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What is a heterodyne?

Bluetooth
Wifi, TV, radio



What is a heterodyne?

Bluetooth
Wifi, TV, radio

2.40xGHz

superheterodyne device

kHz



What is a heterodyne?

fLO

fS1-fLO

fS1-fLO

fS

from wikipedia “heterodyne”

Local oscillator
=  periodically driven system

2.401GHz 2.402GHz



Linear response theory 1

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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FIG. 1. (Color online)
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FIG. 2. (Color online)

T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)

δHeff ∝ i(E∗ × E)(scalar chirality)

w: signal frequency
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T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)

δHeff ∝ i(E∗ × E)(scalar chirality)

w: signal frequency

If static,

1

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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FIG. 2. (Color online)

T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)

1

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

ac-conductivity



Linear response theory for periodically driven system

1

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)

δHeff ∝ i(E∗ × E)(scalar chirality)

Ω
Periodic driving

input signal

  Heterodyne
(Floquet state)

output signal
ω ω + l Ω

1

=
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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FIG. 1. (Color online)

T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)

δHeff ∝ i(E∗ × E)(scalar chirality)

δHeff ∝ i(E∗ × E)(Haldane hopping)

w: signal frequency
W: drive frequency

TO, Bucciantini, PRB’16

n
w + n W  



Heterodyne Hall effect
TO, Bucciantini, PRB’16

Application: Dissipationless frequency conversion
Ultra-low power consuming Bluetooth!?

1

σn
xy(ω)

=
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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FIG. 1. (Color online)

T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)

δHeff ∝ i(E∗ × E)(scalar chirality)



Heterodyne Hall effect
TO, Bucciantini, PRB’16

In the following, I will focus on the resonant case

w=W

1

σn
xy(ω)

=
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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FIG. 1. (Color online)

T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)

δHeff ∝ i(E∗ × E)(scalar chirality)



1

B(t) = B cosΩt

H =
1

2m∗ (p̂−A)2

H =
∑

i=1,2,3

σi(p̂i −Ai)

H =
∑

i=1,2,3

γ0γi(p̂i −Ai)

→ k3σ3 + (k+)
2n∓1σ+ + (k−)

2n±1σ−

HWeyl = k3σ3 + k+σ
+ + k−σ

−

H = σ · (p−A(t))

Eλ > 2m

Jn = ∂kE
n

k → k −A(t)

E = −∂tA− ∂V

nΩ > ∆

γ =
Ω

ξF
, ξ−1 =

√
2mrEG

E(t) = F cos(Ωt)

p ∼

⎧
⎪⎨

⎪⎩

exp

(
−α

m1/2
r E3/2

G
F

)
γ ≪ 1 (tunneling)

(
F

Ω
√
mrEG

)2EG/Ω
γ ≫ 1 (multi-photon)

(1)

time dependent magnetic field

Example 1: Classical particle in an oscillating B field

1

m

(
d

dt
+ η

)
v(t) = e

(
E(t) +

1

c
v ×B(t)

)

σn
xy(ω)

=
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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FIG. 1. (Color online)

T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)

Newton’s equation

z

TO, Bucciantini, PRB’16



wc/W=3.0

6.0

5.0

1

B(t) = B cosΩt

H =
1

2m∗ (p̂−A)2

H =
∑

i=1,2,3

σi(p̂i −Ai)

H =
∑

i=1,2,3

γ0γi(p̂i −Ai)

→ k3σ3 + (k+)
2n∓1σ+ + (k−)

2n±1σ−

HWeyl = k3σ3 + k+σ
+ + k−σ

−

H = σ · (p−A(t))

Eλ > 2m

Jn = ∂kE
n

k → k −A(t)

E = −∂tA− ∂V

nΩ > ∆

γ =
Ω

ξF
, ξ−1 =

√
2mrEG

E(t) = F cos(Ωt)

p ∼

⎧
⎪⎨

⎪⎩

exp

(
−α

m1/2
r E3/2

G
F

)
γ ≪ 1 (tunneling)

(
F

Ω
√
mrEG

)2EG/Ω
γ ≫ 1 (multi-photon)

(1)

wc=qB/mec
cyclotron frequency

TO, Bucciantini, PRB’16

no E-field

Example 1: Classical particle in an oscillating B field



wc/W=3 65
(t=0.05, Ey=1)

dc-conductivity

with static Ey-field

1

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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FIG. 2. (Color online)

T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)

δHeff ∝ i(E∗ × E)(scalar chirality)

1

=
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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FIG. 1. (Color online)

T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)

δHeff ∝ i(E∗ × E)(scalar chirality)

δHeff ∝ i(E∗ × E)(Haldane hopping)



Periodic orbits

wc/W=2.41 8.665.52

(t=0.0, Ey=0)

(i) (iii)(ii)
winding per half cycle a=1 a=2 a=3



Heterodyning Hall current
wc/W
=3

6

5

TO, Bucciantini, PRB’16

exact results

1

σn,m
ab = σn−m

ab (mΩ)

Ex = E1
x cosΩt

A(k,ω) =
−1

π
ImTrP̂static

1

ω − Ĥk + iδ

HDirac = σx(p̂x −Ax(t)) + σy(py −B cosΩtx)

σ−1
yx (Ω) =

Ay = B cos(Ωt)x

m

(
d

dt
+ η

)
v(t) = e

(
E(t) +

1

c
v ×B(t)

)

σn
xy(ω)

=
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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Summary: Example I
TO, Bucciantini, PRB’16

1

εn =
√

Ω2 − p2z
√
Bn± Ω/2

σn,m
ab = σn−m

ab (mΩ)

Ex = E1
x cosΩt

A(k,ω) =
−1

π
ImTrP̂static

1

ω − Ĥk + iδ

HDirac = σx(p̂x −Ax(t)) + σy(py −B cosΩtx)

σ−1
yx (Ω) =

Ay = B cos(Ωt)x

m

(
d

dt
+ η

)
v(t) = e

(
E(t) +

1

c
v ×B(t)

)

σn
xy(ω)

ja(t) =
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.

