	7	8	9	10	11	
Complex case:													
А	\mathbb{Z}	0	perio										
AШ	0	\mathbb{Z}	0	Z	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	d = 2
Real case:													
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
DШ	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	perio
AП	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	d = 8
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
С	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	

• Tenfold way for Floquet topological phases?

Classification scheme with U

 Define an effective Hamiltonian H from U and classify H

$$U_S(\boldsymbol{k},t) = \mathcal{T} \exp\left[-i \int_{\frac{T-t}{2}}^{\frac{T+t}{2}} dt' H(\boldsymbol{k},t')\right]$$

$$H_S(\boldsymbol{k},t) = \begin{pmatrix} 0 & U_S(\boldsymbol{k},t) \\ U_S^{\dagger}(\boldsymbol{k},t) & 0 \end{pmatrix},$$

- Gapped Hamiltonian $E=\pm 1$
- Periodic in k and t \subseteq T^{d+1}

Roy, Harper, PRB (2017) Morimoto, Po, Vishwanath, PRB (2017)

Symmetry actions

$$H_S(\boldsymbol{k},t) = \begin{pmatrix} 0 & U_S(\boldsymbol{k},t) \\ U_S^{\dagger}(\boldsymbol{k},t) & 0 \end{pmatrix},$$

• Symmetries of H leads to

$$T'H_S(\boldsymbol{k},t)T'^{-1} = H_S(-\boldsymbol{k},t), \quad T' = T \otimes \sigma_x,$$

$$C'H_S(\boldsymbol{k},t)C'^{-1} = H_S(-\boldsymbol{k},t), \quad C' = C \otimes \sigma_0,$$

$$\Gamma'H_S(\boldsymbol{k},t)\Gamma'^{-1} = H_S(\boldsymbol{k},t), \quad \Gamma' = \Gamma \otimes \sigma_x,$$

• Inherent sublattice symmetry

$$\tilde{\Gamma}H_{\alpha}(\mathbf{k},t)\tilde{\Gamma}^{-1} = -H_{\alpha}(\mathbf{k},t) \qquad \tilde{\Gamma} = 1 \otimes \sigma$$

Apply classification method for TIs in the equilibrium

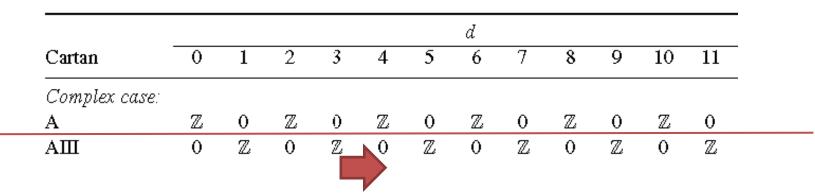
Case of Class A and AllI

dD class A systems → d+1D class AIII systems

$$H_S(\boldsymbol{k},t) = \begin{pmatrix} 0 & U_S(\boldsymbol{k},t) \\ U_S^{\dagger}(\boldsymbol{k},t) & 0 \end{pmatrix}, \qquad \tilde{\Gamma} = 1 \otimes \sigma_z.$$

dD class AIII systems → d+1D class A systems

$$\Gamma' H_S(\mathbf{k}, t) \Gamma'^{-1} = H_S(\mathbf{k}, t), \qquad \Gamma' = \Gamma \otimes \sigma_x,$$
$$H_S = \begin{pmatrix} H_S^+ & 0 \\ 0 & H_S^- \end{pmatrix} \quad \tilde{\Gamma} = 1 \otimes \sigma_z.$$



