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Qutline

Introduction of out-of-time-ordered correlators

. At 2
OTOC(t) = ¢y — ecre™ + O(€”) » / -



What is OTOC ?

Out-of-time-ordered correlator (OTOC) is something like
(ABOAMB()) ¢+ 1)

Larkin, Ovchinnikov (1968)

More precisely, we define

Time-ordered correlator: (O;(t1)02(t2) - - - Oi(t;) - - - Op_1(t,—1)On(ty))

where H <Hh < --- <t Z2--->1l_1 21

<"'>ET1'([A)"°) OAi:Hermite — 00—« D

o= e_ﬂﬁ/Z

Out-of-time-ordered correlator is defined as those that cannot be
written in the above form.



What is the motivation ?

Let us consider the squared commutator: ([A(¢), B(0)]?)
It contains OTOCs.  ([A(?), B(0)]?) = (A(1)B(0)A(t)B(0)) + - - -

In the semiclassical limit, [, | — i%#{, }p :Poisson bracket

([A(®), B(0))*) — —R*{({A(®), B(0)}2))  ({-) is the phase space average)

Kitaev (2014), Maldacena, Shenker, Stanford (2015)

If A and B are a canonical conjugate pair (e.g. A=p, B=q),

R (({A@0), BO)}3) = —R2((( 202,



OTOC and chaos

In chaotic systems, the time-evolving quantity A(t) sensitively depends
on the initial condition A(0) (“butterfly effect”).

([A@), BOP) ~ —R({(28)*) ~ —12Ce"

k / AW

AA(0)

The exponent A is an analog of the Lyapunov exponent in classical chaotic
systems.



Larkin, Ovchinnikov (1968)

QUASICLASSICAL METHOD IN THE THEORY OF SUPERCONDUCTIVITY
A. I. LARKIN and Yu. N. OVCHINNIKOV

Institute of Theoretical Physics, USSR Academy of Sciences
Submitted June 6, 1968
Zh. Eksp. Teor. Fiz. 55, 2262—-2272 (December, 1968)

It is shown that replacement of quantum-mechanical averages by the average values of the corre-
sponding classical quantities over all trajectories with a prescribed energy is not valid in the gen-
eral case. The dependence of the penetration depth on the field is found without making any assump-
tions about the weakness of the interaction between the electrons and the field of the impurities; the
case of very dirty films is also considered.

(1) P2 (0) ) = 12 (%‘Z’(g)l) ). (26)
)y Bl e () w0
f(t) = et 4+ 2e-t2sin (—1;§t — .._’é)

At large times the wave packet is completely washed
out. In order to evaluate the average of the square of
the commutator in this region, it is necessary to use
not the quasiclassical formulas (26) and (30) but the
difference between expressions (25) and (24).



Sachdev-Ye-Kitaev model

Random all-to-all interacting Majorana fermions:

1 N
H= D T Kitaev (2015)

ik, I=1

o 3 =5
]ijkl — W, Jijkl =0 {%‘, %} — Vij

J8.9.12,14
o4

The model is maximally chaotic, i.e.,

2
i@y Oy 0)) ~ fo — %@ip (%) +O(N™?)

Holographic dual to black holes.

tr[p% W(t)SD(O)P% W(t)e(0)] ~ o — X @ 4o Shenker, Stanford
tr[pt Wpt W] 0~ C1E%P (2014,2015), ...



Sachdev-Ye model

N-site SU(M) Heisenberg model with a random all-to-all interaction:

Sachdey,Ye (1993)
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Georges, Parcollet, Sachdev (2000)
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Universal bound on chaos
Maldacena, Shenker, Stanford (2015)

It has been conjectured that the exponent has a universal upper bound,

< 27TkBT

A
—  h

where A is the exponent of the exponentially growing part of OTOC F(¢):

A=

F(1) = Te[p1 A)pT BO)pT Ar)p* B(0)]

= ¢y — ecreV + 0(62) (t > 1)
—— —
Two examples that saturate the bound: »
- SYK model Kitaev (2015), Maldacena, Stanford (2016)

- Black holes in Einstein gravity Shenker, Stanford (2014,2015), ...




OTOC and chaos

Various examples show exponentially growing OTOC:s:

- Sachdev-Ye-Kitaev (SYK) model Kitaev (2015), Maldacena, Stanford (2016), ...
- Black holes Shenker, Stanford (2014, 2015), ...

- Quantum kicked rotor model  Rozenbaum, Ganeshan, Galitski (2017)
- O(N) model  Chowdhury, Swingle (2017)
- Weakly interacting disordered fermions Patel, Chowdhury, Sachdey, Swingle (2017)

and more ...