Classical particle in an oscillating B-field

@ magic frequencies ((i), (ii), (iii),.. zeros of J0(B/W)) 

1

σ0
xx(0) = 0

σ−1
xy (Ω) ∼

1

B

εn =
√

Ω2 − p2z
√
Bn± Ω/2

σn,m
ab = σn−m

ab (mΩ)

Ex = E1
x cosΩt

A(k,ω) =
−1

π
ImTrP̂static

1

ω − Ĥk + iδ

HDirac = σx(p̂x −Ax(t)) + σy(py −B cosΩtx)

σ−1
yx (Ω) =

Ay = B cos(Ωt)x

m

(
d

dt
+ η

)
v(t) = e

(
E(t) +

1

c
v ×B(t)

)

σn
xy(ω)

ja(t) =
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

1

σ0
xx(0) = 0

σ−1
xy (Ω) ∼

1

B

εn =
√

Ω2 − p2z
√
Bn± Ω/2

σn,m
ab = σn−m

ab (mΩ)

Ex = E1
x cosΩt

A(k,ω) =
−1

π
ImTrP̂static

1

ω − Ĥk + iδ

HDirac = σx(p̂x −Ax(t)) + σy(py −B cosΩtx)

σ−1
yx (Ω) =

Ay = B cos(Ωt)x

m

(
d

dt
+ η

)
v(t) = e

(
E(t) +

1

c
v ×B(t)

)

σn
xy(ω)

ja(t) =
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

heterodyne Hall ``insulator”



1

B(t) = B cosΩt

H =
1

2m∗ (p̂−A)2

H =
∑

i=1,2,3

σi(p̂i −Ai)

H =
∑

i=1,2,3

γ0γi(p̂i −Ai)

→ k3σ3 + (k+)
2n∓1σ+ + (k−)

2n±1σ−

HWeyl = k3σ3 + k+σ
+ + k−σ

−

H = σ · (p−A(t))

Eλ > 2m

Jn = ∂kE
n

k → k −A(t)

E = −∂tA− ∂V

nΩ > ∆

γ =
Ω

ξF
, ξ−1 =

√
2mrEG

E(t) = F cos(Ωt)

p ∼

⎧
⎪⎨

⎪⎩

exp

(
−α

m1/2
r E3/2

G
F

)
γ ≪ 1 (tunneling)

(
F

Ω
√
mrEG

)2EG/Ω
γ ≫ 1 (multi-photon)

(1)

time dependent magnetic field

Example 2: Quantum particle in oscillating B field

1

m

(
d

dt
+ η

)
v(t) = e

(
E(t) +

1

c
v ×B(t)

)

σn
xy(ω)

=
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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FIG. 1. (Color online)

T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)

Newton’s equation

z

TO, Bucciantini, PRB’16

Schrodinger equation

1

[H − i∂t] |Φα⟩ = εα|Φα⟩

|Φ(t+ T )⟩ = |Φ(t)⟩

B(t) = B0 cosΩt

H =
1

2m

[
p̂x

2 + (py −B0 cos(Ωt)x)
2
]

H =
1

2m

[
p̂x

2 + (py −Bx)2
]

−X(t)

ψL

ψR

ψ = (ψL,ψR)

jy = σyxEx, σyx =
e2

h
N

En = ωc(n+ 1/2)

lB = B−1/2

X = −ky
B

Ay = Bx

H =
1

2m
(p̂−A)2

Ψ(x, y, t) = e−iEnteikyyϕn(x+B−1ky)

1

Ay

eiφt2 =

√
3

2
eiπ/2

E2

Ω3
J2

Jm(A) ∝ Am + . . .

Jij(t) =
∑

m=0,±1,...

JJm(A)ei2πml/3e−imΩt

H(t) =
∑

⟨ij⟩

Jij(t)c
†
i ci + h.c.

Jij(t) = Jije
−iA⃗(t)·e⃗ij = Je−iA sin(Ωt−2πl/3)

A =
aeE

Ω

e−i
∫ x⃗i A⃗(x,t)·d⃗lci

H =
∑

⟨ij⟩

e
−i

∫ x⃗i
x⃗j

A⃗(x)·d⃗l
c†i ci + h.c.

B =
!

2qArea

∫

loop
A⃗(x) · d⃗l = π/2

e−i
∫
loop A⃗(x)·d⃗l = eiπ

e−i
∫ x⃗i A⃗(x)·d⃗lci

T = 2π/Ω

(
εxx(ω) εxy(ω)
εyx(ω) εyy(ω)

)
= . . .−

∑

ijk

4|tij |2|tjk|2ω(7U2 − 3ω2)

U2(U2 − ω2)3
Aijk

〈
(Ŝi × Ŝj) · Ŝk

〉

th

(
0 −i
i 0

)

=

Solvable by Husimi transformation

0



Quantization:  static B

1

Ψ(x, y, t) = e−iEnteikyyϕn(x− l2Bky)

ϕn(x) = e−x2/2l2BHn(x/lB)

lB =
√
!c/eB

B(t) = B cosΩt

H =
1

2m∗ (p̂−A)2

H =
∑

i=1,2,3

σi(p̂i −Ai)

H =
∑

i=1,2,3

γ0γi(p̂i −Ai)

→ k3σ3 + (k+)
2n∓1σ+ + (k−)

2n±1σ−

HWeyl = k3σ3 + k+σ
+ + k−σ

−

H = σ · (p−A(t))

Eλ > 2m

Jn = ∂kE
n

k → k −A(t)

E = −∂tA− ∂V

nΩ > ∆

γ =
Ω

ξF
, ξ−1 =

√
2mrEG

1

lB = B−1/2

X = −ky
B

Ay = Bx

H =
1

2m
(p̂−A)2

Ψ(x, y, t) = e−iEnteikyyϕn(x+ l2Bky)

ϕn(x) = e−x2/2l2BHn(x/lB)

lB =
√
!c/eB

B(t) = B cosΩt

H =
1

2m∗ (p̂−A)2

H =
∑

i=1,2,3

σi(p̂i −Ai)

H =
∑

i=1,2,3

γ0γi(p̂i −Ai)

→ k3σ3 + (k+)
2n∓1σ+ + (k−)

2n±1σ−

HWeyl = k3σ3 + k+σ
+ + k−σ

−

H = σ · (p−A(t))

Eλ > 2m

Jn = ∂kE
n

1

H =
1

2m

[
p̂x

2 + (py −Bx)2
]

−X(t)

ψL

ψR

ψ = (ψL,ψR)

jy = σyxEx, σyx =
e2

h
N

En = ωc(n+ 1/2)

lB = B−1/2

X = −ky
B

Ay = Bx

H =
1

2m
(p̂−A)2

Ψ(x, y, t) = e−iEnteikyyϕn(x+B−1ky)

ϕn(x) = e−x2/2l2BHn(x/lB)

lB =
√
!c/eB

B(t) = B cosΩt

H =
1

2m∗ (p̂−A)2

H =
∑

i=1,2,3

σi(p̂i −Ai)

x

momentum-position locking

1

X =
py
B

|Ψ(t)⟩ = e−iεt|Φ(t)⟩

H =
p2x
2m

+
1

2m
(py −B0 cosΩt)

2 + Ex cosΩtx (1)

=
p2x
2m

+
p2y
2m

− B0py
m

cosΩtx+ Ex cosΩtx+ . . . (2)

φ⃗(t) =
E

Ω
(cosΩt, sinΩt)

H(t) = Hspin +B(t) · S +E(t) · P

Sz
tot

Si · (Sj × Sk)

a · (Sj × Sk)

Gσσ(l) = ⟨0|c†x+lσcxσ + h.c.|0⟩ ∼ exp(−|l|/ξ)

F (t) = F cosΩt (3)

lim
U→0

ξ =
vf + U/2π

∆
(4)

ξSC =
vF
π∆

[H−1, H1]/Ω

P ∼ S · S or S × S

1

Ay

eiφt2 =

√
3

2
eiπ/2

E2

Ω3
J2

Jm(A) ∝ Am + . . .