Floquet tenfold way

Class	T	C	Г	d = 0	d = 1	d = 2	d = 3	d = 4	d = 5	d = 6	d = 7
Α	0	0	0	\mathbb{Z}^n	0	\mathbb{Z}^n	0	\mathbb{Z}^n	0	\mathbb{Z}^n	0
AIII	0	0	1	0	\mathbb{Z}^2	0	\mathbb{Z}^2	0	\mathbb{Z}^2	0	\mathbb{Z}^2
AI	+1	0	0	\mathbb{Z}^n	0	0	0	\mathbb{Z}^n	0	\mathbb{Z}_2^n	\mathbb{Z}_2^n
BDI	+1	+1	1	\mathbb{Z}_2^2	\mathbb{Z}^2	0	0	0	\mathbb{Z}^2	0	\mathbb{Z}_2^2
D	0	+1	0	\mathbb{Z}_2^2	\mathbb{Z}_2^2	\mathbb{Z}^2	0	0	0	\mathbb{Z}^2	0
DIII	-1	+1	1	0	\mathbb{Z}_2^2	\mathbb{Z}_2^2	\mathbb{Z}^2	0	0	0	\mathbb{Z}^2
AII	-1	0	0	\mathbb{Z}^n	0	\mathbb{Z}_2^n	\mathbb{Z}_2^n	\mathbb{Z}^n	0	0	0
CII	-1	-1	1	0	\mathbb{Z}^2	0	\mathbb{Z}_2^2	\mathbb{Z}_2^2	\mathbb{Z}^2	0	0
\mathbf{C}	0	-1	0	0	0	\mathbb{Z}^2	0	\mathbb{Z}_2^2	\mathbb{Z}_2^2	\mathbb{Z}^2	0
CI	+1	-1	1	0	0	0	\mathbb{Z}^2	0	\mathbb{Z}_2^2	\mathbb{Z}_2^2	\mathbb{Z}^2

• The same types of topological numbers as in the equilibrium

Classification of time glide Floquet TIs

• Time glide symmetry gives an additional symmetry constraint on Hs:

$$M_T H(k_1, k_2, \dots, k_d, t) M_T^{-1} = H\left(-k_1, k_2, \dots, k_d, t + \frac{T}{2}\right)$$
$$M_T' H_S(k_1, k_2, \dots, k_d, t) M_T'^{-1} = H_S(-k_1, k_2, \dots, k_d, -t),$$
$$M_T' = M_T \otimes \sigma_x.$$

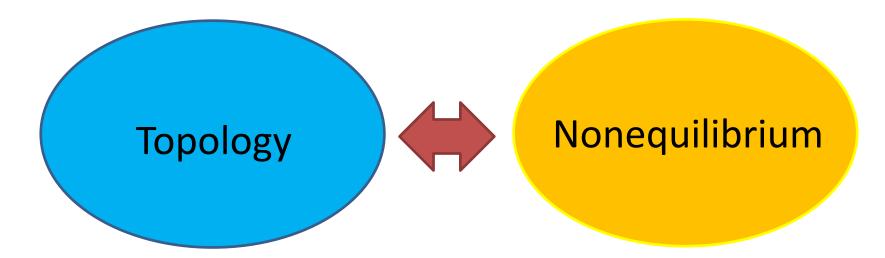
• We apply classification method for topological crystalline insulator with reflection

Morimoto, Furusaki, PRB (2013)