We focus on the case where the exponential growth of the squared
commutator is coming from the OTOC:

OTOC(f) = ¢y — ec1e™ + O(€?)



Kicked rotor model

.

2 Chirikov, Shepelyanski, Scholarpedia (2008)
H(1) = % + K cos xA(r) T T
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C(t) = —{[p(1), p(0)]?), B(t) = Re(p(t)p(0)). Rozenbaum, Ganeshan, Galitski,
PRL (2017)
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Experimental observation of OTOC

® Trapped-ion quantum magnet Garttner et al., Nat. Phys. 13,781 (2017)
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Qutline

Out-of-time-order fluctuation-dissipation theorem

hw
4kpT

C{A,B}2 ((1)) + C[A,B]2 ((1)) = 2 coth < ) C{A,B}[A,B] ((1))



Fluctuation-dissipation theorem

h
Cya5)(w) = coth ( “

2kBT> CiaB(w)  Kubo (1957)

Ciap(w) = / dte' ({A(t), B(0)}) :Symmetrized correlator
— 0 (“fluctuation™)

C[A,B](a))z/ dtei‘“’<[A(t),lA3(O)]> : Linear response function
— 0 (“dissipation”)

Ex.) Einstein relation in Brownian motion

D = ukgT  Einstein (1905)

D : Diffusion constant  u: Mobility



Beyond linear response theory

Is there any law that governs fluctuations beyond linear response theory?

Ex.) Fluctuation theorem  Evans, Cohen, Morriss (1993), ...
ot

P
() — ¢ o :Entropy production rate
P/(—0)

If one applies FT to near-equilibrium, one obtains FDT.
Gallavotti (1996), Andrieux, Gaspard (2007), Saito, Utsumi (2008), ...

Here we pursuit a different direction of generalization of FDT by
considering higher-order moments of fluctuation and dissipation.

They inevitably contain OTOC:s.



® Let us consider the second moments of fluctuation and dissipation:

({A(0), B(0)}*) = (A()B0)A(1)B(0)) + (B(O)A(H)B0)A(1))
+ (A B0)B(O)YA(1)) + (B(OYA()A(1)B(0))

([A(t), BOO)]*) = (A()B0)A(1)B(0)) + (B(0O)A(1) B(O)A(1))
— (A(B0)B0)A(1)) — (B(O)A(NA(1)B(0))

® |s there any relation among them?

® They contain out-of-time-ordered correlators.

w4

Kitaev (2014,2015), Maldacena, Shenker, Stanford (2015)

—




OTO fluctuation-dissipation theorem

We discover the foIIowing relation. Tsuiji, Shitara, Ueda, arXiv:1612.08781.

hw
4kpT

C{A,B}z(w) + C[A,B]z(a)) = 2 coth ( ) C{A,B}[A,B](a))

¢ “Physical” OTOC:

oo s, (1) = TrGLAQ@), BU ), [AG), B())a,)

¢ “Bipartite” OTOC: Maldacena, Shenker, Stanford (2015), ...
Al A A R RN A
ClA.Bl,, [A.Bl,, (1. 1) = Tr(02 [A(D), B(t)]a, 02 [A®), B()]a,)

A, B :Hermitian o= e_ﬁﬁ/Z B = 1/kgT Z = Tr(e_ﬁﬁ)

a1, =+ [,]-(+) :(anti)commutator



A sketch of the proof: Tsuji, Shitara, Ueda, arXiv:1612.0878|

¢ Ordinary FDT

Kubo-Martin-Schwinger (KMS) condition FDT

—

B
Cyap () = coth ( “

C
ksT ) [A,B] (w)

Cpa(w) = M Cyp(—w)

¢ We do the same thing for OTOC:s.

Bhw
C(BA)Z(C()) = e 2 C(AB)z(_w) I (*) OTO FDT
where i C{A,B}2(0)) + Cigpp(w)

o0 ; ALl N N ALl A N hw
C(BA)z(a)) = f—oo dtela)fTI'(p§ B(f)A(O)pZ B(1)A(0)) = 2 coth <4kBT> C{A,B}[A,B](w)
Coapp(w) = [7°_dte Tr(pz A1) B(0)p2 A1) B(0))

One can prove (%) by expanding in the complete set of energy eigenstates and using cyclic

permutation in the trace. It is easy to show OTO FDT from ().



Physical interpretation

hw
4kpT

C{A’B}Z(Q)) + C[A,B]Z(w) = 2 coth ( ) C{A,B}[A,B](w)

Tsuji, Shitara, Ueda, arXiv:1612.0878 |

(Left):The OTO part (ABAB+BABA) of ([A(t), B(0)]*) representing the
quantum butterfly effect.