Jij(t) =
∑

m=0,±1,...

JJm(A)ei2πml/3e−imΩt

H(t) =
∑

⟨ij⟩

Jij(t)c
†
i ci + h.c.

Jij(t) = Jije
−iA⃗(t)·e⃗ij = Je−iA sin(Ωt−2πl/3)

A =
aeE

Ω

e−i
∫ x⃗i A⃗(x,t)·d⃗lci

H =
∑

⟨ij⟩

e
−i

∫ x⃗i
x⃗j

A⃗(x)·d⃗l
c†i ci + h.c.

B =
!

2qArea

∫

loop
A⃗(x) · d⃗l = π/2

e−i
∫
loop A⃗(x)·d⃗l = eiπ

e−i
∫ x⃗i A⃗(x)·d⃗lci

T = 2π/Ω

(
εxx(ω) εxy(ω)
εyx(ω) εyy(ω)

)
= . . .−

∑

ijk

4|tij |2|tjk|2ω(7U2 − 3ω2)

U2(U2 − ω2)3
Aijk

〈
(Ŝi × Ŝj) · Ŝk

〉

th

(
0 −i
i 0

)

=

wc=qB/mec
level spacing

1

y

x

X(t)

0

yk

E

n=0

n=2

n=1

n

yk

E

n=0

n=2

n=1

E   =0x

1

n

!ωeff(n+ 1/2)

ϕn(x) ∼ e−x2/2l2Hn(x/l)

= σ0,1
yx E

1
x

m∗
e → ∞

E1
x ̸= 0

H =
1

2m
(p− e/cA)2

σ0,1
yx =

e2

h
Qαν

σ0,0
xy

Aace
−iΩt

Aac

cyclotron frequency



A. THz metamaterial

Y. Mukai, K. Tanaka, et al. (Kyoto grp.) New J. Phys.’16

1 Tesla, 1 THz!!

enhancement factor of B

cf) E-field enhancement (Liu, Nelson, Averitt, et al. Nature 12) 

How to realize                            ?

1

Ay = B cos(Ωt)x

m

(
d

dt
+ η

)
v(t) = e

(
E(t) +

1

c
v ×B(t)

)

σn
xy(ω)

=
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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FIG. 1. (Color online)

T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

① incoming laser

② resonating current

B(t)
③ resonating electromagnet



1

[H − i∂t] |Φα⟩ = εα|Φα⟩

|Φ(t+ T )⟩ = |Φ(t)⟩

B(t) = B0 cosΩt

H =
1

2m

[
p̂x

2 + (py −B0 cos(Ωt)x)
2
]

H =
1

2m

[
p̂x

2 + (py −Bx)2
]

−X(t)

ψL

ψR

ψ = (ψL,ψR)

jy = σyxEx, σyx =
e2

h
N

En = ωc(n+ 1/2)

lB = B−1/2

X = −ky
B

Ay = Bx

H =
1

2m
(p̂−A)2

Ψ(x, y, t) = e−iEnteikyyϕn(x+B−1ky)

1

Ay

eiφt2 =

√
3

2
eiπ/2

E2

Ω3
J2

Jm(A) ∝ Am + . . .

Jij(t) =
∑

m=0,±1,...

JJm(A)ei2πml/3e−imΩt

H(t) =
∑

⟨ij⟩

Jij(t)c
†
i ci + h.c.

Jij(t) = Jije
−iA⃗(t)·e⃗ij = Je−iA sin(Ωt−2πl/3)

A =
aeE

Ω

e−i
∫ x⃗i A⃗(x,t)·d⃗lci

H =
∑

⟨ij⟩

e
−i

∫ x⃗i
x⃗j

A⃗(x)·d⃗l
c†i ci + h.c.

B =
!

2qArea

∫

loop
A⃗(x) · d⃗l = π/2

e−i
∫
loop A⃗(x)·d⃗l = eiπ

e−i
∫ x⃗i A⃗(x)·d⃗lci

T = 2π/Ω

(
εxx(ω) εxy(ω)
εyx(ω) εyy(ω)

)
= . . .−

∑

ijk

4|tij |2|tjk|2ω(7U2 − 3ω2)

U2(U2 − ω2)3
Aijk

〈
(Ŝi × Ŝj) · Ŝk

〉

th

(
0 −i
i 0

)

= 1

Bz = B cos(Ωt)

Ey = BΩ sin(Ωt)x

Ay

eiφt2 =

√
3

2
eiπ/2

E2

Ω3
J2

Jm(A) ∝ Am + . . .

Jij(t) =
∑

m=0,±1,...

JJm(A)ei2πml/3e−imΩt

H(t) =
∑

⟨ij⟩

Jij(t)c
†
i ci + h.c.

Jij(t) = Jije
−iA⃗(t)·e⃗ij = Je−iA sin(Ωt−2πl/3)

A =
aeE

Ω

e−i
∫ x⃗i A⃗(x,t)·d⃗lci

H =
∑

⟨ij⟩

e
−i

∫ x⃗i
x⃗j

A⃗(x)·d⃗l
c†i ci + h.c.

B =
!

2qArea

∫

loop
A⃗(x) · d⃗l = π/2

e−i
∫
loop A⃗(x)·d⃗l = eiπ

e−i
∫ x⃗i A⃗(x)·d⃗lci

1

Bz = B cos(Ωt)

Ey = BΩ sin(Ωt)x

Ay

eiφt2 =

√
3

2
eiπ/2

E2

Ω3
J2

Jm(A) ∝ Am + . . .

Jij(t) =
∑

m=0,±1,...

JJm(A)ei2πml/3e−imΩt

H(t) =
∑

⟨ij⟩

Jij(t)c
†
i ci + h.c.

Jij(t) = Jije
−iA⃗(t)·e⃗ij = Je−iA sin(Ωt−2πl/3)

A =
aeE

Ω

e−i
∫ x⃗i A⃗(x,t)·d⃗lci

H =
∑

⟨ij⟩

e
−i

∫ x⃗i
x⃗j

A⃗(x)·d⃗l
c†i ci + h.c.

B =
!