Classification of time glide Floquet TIs

$\eta_T,\eta_C,\eta_\Gamma$	Class	C_q or R_q	d = 0	d = 1	d=2	d = 3	d = 4	d = 5	d = 6	d=7
-	Α	C_{d+3}	0	\mathbb{Z}	0		0	\mathbb{Z}	0	\mathbb{Z}
$\eta_{\Gamma} = +$	AIII	$C_{d+3} \times C_{d+3}$	0	\mathbb{Z}^2	0	\mathbb{Z}^2	0	\mathbb{Z}^2	0	\mathbb{Z}^2
$\eta_{\Gamma} = -$	AIII	C_{d+4}	\mathbb{Z}	0		0	\mathbb{Z}	0	\mathbb{Z}	0
	AI	R_{1-d}	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
	BDI	R_{2-d}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
$\eta_T = + (AI, AII)$	D	R_{3-d}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
$\eta_C = -$ (D,C)	DIII	R_{4-d}	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
$(\eta_T, \eta_C) = (+, -)$ (BDI,DIII,CII,CI)	AII	R_{5-d}	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
	CII	R_{6-d}	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
	\mathbf{C}	R_{7-d}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
	\mathbf{CI}	R_{-d}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
	AI	R_{-1-d}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
	BDI	R_{-d}	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
$\eta_T = -$ (AI,AII)	D	R_{1-d}	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
$\eta_C = + (D,C)$	DIII	R_{2-d}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
$(\eta_T, \eta_C) = (-, +)$ (BDI,DIII,CII,CI)	AII	R_{3-d}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
	CII	R_{4-d}	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
	\mathbf{C}	R_{5-d}	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
	CI	R_{6-d}	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
$(\eta_T, \eta_C) = (+, +)$	BDI	$R_{1-d} \times R_{1-d}$	\mathbb{Z}_2^2	\mathbb{Z}^2	0	0	0	\mathbb{Z}^2	0	\mathbb{Z}_2^2
$(\eta_T, \eta_C) = (-, -)$	DIII	$R_{3-d} \times R_{3-d}$	0	\mathbb{Z}_2^2	\mathbb{Z}_2^2	\mathbb{Z}^2	0	0	0	$\mathbb{Z}^{\overline{2}}$
$(n_{T}, n_{C}) = (\perp \perp)$	CII	R_{z} , \vee R_{z} ,	0	772	0	π^2	π^2	π^2	0	0

Similar to, but different from classification for TCIs



- Floquet symmetry protected topological phases
 - Classification and 1D/2D realizations

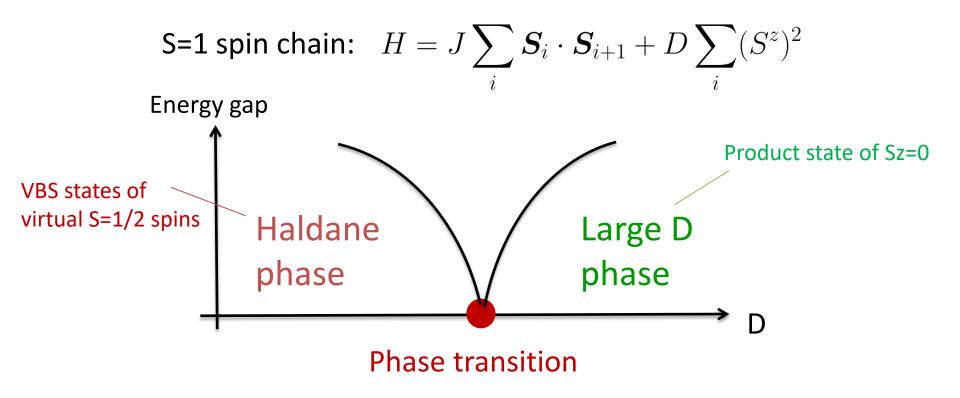
Potter, Morimoto, Vishwanath, PRX (2016)

