## Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO<sub>4</sub>

#### Yukawa Institute, Kyoto, November 2017

Itamar Kimchi



I.K., Adam Nahum, T. Senthil, arXiv:1710.06860

### Valence Bonds in Random Quantum Magnets

### theory and application to YbMgGaO<sub>4</sub>

#### Collaborators



Adam Nahum (MIT -> Oxford)



T. Senthil (MIT)

*Frustration*: destabilizes classical magnetic order.

T=0 quantum paramagnets: valence bond liquids or solids

*Frustration*: destabilizes classical magnetic order.

T=0 quantum paramagnets: valence bond liquids or solids

e.g. Kitaev honeycomb model (next talk) – already a challenge!

Aside: K > 0 chiral spin liquid has 10x stability to magnetic field larger fields give intermediate gapless phase Zheng Zhu, I.K., D.N. Sheng, Liang Fu, arxiv:1710.07595

*Frustration*: destabilizes classical magnetic order.

T=0 quantum paramagnets: valence bond liquids or solids

*Frustration*: destabilizes classical magnetic order.

T=0 quantum paramagnets: valence bond liquids or solids

**Quenched disorder**: site impurities or bond-randomness Spin glasses, irradiated high-Tc superconductors

Doped Mott insulators

This talk: interplay of quantum frustration and bond disorder

### Experimental mystery: YbMgGaO<sub>4</sub>



S=1/2 on triangular lattice – but no magnetic order Strong spin-orbit-coupling (Yb<sup>3+</sup>: 4 $f^{13}$ ) Exchanges:  $J_1$ ,  $J_2$ (?), XY, Kitaev...  $\theta_{CW}$  = 4 K

Unusual magnetic phenomenology:

No spin order or glass (50 mK neutrons &  $\mu$ SR) Anomalous heat capacity  $C(T) \sim T^{0.7}$ but no corresponding thermal conductivity

Li et al, Sci. Rep. 5 (2015), Xu et al, PRL 117, Shen et al, Nature 540 (2016)

## Low-temperature $C(T) \sim T^{0.7}$



Xu et al, PRL 117, 267202 (2016) Li et al, Sci. Rep. 5, 16419 (2015)

How to understand this unusual phenomenology?

 $C(T) \sim T^{0.7}$ :

interpreted as "spinon Fermi surface" (Gang Chen *et al.*) missing signatures of itinerant spinons

Ingredients for an alternative hypothesis:
Frustration: Geometrical & spin-orbit-coupling capture via non-magnetic "valence bonds" basis
+
Disorder: Magnetic exchanges with random energies due to Mg/Ga mixing in the non-magnetic layers

Say **frustration** prevents magnetic order: describe clean magnet in **valence bond** basis, then add **bond-randomness disorder** 

$$H = \sum J \vec{S} \cdot \vec{S} \qquad J \to J + \Delta J_{ij}$$

Even in limit of weak disorder  $\Delta J \ll J$ *linear* coupling to *valence-bond-solid* order

(Imry-Ma)

→ splits VBS into domains of short-ranged singlets

> VBS: *T*=0 paramagnet w/ broken lattice symms



#### Random short-ranged singlets are a good starting point



But: frozen valence bonds  $\rightarrow$  gap. What gives gapless  $C(T) \sim T^{0.7}$  ? Competition between disorder and valence bonds *necessarily* leads to low-energy spin excitations: strong-randomness network of spin-1/2 emerges

Rough sketch of the argument:

- (1) Weakly disordered VBS: vortices carrying spin-1/2
- (2) Stronger disorder: defect instability of pinned singlets
- (3) Disordered Lieb-Schultz-Mattis conjectures
- (4) Application to YbMgGaO<sub>4</sub>:  $S(q,\omega),\kappa(T),C(T)$  & *B*-field

# Warm up: 1D spin-1/2 chain spontaneous dimerization + disorder



# Warm up: 1D spin-1/2 chain spontaneous dimerization + disorder



Clean system in dimerized ("VBS") phase Adding disorder breaks up domains

# Warm up: 1D spin-1/2 chain spontaneous dimerization + disorder



Domain wall carries single S=1/2

 $\rightarrow$  RG flow to 1D random-singlet phase (Fisher '94)