2qArea

∫

loop
A⃗(x) · d⃗l = π/2

e−i
∫
loop A⃗(x)·d⃗l = eiπ

e−i
∫ x⃗i A⃗(x)·d⃗lci

EM-fields



Quantization:  time-oscillating B

1

[H − i∂t] |Φα⟩ = εα|Φα⟩

|Φ(t+ T )⟩ = |Φ(t)⟩

B(t) = B0 cosΩt

H =
1

2m

[
p̂x

2 + (py −B0 cos(Ωt)x)
2
]

H =
1

2m

[
p̂x

2 + (py −Bx)2
]

−X(t)

ψL

ψR

ψ = (ψL,ψR)

jy = σyxEx, σyx =
e2

h
N

En = ωc(n+ 1/2)

lB = B−1/2

X = −ky
B

Ay = Bx

H =
1

2m
(p̂−A)2

Ψ(x, y, t) = e−iEnteikyyϕn(x+B−1ky)

B0=0.2, W=1, py=5
1

|Φα(x, t)|2

[H − i∂t] |Φα⟩ = εα|Φα⟩

|Φ(t+ T )⟩ = |Φ(t)⟩

B(t) = B0 cosΩt

H =
1

2m

[
p̂x

2 + (py −B0 cos(Ωt)x)
2
]

H =
1

2m

[
p̂x

2 + (py −Bx)2
]

−X(t)

ψL

ψR

ψ = (ψL,ψR)

jy = σyxEx, σyx =
e2

h
N

En = ωc(n+ 1/2)

lB = B−1/2

X = −ky
B

Ay = Bx

H =
1

2m
(p̂−A)2

1

[H − i∂t] |Φα⟩ = εα|Φα⟩

B(t) = B0 cosΩt

H =
1

2m

[
p̂x

2 + (py −B(t)x)2
]

H =
1

2m

[
p̂x

2 + (py −Bx)2
]

−X(t)

ψL

ψR

ψ = (ψL,ψR)

jy = σyxEx, σyx =
e2

h
N

En = ωc(n+ 1/2)

lB = B−1/2

X = −ky
B

Ay = Bx

H =
1

2m
(p̂−A)2

Ψ(x, y, t) = e−iEnteikyyϕn(x+B−1ky)

ϕn(x) = e−x2/2l2BHn(x/lB)

lB =
√
!c/eB

Floquet state

x

1

Ay

eiφt2 =

√
3

2
eiπ/2

E2

Ω3
J2

Jm(A) ∝ Am + . . .

Jij(t) =
∑

m=0,±1,...

JJm(A)ei2πml/3e−imΩt

H(t) =
∑

⟨ij⟩

Jij(t)c
†
i ci + h.c.

Jij(t) = Jije
−iA⃗(t)·e⃗ij = Je−iA sin(Ωt−2πl/3)

A =
aeE

Ω

e−i
∫ x⃗i A⃗(x,t)·d⃗lci

H =
∑

⟨ij⟩

e
−i

∫ x⃗i
x⃗j

A⃗(x)·d⃗l
c†i ci + h.c.

B =
!

2qArea

∫

loop
A⃗(x) · d⃗l = π/2

e−i
∫
loop A⃗(x)·d⃗l = eiπ

e−i
∫ x⃗i A⃗(x)·d⃗lci

T = 2π/Ω

(
εxx(ω) εxy(ω)
εyx(ω) εyy(ω)

)
= . . .−

∑

ijk

4|tij |2|tjk|2ω(7U2 − 3ω2)

U2(U2 − ω2)3
Aijk

〈
(Ŝi × Ŝj) · Ŝk

〉

th

(
0 −i
i 0

)

=

dotted line

wave function

Floquet theory
see A. Eckardt RMP’16 

Solvable by Husimi transformation



Quantization:  time-oscillating B

1

[H − i∂t] |Φα⟩ = εα|Φα⟩

|Φ(t+ T )⟩ = |Φ(t)⟩

B(t) = B0 cosΩt

H =
1

2m

[
p̂x

2 + (py −B0 cos(Ωt)x)
2
]

H =
1

2m

[
p̂x

2 + (py −Bx)2
]

−X(t)

ψL

ψR

ψ = (ψL,ψR)

jy = σyxEx, σyx =
e2

h
N

En = ωc(n+ 1/2)

lB = B−1/2

X = −ky
B

Ay = Bx

H =
1

2m
(p̂−A)2

Ψ(x, y, t) = e−iEnteikyyϕn(x+B−1ky)

1

[H − i∂t] |Φα⟩ = εα|Φα⟩

B(t) = B0 cosΩt

H =
1

2m

[
p̂x

2 + (py −B(t)x)2
]

H =
1

2m

[
p̂x

2 + (py −Bx)2
]

−X(t)

ψL

ψR

ψ = (ψL,ψR)

jy = σyxEx, σyx =
e2

h
N

En = ωc(n+ 1/2)

lB = B−1/2

X = −ky
B

Ay = Bx

H =
1

2m
(p̂−A)2

Ψ(x, y, t) = e−iEnteikyyϕn(x+B−1ky)

ϕn(x) = e−x2/2l2BHn(x/lB)

lB =
√
!c/eB

B0=1.89, W=1, py=5

Floquet state

1

|Φα(x, t)|2

[H − i∂t] |Φα⟩ = εα|Φα⟩

|Φ(t+ T )⟩ = |Φ(t)⟩

B(t) = B0 cosΩt

H =
1

2m

[
p̂x

2 + (py −B0 cos(Ωt)x)
2
]

H =
1

2m

[
p̂x

2 + (py −Bx)2
]

−X(t)

ψL

ψR

ψ = (ψL,ψR)

jy = σyxEx, σyx =
e2

h
N

En = ωc(n+ 1/2)

lB = B−1/2

X = −ky
B

Ay = Bx

H =
1

2m
(p̂−A)2

x

1

Ay

eiφt2 =

√
3

2
eiπ/2

E2

Ω3
J2

Jm(A) ∝ Am + . . .

Jij(t) =
∑

m=0,±1,...

JJm(A)ei2πml/3e−imΩt

H(t) =
∑

⟨ij⟩

Jij(t)c
†
i ci + h.c.

Jij(t) = Jije
−iA⃗(t)·e⃗ij = Je−iA sin(Ωt−2πl/3)

A =
aeE

Ω

e−i
∫ x⃗i A⃗(x,t)·d⃗lci

H =
∑

⟨ij⟩

e
−i

∫ x⃗i
x⃗j

A⃗(x)·d⃗l
c†i ci + h.c.

B =
!

2qArea

∫

loop
A⃗(x) · d⃗l = π/2
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0,±1,±2, . . . represents replica states (“photon-absorbed
state”).
Using the transformation by T. Taniuti and K.
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α 1 2 3 4
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Qα 0.22 0.15 0.12

TABLE I. The values for the constant Qα are reported for
the first three rqα.
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as a function of r.

The effective mass diverges at r = rqα resulting in a Landau
quantization.

jy = 1
LxLy

∑
ky

fn(ky)Jy(ky) and given that the distri-

bution is even in ky due to the invariance under time
reversal, we obtain a linear relation

jy = σ0,1
yx E

1
x. (13)

The heterodyne Hall coefficient is given by

σ0,1
yx =

e2

h
Qν, (14)

where ν = Ne/NΦ is the Landau level filling defined as
the ratio of the electron density Ne and the level degen-
eracy

NΦ =
LxLy

2πl2Br
2max ξ

(15)

obtained by imposing the wave packet center (10) to be
within the strip, i.e., X(t) ∈ [−Lx/2, Lx/2] for E1

x =
0, where max ξ is the maximum of ξ during the time

evolution. The factor Q =
(
1− me

m∗
e

)
/
(
2r2maxξ

)
is a

function of r.
The heterodyne transverse Hall conductivity which is

non vanishing unless me = m∗
e. This is to be com-

pared with the Hall conductivity σ0,1
yx = e2ν

h in traditional
IQHE1,17. The difference lies in the term Qα which is
listed in Table I.