Andrew Potter

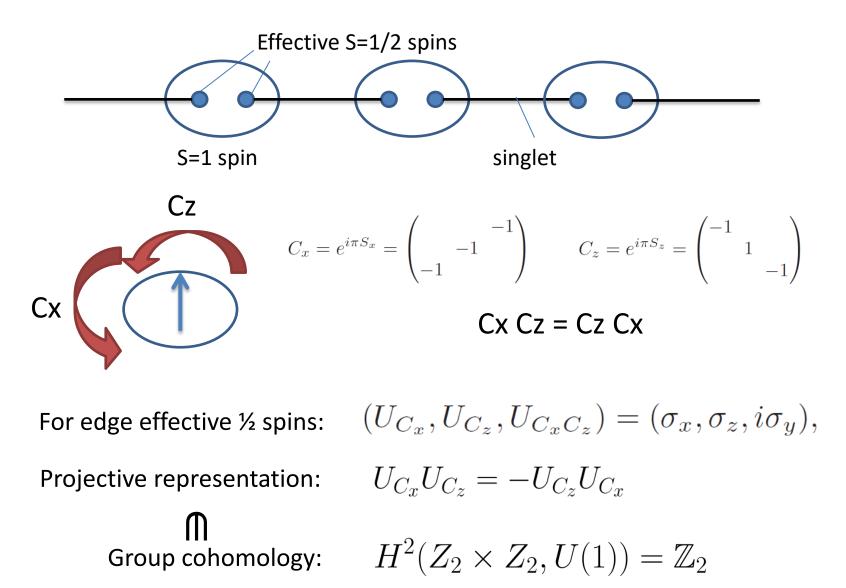
Ashvin Vishwanath

Haldane phase

Topological phase of interacting bosons
 "Symmetry-protected topological phases"

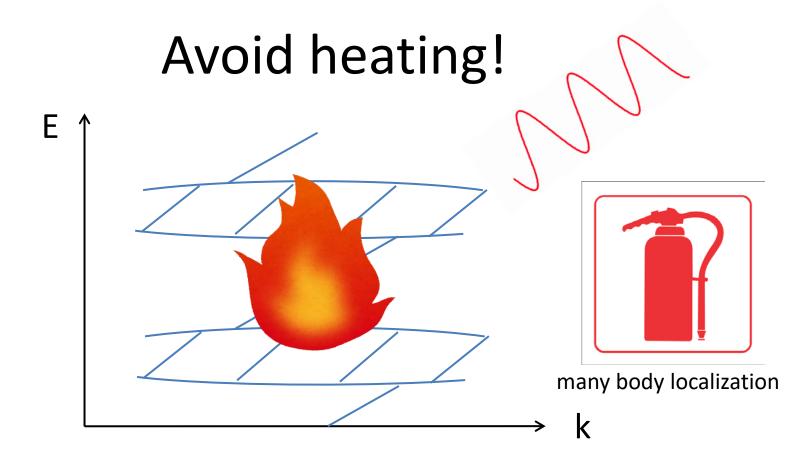


Characterization by projective representation



Floquet version?

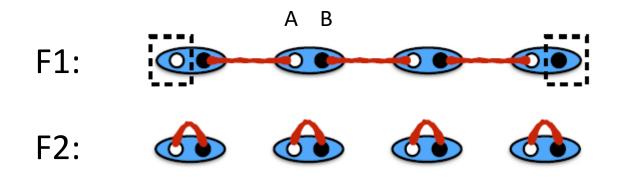
Symmetry protected topological phases in periodically driven systems



- Compatibility with many body localization excludes:
 - Fermions with antiunitary symmetry (T)
 - Bosons with non-Abelian symmetry (SU(2))
- Bosons with Abelian discrete symmetry (Z_N)

Potter, Vasseur, PRB (2016)

