Symposium on Novel Quantum States in Condensed Matter 2017 (NQS2017) 8-10 November 2017 YITP, Kyoto University

Half-integer thermal Hall conductance in a Kitaev spin liquid – Evidence for chiral Majorana edge current –

Yuichi KASAHARA

SCIENCE Kyoto U

Department of Physics, Kyoto University

cold Z₂ flux Majorana fermion

Half-integer thermal Hall conductance

Chiral Majorana edge current

Collaborators

Kaori Sugii, Masaaki Shimozawa, Minoru Yamashita Institute for Solid State Physics, The University of Tokyo

Taka Shibauchi Department of Advanced Materials Science, The University of Tokyo

> Nobuyuki Kurita, Hidekazu Tanaka Department of Physics, Tokyo Institute of Technology

> Joji Nasu Department of Physics, Tokyo Institute of Technology

Yukitoshi Motome Department of Applied Physics, The University of Tokyo

Yamashita

Sugii

Shimozawa

Motome

Matsuda

Shibauchi

Tanaka

Nasu

Outline

- 1. Introduction: Kitaev quantum spin liquid
- 2. A candidate of Kitaev magnet α-RuCl₃
- 3. Thermal Hall effect in perpendicular fields
- 4. Thermal Hall effect in tilted fields Observation of half-integer thermal Hall conductance
- 5. Summary

Y. Kasahara *et al.*, arXiv:1709.10286 (2017).

Introduction

Quantum spin liquid (QSL)

Quantum fluctuations melt the long-range magnetic order even at T = 0. The ground state with massive entanglement of local spins.

Spin liquid are states which do not break any simple symmetry: Neither spin-rotational symmetry nor lattice translational symmetry.

Platforms of QSL

1D: *S* = 1/2 XXZ chain

2D & 3D: Geometrically frustrated magnets

2D trianglar

3D pyrochlore

Exotic physical properties in QSLs

Topological phases Gauge fluctuations Fractionalized excitations

Spinon excitation (S=1/2, e=0)

Kitaev model

S = 1/2 spins on tri-coordinate lattices A. Kitaev, Ann. Phys. **321**, 2 (2006). $\mathcal{H} = -J_x \sum S_i^x S_j^x - J_y \sum S_i^y S_j^y - J_z \sum S_i^z S_j^z$ $\langle ij \rangle_x \langle ij \rangle_y \langle ij \rangle_z$ **Kitaev Interaction** Bond-dependent Ising-like interaction **Exchange frustration** Hyper-honeycomb lattice (3D) Honeycomb lattice (2D) S. Mandal & N. Surendran, PRB 79, 024426 (2009). A. Kitaev, Ann. Phys. 321, 2 (2006). $\begin{bmatrix} -J_z S_i^z S_j^z \\ -J_y S_i^y S_j^y \end{bmatrix}$ $-J_x S_i^x S_j^x$ $-J_x S_i^x S_j^x$ $-J_y S_i^y S_j^y$ $-J_z S_i^z S_j^z$

Kitaev model

Candidate materials

Spin-orbit assisted Mott insulator with j = 1/2

G. Jackeli & G. Khaliullin, PRL 102, 017205 (2006).

Candidate materials

2D honeycomb lattice Na₂IrO₃ Y. Singh & P. Gegenwart, PRB 82, 064412 (2010). α -RuCl₃ (c) K. W. Plumb et al., PRB 90, 041112 (2014).

3D hyper-honeycomb lattice

Layered honeycomb magnet a-RuCl₃

 $\mathcal{H} = \sum \left[J \vec{S_i} \cdot \vec{S_j} + J_{\mathrm{K}} S_i^{\gamma} S_j^{\gamma} + \Gamma(S_i^{\alpha} S_j^{\beta} + S_i^{\beta} S_j^{\alpha}) \right]$ $\langle ij \rangle$ **Kitaev** off-diagonal exchange Heisenberg $= -1.7 \,\mathrm{meV}$ $K = -6.7 \,\mathrm{meV}$ $\Gamma = +6.6 \,\mathrm{meV}$ **Dominant Kitaev term** $J_{\rm K}/k_{\rm B} \sim 100 {\rm K}$ $K_x = -6.7 \text{ meV}, K_y = -6.7 \text{ meV}, K_z = -5.0 \text{ meV}$ S. M. Winter et al., PRB 93, 214431 (2016). Presence of non-Kitaev interaction

- AFM order with zigzag spin structure at $T_N \sim 7.5$ K
- Transition at 14 K appears due to stacking faults.