There are several features of these plots that still need
to be understood. Among these, is the fact that the
change of sign of the charge carriers (when me

m∗
e
= 0) does

not coincide with the change of sign of the Jy current
which happens at me

m∗
e
= 1.Finish

Within the realm of non equilibrium phenomena in
topological materials, there are some interesting and new
phenomena, connected to the physics presented in this
Latter, that can be addressed, both experimentally and
theoretically. Among these, the study of the Kubo formu-
las and related topological invariants for Weyl semimetals
and graphene is certainly in the list.
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There are several features of these plots that still need
to be understood. Among these, is the fact that the
change of sign of the charge carriers (when me

m∗
e
= 0) does

not coincide with the change of sign of the Jy current
which happens at me

m∗
e
= 1.Finish

Within the realm of non equilibrium phenomena in
topological materials, there are some interesting and new
phenomena, connected to the physics presented in this
Latter, that can be addressed, both experimentally and
theoretically. Among these, the study of the Kubo formu-
las and related topological invariants for Weyl semimetals
and graphene is certainly in the list.
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Integer heterodyne Hall effect 
pre-factor Q is non-universal
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(Ŝi × Ŝj) · Ŝk
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Ŝi · Ŝj −
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1
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H = σ · (p−A(t))
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Jn = ∂kE
n

k → k −A(t)

E = −∂tA− ∂V

nΩ > ∆
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(1)

time dependent magnetic field

Example3: 2D Dirac electron in oscillating B field

z

TO, Kitamura, Nag, Saha, Bucciantini, in prep

Dirac equation
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graphene, surface of 3D TI, …
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honeycomb, zigzag edgeW=0.6, B/a=0.000,  Ex=0.0

Spectrum

ky

1

A(k,ω) =
−1

π
ImTrP̂static

1

ω − Ĥk + iδ

HDirac = σx(p̂x −Ax(t)) + σy(py −B cosΩtx)

σ−1
yx (Ω) =

Ay = B cos(Ωt)x

m
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d

dt
+ η
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v(t) = e
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E(t) +

1

c
v ×B(t)

)

σn
xy(ω)

=
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.

heffS
z

Jije
−iφij

T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)



honeycomb, zigzag edgeW=0.6, B/a=0.0010,  Ex=0.0

Spectrum

ky

1

A(k,ω) =
−1

π
ImTrP̂static

1

ω − Ĥk + iδ

HDirac = σx(p̂x −Ax(t)) + σy(py −B cosΩtx)

σ−1
yx (Ω) =

Ay = B cos(Ωt)x
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(
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v(t) = e

(
E(t) +

1

c
v ×B(t)

)

σn
xy(ω)

=
∑
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σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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honeycomb, zigzag edgeW=0.6, B/a=0.0020,  Ex=0.0

Spectrum

ky

1

A(k,ω) =
−1
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ImTrP̂static

1

ω − Ĥk + iδ

HDirac = σx(p̂x −Ax(t)) + σy(py −B cosΩtx)
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= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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honeycomb, zigzag edgeW=0.6, B/a=0.0030,  Ex=0.0

Spectrum

ky

1

A(k,ω) =
−1

π
ImTrP̂static

1

ω − Ĥk + iδ

HDirac = σx(p̂x −Ax(t)) + σy(py −B cosΩtx)

σ−1
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σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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zigzagW=0.6, B/a=0.0030,  Ex=0.0

Spectrum

W/2

-W/2

W

• p-Flat bands at e=±W/2
• A series of bands around them
• electron-hole resonant state

preserved 

1

A(k,ω) =
−1

π
ImTrP̂static

1

ω − Ĥk + iδ

HDirac = σx(p̂x −Ax(t)) + σy(py −B cosΩtx)
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)
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= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.

heffS
z

Jije
−iφij

T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)

“p-Landau levels”

Dirac node
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Effective Hamiltonian

“p-Landau levels”
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−iA⃗(t)·e⃗ij = Je−iA sin(Ωt−2πl/3)

A =
aeE

Ω

e−i
∫ x⃗i A⃗(x,t)·d⃗lci

H =
∑

⟨ij⟩

e
−i

∫ x⃗i
x⃗j

A⃗(x)·d⃗l
c†i ci + h.c.

B =
!

2qArea

∫

loop
A⃗(x) · d⃗l = π/2

e−i
∫
loop A⃗(x)·d⃗l = eiπ

rotating frame transformation

Landau levels of 2D Dirac system
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The flat band is protected by time-glide symmetry (Morimoto-Po-Vishwanath’17)

localized @ center
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−

H = σ · (p−A(t))

Eλ > 2m

Jn = ∂kE
n

k → k −A(t)

E = −∂tA− ∂V
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γ =
Ω

ξF
, ξ−1 =

√
2mrEG

E(t) = F cos(Ωt)

p ∼

⎧
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G
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)
γ ≪ 1 (tunneling)

(
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Ω
√
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γ ≫ 1 (multi-photon)

(1)

time dependent magnetic field

z
1

Ex = E1
x cosΩt

A(k,ω) =
−1

π
ImTrP̂static

1

ω − Ĥk + iδ

HDirac = σx(p̂x −Ax(t)) + σy(py −B cosΩtx)

σ−1
yx (Ω) =

Ay = B cos(Ωt)x

m

(
d

dt
+ η

)
v(t) = e

(
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c
v ×B(t)

)

σn
xy(ω)

=
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= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
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Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.

heffS
z

Jije
−iφij
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Heterodyne Hall effect

additional ac-electric field



Heterodyne Hall effect (add B and E)

honeycomb, zigzag edgeW=0.6, B/a=0.0020,  Ex=0.20

ky



honeycomb, zigzag edgeW=0.6, B/a=0.0020,  Ex=0.20

ky

W/2

-W/2

W

p-Flat bands at e=±W/2 tilts
=  p-chiral “center” mode
→ current in y-direction    

axial chiral magnetic effect-like band
→ current in (-y)-direction  

“p-Landau levels”

Dirac node

CME: 3D Weyl in E,B fields
Fukushima-Kharzeev-Warringa’08

Heterodyne Hall effect (add B and E)

cf) p-edge state: Rudner-Lindner-Berg-Levin ‘13



Heterodyne Hall effect

honeycomb, zigzag edgeW=0.6, B/a=0.0020,  Ex=0.20

ky

chiral center state

axial CME state



Summary

TO, Bucciantini, PRB’16
TO, Kitamura, Nag, Saha, Bucciantini in prep

1

σn
xy(ω)