1D model with Z2 symmetry

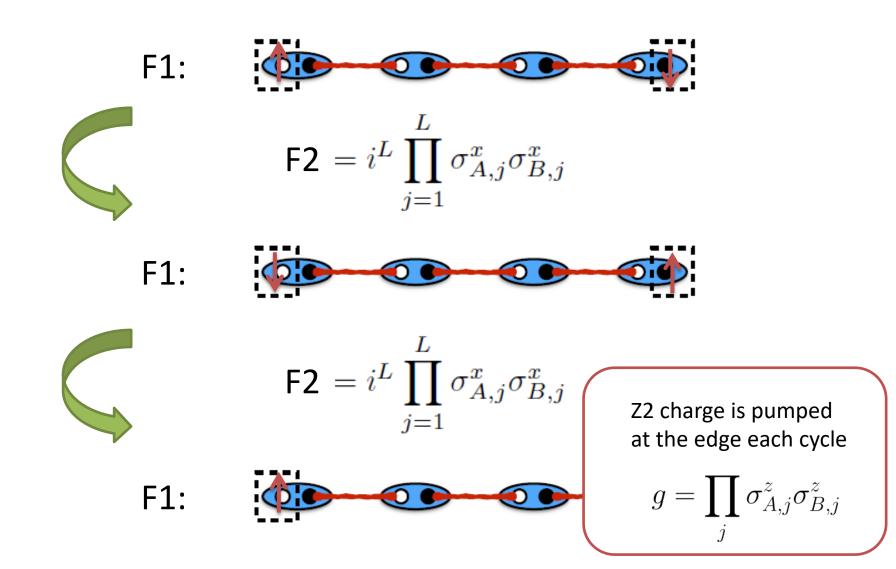


Two step drive:

$$F_{1} = e^{-iH_{AKLT}} \qquad H_{AKLT} = \lambda \sum_{j=1}^{L-1} \sigma_{B,j} \cdot \sigma_{A,j+1}$$
$$F_{2} = e^{i\pi/2} \sum_{j} \sigma_{A,j}^{x} \sigma_{B,j}^{x} = i^{L} \prod_{j=1}^{L} \sigma_{A,j}^{x} \sigma_{B,j}^{x}$$

Z2 symmetry: $g = \prod_{j} \sigma_{A,j}^{z} \sigma_{B,j}^{z}$

Pumping at the edge



Classification of FSPT, Kunneth formula

• Assumption: Time translation over the period can be regarded as an additional Z symmetry

H²(G x Z, U(1))

• Kunneth formula

Von Keyserlingk, Sondhi, PRB (2016) Else, Nayak, PRB (2016) Potter, Morimoto, Vishwanath, PRX (2016)

 $H^{2}(G \times Z, U(1)) = H^{2}(G, U(1)) \times H^{1}(G, U(1))$

Equilibrium SPT Floquet SPT

Symmetry charge pumping at the edge

Higher dimensions

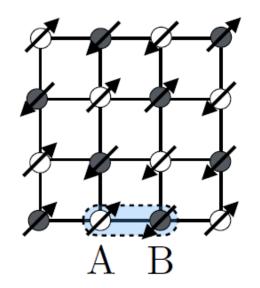
• Also classified by group cohomology

• Assumption: Low energy effective theory is given by a G-gauge theory

• Classification of SPTs is obtained from that for G-gauge theories

 $H^{d+1}(G, U(1))$

2D model



$$G = \mathbb{Z}_2 \times \mathbb{Z}_2$$

$$g_{A,B} = \prod_{i \in A,B} \sigma_i^x.$$

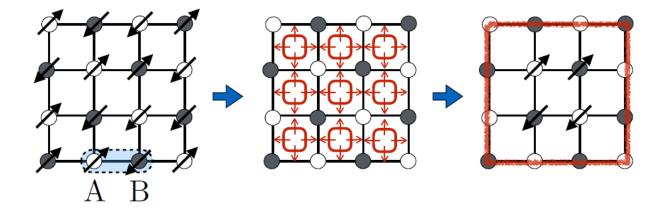
Target Floquet topological phase:

 $H^{3}(G \times Z, U(1)) = H^{3}(G, U(1)) \times H^{2}(G, U(1))$ $H^{2}(Z2 \times Z2, U(1)) = Z2$

Pump Haldane phase at the boundary every cycle!