Possible signatures of Kitaev QSL in α-RuCl₃

L. J. Sandilands et al., PRL 114, 147201 (2015).

J. Nasu et al., Nat. Phys. 12, 912 (2016).

Broad magnetic continuum at high energy Fermionic excitations

Inelastic neutron scattering

S.-H. Do *et al.*, Nat. Phys. http://doi.org/10.1038/nphys4298.
A. Banerjee *et al.*, Nat. Mater. **15**, 733 (2016).
A. Banerjee *et al.*, Science **356**, 1055 (2017).

Broad magnetic continuum appears below ~ $J_{\rm K}/k_{\rm B}$

Possible signature of spin fractionalization

More direct measurements are required.

What gives direct signature of Majorana fermions?

Effect of magnetic field (*h* || [111]) A. Kitaev, Ann. Phys. **321**, 2 (2006).

Topological system characterized by Chern insulator under H

Chiral edge current of Majorana fermions

What gives direct signature of Majorana fermions?

Half-integer thermal Hall conductance in a Kitaev QSL

Thermal Hall effect in insulating magnets

$$\left(\begin{array}{c} q\\ 0\end{array}\right) = \left(\begin{array}{cc} \kappa_{xx} & \kappa_{xy}\\ -\kappa_{xy} & \kappa_{xy}\end{array}\right) \left(\begin{array}{c} -\nabla T_x\\ -\nabla T_y\end{array}\right)$$

Ferromagnetically ordered state

 $Lu_2V_2O_7$ Ho₂V₂O₇, In₂Mn₂O₇, BiMnO₃ Cu(1-3,bdc)

Y. Onose *et al*, Science **329**, 297 (2010).
Ideue *et al.*, PRB **85**, 134411 (2012).
M. Hirschberger *et al.*, PRL **115**, 106603 (2015).

$Lu_2V_2O_7 HI[100]$

 $Lu_2V_2O_7$

Paramagnetic state

Tb₂Ti₂O₇

M. Hirschberger et al., Science 348, 106 (2015).

Spin liquid state

Cu₃V₂O₇(OH)₂·2H₂O D. Watanabe, PNAS **113**, 8653 (2016).

Spinon Hall effect in QSL state with spinon Fermi surface

$$\kappa_{xx}^{\text{spinon}} = 2\frac{\pi^2}{3} \left(\frac{\varepsilon_{\text{F}}}{\hbar}\tau\right) \frac{k_{\text{B}}^2 T}{h} \frac{1}{d}$$

$$\kappa_{xy}^{\text{spinon}} = \kappa_{xx}^{\text{spinon}} (\omega_c \tau)$$

H. Katsura et al., PRL 104, 066403 (2010).

Thermal transport measurements in α-RuCl₃

$$\begin{pmatrix} q \\ 0 \end{pmatrix} = \begin{pmatrix} \kappa_{xx} & \kappa_{xy} \\ -\kappa_{xy} & \kappa_{xy} \end{pmatrix} \begin{pmatrix} -\nabla T_x \\ -\nabla T_y \end{pmatrix}$$

Thermal Hall effect

ex.) Spin liquid state: Kagome volborthite $Cu_3V_2O_7(OH)_2 \cdot 2H_2O$ $\kappa_{xy}/T \sim 10^{-5} \text{ W/K}^2\text{m}$ spinon Magnetically ordered state: Kagome Cu-(1-3,bdc) $\kappa_{xy}/T \sim 10^{-5} - 10^{-4} \text{ W/K}^2\text{m}$ Pyrochlore $Lu_2V_2O_7$ magnon cf.) Phonon thermal Hall effect $\kappa_{xy}/T \sim 10^{-6} \text{ W/K}^2\text{m}$

16

α-RuCl₃ single crystals

- Clear anomaly at $T_{\rm N} \sim 7.5 \text{ K}$
- No discernible anomaly at ~ 14 K due to stacking faults

High quality single crystal

Longitudinal thermal conductivity κ_{xx}

- Clear anomaly in κ_{xx} at T_N
- Suppression of κ_{xx} by magnetic field $\leftrightarrow \kappa_{xx}^{ph}$ is usually enhanced due to suppression of spin-phonon scattering by spin polarization.

Thermal transport is governed by *spin excitations*. However, it is difficult to separate spin & phonon contributions.