=
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

σ(t− t′)

ja(t) =

∫
dt′σab(t, t

′)Eb(ω)e
−iωt′ (1)

Tr-ARPES is a powerful method to experimentally observe the Floquet bands. The static spectral function gives
an approximation if the bands are initially fully occupied and the laser is turned on suddenly. It is defined by
A(k, ε) = −π−1Tr{(ε + iδ)I − Hk}−1, where H is the Floquet Hamiltonian, Tr denotes the trace over Floquet and
internal states and δ is a small real number, see ref. [? ] for details. As shown in Fig. ??, where we considered an
initial state with the four original Dirac bands fully occupied, most of the spectral weight is concentrated near original
Dirac bands even for A/Ω ̸= 0; in particular, the annihilation process at A/Ω = 0.5 has enough spectral weight to be
experimentally observable.
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FIG. 1. (Color online)

T̂ e−i
∫ t
0 H(s)ds|Ψ(0)⟩

δHeff ∝ i(E∗ × E)(axial field)

δHeff ∝ i(E∗ × E)(scalar chirality)

1

y

x

X(t)

0

yk

E

n=0

n=2

n=1

n

yk

E

n=0

n=2

n=1

E   =0x

1

n

!ωeff(n+ 1/2)

ϕn(x) ∼ e−x2/2l2Hn(x/l)

= σ0,1
yx E

1
x

m∗
e → ∞

E1
x ̸= 0

H =
1

2m
(p− e/cA)2

σ0,1
yx =

e2

h
Qαν

σ0,0
xy

Aace
−iΩt

Aac

• Heterodyne Hall effect in three examples was studied
• They are characterized by the heterodyne response functions

classical particle quantum 2DEG quantum 2DDirac

ongoing: Relation with topology, interaction (fractional state)



Heterodyne Kubo formula 1

Jn
i (ω) = σn

ij(ω)Ej(ω) (1)

σn
ij(ω) =

1

iω

∑

k,α,β,m

fβ

{
[εkα − εkβ −mΩ][(εkα − εkβ) + (n−m)Ω]

(εkα − εkβ) + (n−m)Ω− ω − iδ
Am

βiαA
(n−m)
αjβ (2)

− [εkβ − εkα −mΩ][(εkβ − εkα) + (n−m)Ω]

(εkβ − εkα) + (n−m)Ω− ω − iδ
Am

αiβA
(n−m)
βjα

}

(3)

σ0
xx(0) = 0

σ−1
xy (Ω) ∼

1

B

εn =
√

Ω2 − p2z
√
Bn± Ω/2

σn,m
ab = σn−m

ab (mΩ)

Ex = E1
x cosΩt

A(k,ω) =
−1

π
ImTrP̂static

1

ω − Ĥk + iδ

HDirac = σx(p̂x −Ax(t)) + σy(py −B cosΩtx)

σ−1
yx (Ω) =

Ay = B cos(Ωt)x

m

(
d

dt
+ η

)
v(t) = e

(
E(t) +

1

c
v ×B(t)

)

σn
xy(ω)

ja(t) =
∑

n

σn
ab(ω)e

−i(ω+nΩ)tEb(ω)

= σab(ω)Eb(ω)e
−iωt′

2

I. HETERODYNE KUBO FORMULA

ji(t) =

ˆ
dt′σij(t, t

′)Ej(t
′) (1)

According to Dehghani-Oka-Mitra, the conductivity is related to the current-current correlation function

σij(t, t
′) = Rij(t, t

′)/(iω) (2)

where

Rij(q = 0, t, t′) = −iθ(t− t′)⟨Ψ0(t0)|
[
jiq(=0)I(t), j

j
−q(=0)I(t

′)
]
|Ψ(t0)⟩ (3)

= −iθ(t− t′)
∑

k,α,β,m,m′

eimΩt+im′Ωt′e−i(εkα−εkβ)(t−t′) (4)

×Am
βiαAm′

αjβ [εkα − εkβ −mΩ][−(εkα − εkβ)−m′Ω]
[
⟨γ†kβγkβ⟩ − ⟨γ†kαγkα⟩

]

Lets assume that the input signal has frequency ω, i.e

Aj(t
′) = iωEj(t

′) = iωEj(ω)e
−iωt′ . (5)

Then, by defining

fkα = ⟨γ†kαγkβ⟩ (6)

the Floquet distribution function, we can express

ˆ
dt′Rij(t, t

′)Aj(ω)e
−iωt′ =

ˆ t

−∞
dt′(−i)

∑

k,α,β,m,m′

eimΩt+im′Ωt′e−i(εkα−εkβ)(t−t′) (7)

×Am
βiαAm′

αjβ [εkα − εkβ −mΩ][−(εkα − εkβ)−m′Ω](fkβ − fkα)Aj(ω)e
−iωt′

= −i
∑

k,α,β,m,m′

ˆ t

−∞
e−i{(ω+iδ−m′Ω−(εkα−εkβ)}t′dt′e−i{(εkα−εkβ)−mΩ}t (8)

×Am
βiαAm′

αjβ [εkα − εkβ −mΩ][−(εkα − εkβ)−m′Ω](fkβ − fkα)Aj(ω) (9)

= −i
∑

k,α,β,m,m′

1

−i{(ω + iδ −m′Ω− (εkα − εkβ)}
e−i{(ω−m′Ω−(εkα−εkβ)}te−i{(εkα−εkβ)−mΩ}t(10)

×Am
βiαAm′

αjβ [εkα − εkβ −mΩ][−(εkα − εkβ)−m′Ω](fkβ − fkα)Aj(ω)

= −i
∑

k,α,β,m,m′

1

−i{(ω + iδ −m′Ω− (εkα − εkβ)}
e−i{ω−(m+m′)Ω}t (11)

×Am
βiαAm′

αjβ [εkα − εkβ −mΩ][−(εkα − εkβ)−m′Ω](fkβ − fkα)Aj(ω)

=
∑

n

Jn
i (ω)e

−i{ω+nΩ}t (12)

The artificial gauge field is defined as

⟨φkβ(t)|∂kiφkα(t)⟩ =
∑

m

eimΩtAm
βiα (13)

Thus, for the output current, we have

Ji(t) =

ˆ
dt′σij(t, t

′)Ej(t
′) (14)

=
∑

n

Jn
i (ω)e

−i{ω+nΩ}t, (15)



time dependent problem

Floquet theory (non-perturbative in driving)
review: A. Eckardt, RMP’16

eigenvalue problem 1

ψ(t) = e−iεtφ(t)

φ(t+ T ) = φ(t)

Kφα = εαφα

K = H(t)− i∂t

(H(t)− i∂t)φ = εφ

H0 =
1

T

∫ T

0
H(t) = −J0(A)J

∑

⟨ij⟩

(
c†i cj + h.c.

)

J → J0(A)J

A(t) = A(cosΩt, sinΩt)

H(t) = −J
∑

⟨ij⟩

(
e−iAij(t)c†i cj + h.c.