Cap2(t,0) + Cpa pp(t,0) o e
» -~ 3

(Right): Nonlinear response function including time-reversed processes.

2C (a.8y14.8) (1 0) ~ iLL o (1) + Ly o (1))



We consider the following perturbation protocol.

SH(t) = hegd(D)B | | H(t) = hiesd(t — t)A

+H -H

0 to

We define the nonlinear response function as

) 1
5% (B(21)) = igf‘gBLg)B)z(to)

The usual perturbation theory gives

2C¢a.BYABI(1, 0) ~ i[L&B)z(t) + ng)Bz

observe B

2to

(0]

time

Up to the difference of physical and bipartite OTOCs



What is the meaning of the difference between “physical” and “bipartite”
OTOCs!?

Cls, .61, (1) = TeRIAQ), BG)a, [AD), BG)]a)
ClaBlo, (4,81, (0:1) = Te(p2 [A0), BW)]a, 2 TA®), B(E)]a,)

The difference is represented by Wigner-Yanase skew information.
Tsuji, Shitara, Ueda, arXiv:1612.08781.

Wigner-Yanase skew information:

1 Al

11 (p, 0) = Tr(p0?) — Tr(p20p20)  Wigner, Yanase (1963)

. . hw s
(@) + Clpe(@) = 2600 ( 17 ) O )+ L

skew information

Wigner-Yanase skew information quantifies the information contents
of “quantum fluctuation” of 0.



Wigner-Yanase skew information quantifies information contents of
“quantum fluctuation”.

Properties of WY skew information:

(D, 0) < ((AO)?) AO = O — (0)
T

for 0 <A< 1 Lieb, Adv. Math. | |,267 (1973)

Information contents decrease by classical mixture of states.



Higher order generalization of OTO FDT n=1,2,3,...)

a1 -ap=-+

D 0
Z CA}S 2" (w) = coth <2nkBT) Z CA}B 2O ()

a1,a2,...,a,=1 a1,a2,...,a,=1

n Tsuji, Shitara, Ueda, arXiv:1612.08781
where Cy 3”7 " (w) =Tr (Hﬁn [A(®?), B(t/)]ai>
i=1

Z \

(Left) (Right)
OTO part of A, BT Nonlinear response function

The meaning of the difference between physical and bipartite OTOCs
of higher orders is not well understood.

We expect that the RHS is related to higher-order nonlinear response
functions.



We can also generalize OTO FDT in a different form of regularization.

1A=+

R hw = D

a1,Q2,...,Q,=1

O <y<1)

a1,a2,...,a,=1

Tsuji, Shitara, Ueda, arXiv:1612.0878 |

where Chg'™ " (w) = Tr <H o LA B + a,-B(t’)pZA(r)]>
i=1

Z \

(Left) (Right)
OTO part of ([A(), BT ~— Nonlinear response function




Summary |

Out-of-time-order fluctuation-dissipation theorem

hw
4kpT

C{A,B}z(a)) + C[A,B]z(a)) = 2 coth ( ) C{A,B}[A,B](a))

(Left): Butterfly effect <——=> (Right): Nonlinear response function

7
cf. Ordinary FDT  Cyy4 5y (w) = coth ( t

C
ST > 1A.8](w)

(Left): Fluctuation <——> (Right): Linear response function

Ref: N.Tsuji, T. Shitara, M. Ueda, arXiv:1612.0878|



Qutline

27TkBT

Maldacena-Shenker-Stanford conjecture A < -




Universal bound on chaos
Maldacena, Shenker, Stanford (2015)

It has been conjectured that the exponent has a universal upper bound,

< 27TkBT

A
—  h

where A is the exponent of the exponentially growing part of OTOC F(¢):

A=

F(1) = Te[p1 A)pT BO)pT Ar)p* B(0)]

= ¢y — ecreV + 0(62) (t > 1)
—— —
Two examples that saturate the bound: »
- SYK model Kitaev (2015), Maldacena, Stanford (2016)

- Black holes in Einstein gravity Shenker, Stanford (2014,2015), ...




Argument for the bound

Maldacena, Shenker, Stanford (2015)
Mathematical fact:

.
|. f(t+ it) is analytic in the half strip. f(r) € R. ol
2. |f(t+i1)| <1 in the entire strip. !
>
1 |df 2 4 0
Th < = 4 O(e IR
N T Flar | St T | EECTELPEPREPPS
Argument:
F(t+1) . .
If f(r) = P satisfies the above properties, one can prove the bound.
d T E

Physical assumptions (not proved):

(Factorization): Tr[pz A()B(0)p2 BO)A(1)] < Tr[p2 A(1)p2 A(t)|Tr[p2 B(0)p2 B(0)] + ¢
for t > 1.