Thermal Hall effect

Thermal Hall conductivity κ_{xy}

Finite $\kappa_{xy} \sim 10^{-2}$ W/Km at $T < J_{\rm K}/k_{\rm B}$

e.g.) $\kappa_{xy} < 10^{-3}$ W/Km in volborthite (spin liquid) Tb₂Ti₂O₇ (paramagnet) Distinct *H*-dependence below and above T_N

- Sign change below T_N
- Upward curvature above T_N but downward below T_N

Thermal Hall effect below and above T_N is different in origin.

Thermal Hall conductivity κ_{xy}

- Enhancement of κ_{xy} with positive sign below $J_{\rm K}/k_{\rm B} \sim 80$ K
- Broad peak at ~ 20 K

- Phonons $\kappa_{xy}/T \sim 10^{-6} \text{ W/K}^2 \text{m}$ Different T-dependenceA. V. Inyushkin & . N. Taldenkov,JETP Lett. 86, 379 (2007).
- **Magnons** Finite κ_{xy}/T usually appears in the ordered state.

Small DM interaction $D/k_{\rm B} \sim 5 \text{ K} \ll J/k_{\rm B} \sim 80 \text{ K}$

S. M. Winter *et al.,* PRB **93**, 214431 (2016).

Spin liquid with spinon Fermi surface

In volborthite, Hall signal is negative. $\kappa_{xy}/T \sim 10^{-5} \text{ W/K}^2 \text{m}$

D. Watanabe, PNAS 113, 8653 (2006).

 Exotic quasiparticle excitations inherent to the spin-liquid state of α-RuCl₃.

Comparison with numerical calculations

T-dependence is consistent with numerical calculations for the 2D pure Kitaev model.

- Enhancement of κ_{xy} with *positive sign* below $T < J_{\rm K}/k_{\rm B}$
- Broad peak at $T \sim 0.1 J_{\rm K}/k_{\rm B}$
- κ_{xy}/T reaches close to *half of the quantization value*.

Possible signature of Majorana fermion excitations

Y. Kasahara et al., arXiv:1709.10286 (2017).

Comparison with numerical calculations

T-dependence is consistent with numerical calculations for the 2D pure Kitaev model.

- Enhancement of κ_{xy} with *positive sign* below $T < J_{\rm K}/k_{\rm B}$
- Broad peak at $T \sim 0.1 J_{\rm K}/k_{\rm B}$
- κ_{xy}/T reaches close to *half of the quantization value*.

Possible signature of Majorana fermion excitations

However, quantization of κ_{xy}^{2D}/T is not attained due to the magnetic order. Y. Kasahara *et al.*, arXiv:1709.10286 (2017).

19

Suppression of AFM order by in-plane fields

Low-temperature properties are masked by the magnetic order.

Key questions: Is the magnetic order suppressed by tuning parameters? Whether Kitaev QSL survives when suppressing the order?

AFM order is little influenced by out-of-plane fields, but it is easily suppressed by in-plane fields.

M. Majumder *et al.*, PRB **91**, 180401(R) (2015).

A. Banerjee et al., arXiv:1706.0703 (2017).

Suppression of AFM order by in-plane fields

Low-temperature properties are masked by the magnetic order.

Key questions: Is the magnetic order suppressed by tuning parameters? Whether Kitaev QSL survives when suppressing the order?

Suppression of AFM order by in-plane fields

Low-temperature properties are masked by the magnetic order. Key question: Kitaev QSL survives when suppressing the magnetic order?

Kitaev QSL emerges under in-plane magnetic fields.

Neutron scattering: Magnetic continuum at high energy above $H_{c\parallel}$

What gives direct signature of Majorana fermions?

Low-temperature properties are masked by the magnetic order.

Key questions: The magnetic order can be suppressed by tuning parameters? Kitaev QSL survives when suppressing the magnetic order?

Phase transition is tuned by $H_{\parallel} = H \sin \theta$. Thermal Hall response is determined by $H_{\perp} = H \cos \theta$.

Longitudinal thermal conductivity κ_{xx}

Strongly anisotropic response: Quasi 2D nature of magnetic properties. Suppression of the AFM order by in-plane field component.

Summary

Measurements of thermal Hall effect in a Kitaev magnet candidate α -RuCl₃

Perpendicular fields

Striking enhancement of κ_{xy}/T with positive sign below $T \sim J_K/k_B$ A broad peak at $T \sim 0.1 J_K/k_B$

Signature of Majorana fermion excitations

Y. Kasahara et al., arXiv:1709.10286 (2017).

Tilted fields

Observation of half-integer thermal Hall conductance for the first time. Evidence for chiral Majorana edge current

Sudden disappearance of the quantum Hall plateau at high field Topological phase transition