)

H(t) = −J
∑

i

(
e−iθ(t)A cosΩtc†i+1ci + h.c.

)

py = 0

jy

En

εn(py) = En +
p2y
2m∗

e

|Φα(x, t)|2

[H − i∂t] |Φα⟩ = εα|Φα⟩

1

ψ(t) = e−iεtφ(t)

φ(t+ T ) = φ(t)

Kφα = εαφα

K = H(t)− i∂t

(H(t)− i∂t)φ = εφ

H0 =
1

T

∫ T

0
H(t) = −J0(A)J

∑

⟨ij⟩

(
c†i cj + h.c.

)

J → J0(A)J

A(t) = A(cosΩt, sinΩt)

H(t) = −J
∑

⟨ij⟩

(
e−iAij(t)c†i cj + h.c.

)

H(t) = −J
∑

i

(
e−iθ(t)A cosΩtc†i+1ci + h.c.

)

py = 0

jy

En

εn(py) = En +
p2y
2m∗

e

|Φα(x, t)|2

[H − i∂t] |Φα⟩ = εα|Φα⟩

Floquet state

1

Hm =
1

T

∫ T

0
H(t)eimΩtdt

ψ(t) = e−iεtφ(t)

φ(t+ T ) = φ(t)

Hφα = εαφα

H = H(t)− i∂t

(H(t)− i∂t)φ = εφ

H0 =
1

T

∫ T

0
H(t) = −J0(A)J

∑

⟨ij⟩

(
c†i cj + h.c.

)

J → J0(A)J

A(t) = A(cosΩt, sinΩt)

H(t) = −J
∑

⟨ij⟩

(
e−iAij(t)c†i cj + h.c.

)

H(t) = −J
∑

i

(
e−iθ(t)A cosΩtc†i+1ci + h.c.

)

py = 0

jy

En

εn(py) = En +
p2y
2m∗

e

|Φα(x, t)|2

1

Hm =
1

T

∫ T

0
H(t)eimΩtdt

ψ(t) = e−iεtφ(t)

φ(t+ T ) = φ(t)

Hφα = εαφα

H = H(t)− i∂t

(H(t)− i∂t)φ = εφ

H0 =
1

T

∫ T

0
H(t) = −J0(A)J

∑

⟨ij⟩

(
c†i cj + h.c.

)

J → J0(A)J

A(t) = A(cosΩt, sinΩt)

H(t) = −J
∑

⟨ij⟩

(
e−iAij(t)c†i cj + h.c.

)

H(t) = −J
∑

i

(
e−iθ(t)A cosΩtc†i+1ci + h.c.

)

py = 0

jy

En

εn(py) = En +
p2y
2m∗

e

|Φα(x, t)|2

~ absorption of m “photons”

e: Floquet quasi-energy

Floquet Hamiltonian

Fourier transformation
1

φ(t) =
∑

m

φme−imΩt

δHFaraday = βICPLS
z

δHeff = αICPLχ+ . . .

χ = Si · (Sj × Sk)

Hm =
1

T

∫ T

0
H(t)eimΩtdt

ψ(t) = e−iεtφ(t)

φ(t+ T ) = φ(t)

Hφα = εαφα

H = H(t)− i∂t

(H(t)− i∂t)φ = εφ

H0 =
1

T

∫ T

0
H(t) = −J0(A)J

∑

⟨ij⟩

(
c†i cj + h.c.

)

J → J0(A)J

A(t) = A(cosΩt, sinΩt)

H(t) = −J
∑

⟨ij⟩

(
e−iAij(t)c†i cj + h.c.

)

H(t) = −J
∑

i

(
e−iθ(t)A cosΩtc†i+1ci + h.c.

)

py = 0

general theory 1/3



How to construct the effective Hamiltonian?

1

Heff = i lnU(T )/T

H|Φ(t)⟩ = ε|Φ(t)⟩

H = H(t)− i∂t

φ(t) = −F

Ω
sinΩt

φ(t) = −Ft

Ji,j(t) = Ji,j exp

(
−i

∫ Ri

Rj

A(t) · dr
)

tR,L = e±Ψ

H(t) = −J
∑

i,σ

(
eiφ(t)c†i+1σciσ + e−iφ(t)c†i−1σciσ

)
+ U

∑

i

ni↑ni↓

H(t) = −J
∑

i,σ

(
c†i+1σciσ + e−iφ(t)c†i−1σciσ

)
+ U

∑

i

ni↑ni↓

=
∑

k

Λ(k)

A(ω,k) = − 1

π
TrImG(ω,k)

G(ω,k)−1 =

(
G1D(ω, kx)−1 −4g sin kx sin ky

−4g sin kx sin ky G1D(ω, ky)−1

)
, (1)

G1D(ω, ki)
−1 = ω + 2t cos ki − Σ(ω, ki), (2)

G1D(ω, kx)
−1 = ω + 2t cos kx − Σ(ω, kx), (3)

Σ(ω, ki) =
∆2

ω − 2t cos ki

En = !ωc(n+ 1/2)

• Mathematically ill defined in many-body systems
• Many expansion schemes (non-convergent)

Pershan, van der Ziel, Malmstrom Phys. Rev. 1966(i) 2nd order perturbation

(ii) 1/W expansions  (van Vleck, Floquet-Magnus, Brillouin-Wigner) 1

Heff = H0 +
∑

m>0

[H−m, Hm]

mΩ
+ . . .

HW,±
eff =

(
|k|− Ω+A2 |k|2 + k23 ± Ωk3

|k|(4|k|2 − Ω2)

)
σ3 − A2(|k|+ k3)±1

2|k|Ω(2|k|− Ω)
(k2∓1

+ σ+ + h.c.)

HB→∞ = ψ̄
[
γ3pz + γ4λ sinΩt+ ξ cosΩt

]
ψ

ξ =
√
B(x+ py/B), a† =

1√
2
(ξ − d

dξ
), a =

1√
2
(ξ +

d

dξ
)

a†|n⟩ =
√
n+ 1|n+ 1⟩, a|n⟩ =

√
n|n− 1⟩

= ψ̄
[
γ1(−i

√
B/2)(a† − a) + γ2

√
B/2(a† + a) + γ3pz + γ4λ sinΩt+ ξ cosΩt

]
ψ

H = ψ̄
[
γ1i∂1 + γ2(py +Bx) + γ3pz + γ4λ sinΩt+ ξ cosΩt

]
ψ

J =
1

4π2
ΩB

x4 = i∂τ

τ = Ωt

K(= H − i∂t) = ψ̄
[
γi(i∂i −Ai) + γ4λ sin τ + ξ cos τ − γ0Ωi∂τ

]
ψ

H = ψ̄
[
γi(i∂i −Ai) + γ4λ sinΩt+ ξ cosΩt

]
ψ

H = ψ̄
[
γi(i∂i −Ai)−m+ γ4λ sinΩt+ ξ cosΩt

]
ψ

Seff = −1

2
sgn(m)SCS = − 1

192π2
sgn(m)

∫
A ∧ F ∧ F

γ4 = iγ5 = −γ0γ1γ2γ3

HWerner = ψ̄
[
γi(i∂i −Ai)−m+ γ4(i∂4 −A4)

]
ψ

(iii) 1/(DEab-nW), 1/(U-nW) expansions  (Brillouin-Wigner, …)

general theory 2/3

relations between schemes: Mikami, et al. PRB ’16



Brillouin-Wigner expansion

higher order monopoles in the Floquet Weyl semimetal

general theory 3/3

1

HW,±
eff =

(
|k|− Ω+A2 |k|2 + k23 ± Ωk3

|k|(4|k|2 − Ω2)

)
σ3 − A2(|k|+ k3)±1

2|k|Ω(2|k|− Ω)
(k2∓1

+ σ+ + h.c.)