Several other technical assumptions. A subtle issue about Poincare
recurrence.



Regularization

In QFT the squared commutator <[A(t), IAB(O)]2> = Tr(,é[/i(t), E(O)]z) is not
necessarily well-defined.

A convenient prescription is to regularize it into the “bipartite” OTOC
Tr(52 [A(f), B(0)]p2 [A(r), B(0)]).  Maldacena, Shenker, Stanford (2015)

The OTO part is given by

o=
o=

Fo(t) = %Tr[ﬁ%A(r)E(O)ﬁ%A(r)E(O)] + 2Tr[p2 B(0)A(1)p? B(O)A(1)]
F(t) = Tr[p7 A(t)p* BO)p 7 A(t)p7 B(0)] may be viewed as a variant of the

regularization of the OTO part of the squared commutator.



One-parameter family

We introduce a one-parameter family of OTOC:s:
Fy(t) = 5Trlp = A@p° BO) » A@p* BO))
+ATelp 2 B Ay T BOYIAD] 0<y<1)

Fyeo(t) = Fot), Fo_1(t) = F(D), Fy(t) = Fi_(1)

This has appeared in the OTO fluctuation-dissipation theorem.
Tsuji, Shitara, Ueda, arXiv:1612.08781.

C?A B}z(w) + C[A B]2(“)) = 2 coth ((1 — 2y)4kBT> (A.BYA, B](a))

1
4F, (w)




([A(1), B(0)]?) (< 0)

/ N '\ »

Fy, (1)
y F 0 F, (1)

Y :regularization parameter

“Physics should not depend on the choice of the regularization.”

F\ (1) = co(y) — eci(y)e'™" + O(e*)

ci(y) =2 0 € : positive




Theorem: Tsuji, Shitara, Ueda, arXiv:1706.09160.

If £°,(#) has a uniform asymptotic expansion of

F. (1) = co(y) — ec1(y)e’™" + O(€?)

in the region D = {(t,7) |0<t; <t <t (t) # 1),0 <y < 1} with
c1(y) > 0 and A(y) > 0,and if ¢1(y) is nonzero at least at one 7Y in
0 <y < 1,then

(i) A(y) is independent of v (hence we write A(y) = A).

hA
4kgT

(i) c1(y) = & cos ((1 — 2v) ) with & > 0.

27TkBT

(iii) A < -




Outline of the proof: Tsuji, Shitara, Ueda, arXiv: 1706.09 | 60.

F () = AF(t +i(1 — 29)2)) + LF(t — i(1 — 29)E))
F'(2) is analytic in the strip —%h <Imz < %h (except at 7 = ::i%h).
Maldacena, Shenker, Stanford (2015)

— F(2) can be Taylor expanded around ¢ with

the convergence radius r = %h A

l' r 1
. Bh . h ’ 1
Fy (1) = 10250 F(r) 4 Le=10-250 F(p) : val >

Since F(1) = F,_1 (1) =: ¢ — eCe' + O(€%),

Fy(0) = o — ety cos (1 - 29)24) &+ 0() = (i, (i)

T uniform convergence

ci(y) 20 < cos ((1 —2)/)'82—/1) >0 o 1< [23_77; — (i)



Remarks

The theorem assumes the exponential growth in the finite time region

ty <t < 1f,and not in the semi-infinite region r > 1.

If A were to exceed the bound, something strange would happen:
The direction of the exponential growth becomes regularization-dependent.

The MSS conjecture of %(Fd — F@)) < %(Fd — F(7)) is stronger than our
statement of the theorem.

We have assumed that € is unrelated to 7 . If one wants to take € = %2 as
in QM, the asymptotic expansion should be understood as the limit of € — 0
with Bh fixed.



Extension to higher-order OTOC

| 1

o A o o . 12n
F(t) = 1Tr ([ ZJA(r)ﬁ%B(O)} ) + 5Tr ([ 2/B(O)ﬁ%A(t)} )

with 0 <y<land n=1,2,3,---,
F'(t)is the (AB)*" + (BA)*" part of the regularized ([A(t), B(0)]*").

If £7(¢) shows an exponential growth regardless of the choice of

regularization, i.e.,
F(1) = con(y) + (= 1)'eci a(y)et " + O(€?)
with c¢1,(y) > 0, then

27kaT
s —




Summary 2

We rigorously proved:
If the OTOC shows an exponential growth regardless of
the choice of the regularization, then A must satisfy

< 27TkBT
~  h

Extension of the MSS bound to higher-order OTOC:s:

2nnkgT
Ay < >

(n: 1,2,)

Ref: N.Tsuji, T. Shitara, M. Ueda, arXiv:1706.09160



