YIPQS long-term and Nishinomiya-Yukawa memorial workshop Novel Quantum States in Condensed Matter 2017 at Kyoto on Oct. 23- Nov. 24., 2017

Quantum Spin Liquid of the Kagomeand Triangular-Lattice Antiferromagnets and Related Materials - Spin gap issue -Toru SAKAI^{1,2}, Hiroki NAKANO¹ ¹University of Hyogo, Japan ²QST SPring-8, Japan

TS and H. Nakano: PRB 83 (2011) 100405(R) (arXiv:1102.3486) H. Nakano and TS: JPSJ 80 (2011) 053704 (arXiv: 1103.5829) H. Nakano, Y.Hasegawa, and TS, JPSJ **84,** 114703 (2015) H. Nakano and TS: J. Phys.: Conf. Series 868 (2017) 012006 TS and H. Nakano: in preparation

SPring-8

Candidates of Quantum Spin Fluid 2D frustrated systems

• S=1/2 Heisenberg antiferromagnets $H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$

Triangular lattice

120 degree LRO

Kagome lattice

No (conventional) LRO

Kagome lattice

Itiro Syôzi: Statistics of Kagomé Lattice, PTP 6 (1951)306

kagome

Corner sharing triangles

S=1/2 Kagome Lattice AF

- Herbertsmithite ZnCu₃(OH)₆Cl₂ impurities Shores et al. J. Am. Chem. Soc. 127 (2005) 13426
- Volborthite CuV₂O₇(OH)₂•2H₂O lattice distortion
 Hiroi et al. J. Phys. Soc. Jpn. 70 (2001) 3377
- Vesignieite BaCu₃V₂O₈(OH)₂ ideal ?

Okamoto et al. J. Phys. Soc. Jpn. 78 (2009) 033701

Spin gap issue of kagome-lattice AF

<u>Gapped theories</u> Valence Bond Crystal (VBC) MERA[Vidal]

Z₂ Topological Spin Liquid [Sachdev (1992)]

DMRG [White (2011)]

Chiral Liquid [Messio et al. PRL 108 (2012) 207204]

Gapless theories

U(1) Dirac Spin Liquid[Ran et al. PRL 98 (2007) 117205] Variational method [Iqbal, Poilblanc, Becca, PRB 89 (2014) 020407] DMRG [He et al. PRX 7 (2017) 031020]

Single crystal of herbertsmithite T. Han, S. Chu, Y. S. Lee: PRL 108 (2012) 157202

$ZnCu_3(OH)_6Cl_2$

Inelastic neutron scattering: Spin gap < J/70 Gapless

M. Fu, T. Imai, T.-H. Han, Y. S. Lee: Science 350 (2015) 655 NMR: Gapped

Methods Frustration Exotic phenomena

Kagome lattice

Triangular lattice

Pyrochlore lattice

Numerical approach

Numerical diagonalization

Quantum Monte Carlo (negative sign problem) Density Matrix Renormalization Group (not good for dimensions larger than one)

Computational costs

N=42, total Sz=0

Dimension of subspace d = 538,257,874,440

Δ= 0.14909214 cf. A. Laeuchli cond-mat/1103.1159 Memory cost

> d * 8 Bytes * at least 3 vectors ~ 13TB 4 vectors ~ 20TB

Time cost

d * # of bonds * # of iterations

d increases exponentially with respect to *N*. Parallelization with respect to *d*

Numerical diagonalizations of finite-size clusters up to N_s=42

Analysis of our finite-size gaps

H. Nakano and TS: JPSJ 80 (2011) 053704 (arXiv: 1103.5829)

Gapless or Gapped ? Susceptibility analysis Field derivative of magnetization $\chi \propto \frac{\partial M}{\partial H}$ at M=0 Mas a function of m = $\overline{M_{\rm s}}$

 $\chi = dm/dh = 1/\epsilon''(m) \rightarrow 0 \text{ for } \Delta \neq 0 N \rightarrow \infty$

 $\begin{array}{l} (E(M+1)-E(M))-(E(M)-E(M-1)) \sim \epsilon''(m)/N\\ m=0 \downarrow\\ 2 \Delta \sim \epsilon''(m)/N \end{array}$

 $E(M+1)-E(M) \sim \epsilon'(m) + \epsilon''(m)/2N + \cdots$

 $E(M)/N \sim \varepsilon(m) (N \rightarrow \infty) \qquad m=M/N$

Demonstration of analysis Dimerized Square Lattice

$$\alpha = J_2/J_1$$

α=1: square lattice, LRO, gapless

α=0.52337(3): critical

Matsumoto et al: PRB**65**(2001) 014407

α=0: isolated dimers gapped

Magnetization processes

Gapless

Gapped

Differential susceptibility vs. M

Gapless

Gapped

Size dependence of χ at M=0

Gapless

Gapped

Kagome-lattice Heisenberg AF

Kagome lattice AF Differential susceptibility vs. M

Size dependence of χ at M=0

Conclusion

 "Susceptibility analysis" confirmed that S=1/2 kagome-lattice AF is gapless,

as well as S=1/2 triangular-lattice AF.

• In order to confirm it, we should do the numerical diagonalization of larger-size clusters than 42 spins.

K-Computer

1/3 magnetization plateau of triangular lattice AF

Next-nearest-neighbor interactions

Purpose of this study

is to study how the m=1/3 state behaves when the next-nearest-neighbor interaction is controlled.

Possible finite-size clusters

Magnetization curves

Analysis of plateau width

Summary

S=1/2 Heisenberg antiferromagnet on the triangular lattice with next-nearest-neighbor interactions

Numerical-diagonalization method

The m=1/3 plateau disappears between weak-J₂ and strong-J₂ regions.

H. Nakano and TS, J. Phys. Soc. Jpn. 86 (2017) 114705 (arXiv: 1708.07248)