HB→∞ = ψ̄
[
γ3pz + γ4λ sinΩt+ ξ cosΩt

]
ψ

ξ =
√
B(x+ py/B), a† =

1√
2
(ξ − d

dξ
), a =

1√
2
(ξ +

d

dξ
)

a†|n⟩ =
√
n+ 1|n+ 1⟩, a|n⟩ =

√
n|n− 1⟩

= ψ̄
[
γ1(−i

√
B/2)(a† − a) + γ2

√
B/2(a† + a) + γ3pz + γ4λ sinΩt+ ξ cosΩt

]
ψ

H = ψ̄
[
γ1i∂1 + γ2(py +Bx) + γ3pz + γ4λ sinΩt+ ξ cosΩt

]
ψ

J =
1

4π2
ΩB

x4 = i∂τ

τ = Ωt

K(= H − i∂t) = ψ̄
[
γi(i∂i −Ai) + γ4λ sin τ + ξ cos τ − γ0Ωi∂τ

]
ψ

H = ψ̄
[
γi(i∂i −Ai) + γ4λ sinΩt+ ξ cosΩt

]
ψ

H = ψ̄
[
γi(i∂i −Ai)−m+ γ4λ sinΩt+ ξ cosΩt

]
ψ

Seff = −1

2
sgn(m)SCS = − 1

192π2
sgn(m)

∫
A ∧ F ∧ F

γ4 = iγ5 = −γ0γ1γ2γ3

HWerner = ψ̄
[
γi(i∂i −Ai)−m+ γ4(i∂4 −A4)

]
ψ

H(t) = HDirac +Hext

Bucciantini, Roy, Kitamura, Oka, arXiv’16 (appendix)

Projection I

Projection II

1/W expansions  

1

Heff = H0 +
∑

m>0

[H−m, Hm]

mΩ
+ . . .

HW,±
eff =

(
|k|− Ω+A2 |k|2 + k23 ± Ωk3

|k|(4|k|2 − Ω2)

)
σ3 − A2(|k|+ k3)±1

2|k|Ω(2|k|− Ω)
(k2∓1

+ σ+ + h.c.)

HB→∞ = ψ̄
[
γ3pz + γ4λ sinΩt+ ξ cosΩt

]
ψ

ξ =
√
B(x+ py/B), a† =

1√
2
(ξ − d

dξ
), a =

1√
2
(ξ +

d

dξ
)

a†|n⟩ =
√
n+ 1|n+ 1⟩, a|n⟩ =

√
n|n− 1⟩

= ψ̄
[
γ1(−i

√
B/2)(a† − a) + γ2

√
B/2(a† + a) + γ3pz + γ4λ sinΩt+ ξ cosΩt

]
ψ

H = ψ̄
[
γ1i∂1 + γ2(py +Bx) + γ3pz + γ4λ sinΩt+ ξ cosΩt

]
ψ

J =
1

4π2
ΩB

x4 = i∂τ

τ = Ωt

K(= H − i∂t) = ψ̄
[
γi(i∂i −Ai) + γ4λ sin τ + ξ cos τ − γ0Ωi∂τ

]
ψ

H = ψ̄
[
γi(i∂i −Ai) + γ4λ sinΩt+ ξ cosΩt

]
ψ

H = ψ̄
[
γi(i∂i −Ai)−m+ γ4λ sinΩt+ ξ cosΩt

]
ψ

Seff = −1

2
sgn(m)SCS = − 1

192π2
sgn(m)

∫
A ∧ F ∧ F

γ4 = iγ5 = −γ0γ1γ2γ3

HWerner = ψ̄
[
γi(i∂i −Ai)−m+ γ4(i∂4 −A4)

]
ψ

Mikami et al. PRB’16

P
P=

different from Magnus expansion  

Q=1-P



Husimi transformation

= driven Harmonic oscillator with an oscillating potential

(ii) Classical driven oscillator(i) Quantum oscillator without driving

Husimi (Taniuti) PTP ’53

solution

pseudo-energy

+

3

motion discussed above. In the Landau gauge A = (0, Bzx), the quantum Hamiltonian can be written as H(t) =
!2k2

y

2me
+H0(t)− F (t)x, where translational invariance in the y-direction is assumed, and

H0(t) =
p2x
2me

+
me(ω(t))2

2
x2 (5)

represents a quantum harmonic oscillator with an oscillating potential ω(t) = ωc cosΩt. The driving term is given by
F (t) = ω(t)!ky − qEx(t), where Ex represents the electric field applied in the x-direction. Using the time periodicity
of the Hamiltonian H(t+T ) = H(t) for T = 2π/Ω, we seek for a solution of the time dependent Schrödinger equation
in the Floquet form

Ψn(x, t) = e−
i
!EntΦn(x, t), (6)

where Φn(x, t) is a periodic function in time and En is the Floquet quasi-energy. Using the transformation by T.
Taniuti and K. Husimi [12], the Floquet state is given as

Φn(x, t) = eikyyϕn(x−X(t), t) (7)

× exp

[
i

!{meẊ(t)(x−X(t)) +

∫ t

0
dt′L(t′)− L0t}

]
,

where the orbital is obtained by solving the eigenvalue problem

[
H0(t)− ! ∂

∂t

]
ϕn(x, t) = εnϕn(x, t), (8)

for the un-driven Hamiltonian (5). We label the Floquet states with a combined index α = (i,m) where the integer
m = 0,±1,±2, . . . represents replica states (”photon-absorbed state”). We remove this redundancy by choosing the
m = 0 states to be in the 1st Brillouin Zone, i.e., −!Ω/2 < E(i,0) ≤ !Ω/2 and Eα = E(i,m) = E(i,0) +m!Ω. The
center of mass variable X(t) satisfies a classical equation of motion

meẌ +meω(t)
2X = F (t) (9)

and

L =
1

2
meẊ

2 − 1

2
meω(t)

2X2 +XF (t) (10)

is its classical Lagrangian and L0 = 1
T

∫ T
0 L(t′)dt′ is its average integral performed with the solution over a unit

period. It is convenient to introduce a dimensionless variable ξ by
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