Reverse engineering

• Pump 1D SPT to boundary every cycle



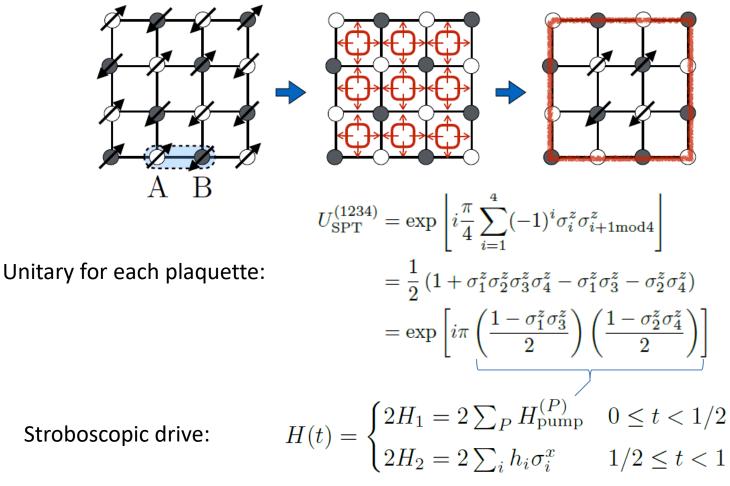
Z2 x Z2 1D-SPT:
$$H_{1D-SPT} = \sum_{i} \lambda_i \sigma_{i-1}^z \sigma_i^x \sigma_{i+1}^z$$

 $U_{SPT} = e^{i\frac{\pi}{4}\sum_i (-1)^i \sigma_i^z \sigma_{i+1}^z}$
Trivial PM: $H_{1D-PM} = \sum_i \lambda_i \sigma_i^x$

Potter, Morimoto, PRB (2017)

Reverse engineering

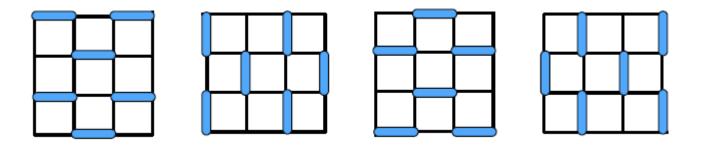
• Pump 1D SPT to boundary every cycle



Potter, Morimoto, PRB (2017)

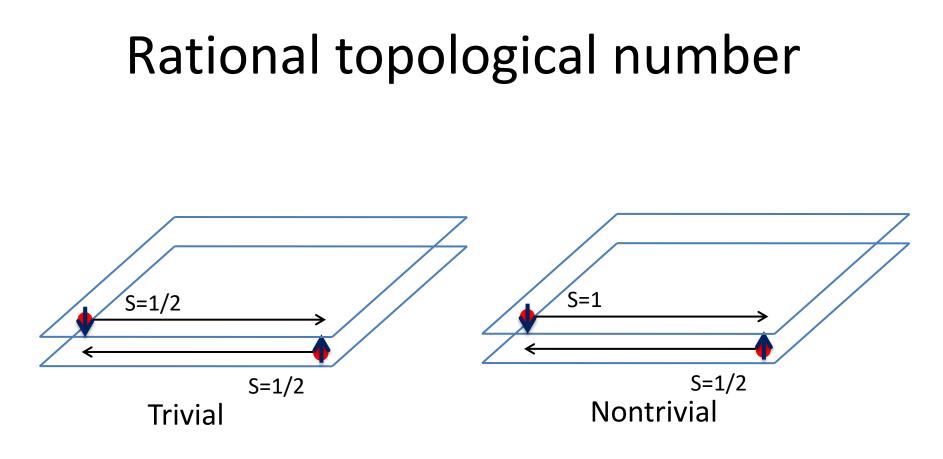
FSPT beyond cohomology

• Bosons with chiral driving



Single mode of chiral bosons (e.g., S=1/2)
 – cf. at least 8 modes in the equilibrium (E8 state)

Po, Fidkowski, Morimoto, Potter, Vishwanath, PRX (2016)



Topological number=

Dim. of Hilbert space of right mover / Dim. of Hilbert space of left mover \in Q

Summary

- Noninteracing Floquet topolgical phases
 - Tenfold way classification
 - Time glide symmetry

Morimoto, Po, Vishwanath, PRB (2017)

- Interacting Floquet topological phases
 - Floquet SPT phases ~ SPT phases pumped to the boundary every cycle
 - 1D and 2D spin models

Potter, Morimoto, Vishwanath, PRX (2016)