#### 2D vortices with spin-1/2 modes



Interpret via  $Z_2$  spin liquid: condense vison vector **v** VBS order parameter =  $v^2$ 

- $v^2$  headless vector  $\rightarrow Z_2$  vortices
- $Z_2$  vortex = vison  $Z_2$  gauge field  $\pi$ -flux

#### Vortices carry spin-1/2 modes



Interpret via  $Z_2$  spin liquid: condense *vison* vector **v** VBS order parameter =  $v^2$ 

- $v^2$  headless vector  $\rightarrow Z_2$  vortices
- $Z_2$  vortex = vison  $\pi$ -flux = spin-1/2 *spinon*

## Details for triangular lattice columnar-VBS: domains cluster into "superdomains" superdomain-walls carry S=1/2 chains



a superdomain maps to square lattice VBS: Z<sub>4</sub> vortices

#### RG flow arises from weak disorder

Clean-system VBS domain

Imry-Ma lengthscale  $Exp[\Delta^{-2}]$ Random network of vortex S=1/2

Strong disorder RG Long-range singlets + clusters

Ultimate fixed point (spin glass?)



Are the S=1/2 vortices always natural? Can stronger disorder pin singlets into a short-ranged "valence bond glass"?

- (1) Weakly disordered VBS: vortices carrying spin-1/2
- (2) Stronger disorder: defect instability of pinned singlets
- (3) Disordered Lieb-Schultz-Mattis conjectures
- (4) Application to YbMgGaO<sub>4</sub>:  $S(q,\omega),\kappa(T),C(T)$  & *B*-field

Enforced nucleation of S=1/2 defects

Spin-1/2 defects cost energy. Are they necessarily nucleated by disorder?

Limit #1, Imry-Ma weak disorder: topological defects appear between large domains

Limit #2, regime of intermediate disorder:

VBS pattern<br/>selection scale<</th>Clean-system<br/>spin gap

Map to random-energy dimer model but now allow monomers/defects

#### Enforced nucleation of S=1/2 defects

Classical dimer model w/ random energies on bonds with allowed monomers/defects

Bipartite lattices: any disorder will nucleate defects

Zeng-Leath-Fisher (PRL 1999) Middleton (PRB 2000)

Non-bipartite case unknown; Study on triangular lattice



#### (Fractal defect strings confirm mapping to Ising spin glass)



#### Fractal dimension $d_f = 1.28$

#### Energy distribution for two fixed defects



energy gain

### Energy distribution for partially-optimized defects



energy gain



Thermodynamic limit: Negative without bound

#### Energy distribution for partially-optimized defects



Adding weak/stronger disorder to destroy VBS-symmetry-breaking / spin-liquid *necessarily* nucleated gapless spin excitations. *Is this a general principle?* 

- (1) Weakly disordered VBS: vortices carrying spin-1/2
- (2) Stronger disorder: defect instability of pinned singlets
- (3) Disordered Lieb-Schultz-Mattis conjectures
- (4) Application to YbMgGaO<sub>4</sub>:  $S(q,\omega),\kappa(T),C(T)$  & *B*-field

#### Is this a general principle?

Naively expect disordered state to be featureless, spin-gapped But vortices/monomers with spin-1/2 appeared!

Recall Lieb-Schultz-Mattis-Hastings-Oshikawa theorem (*LSM*): S=1/2 per unit cell  $\implies$  featureless states must be gapless

#### Here: LSM with disorder? gapless spins?

#### **Disordered-LSM conjectures**

# Given spin rotations and *statistical* translations with S=1/2 per unit cell

Conjecture restrictions for featureless ground states (if no symmetry-breaking/topological order)

2D: must have gapless *spin* excitations (e.g. long-range singlets)

1D: spin correlations at least algebraically-long-ranged General argument in 1D (Adam Nahum)

3D: forthcoming

[alternative formulations via quantum information]

What are implications of this enforced RG flow? Can this physics be observed?

- (1) Weakly disordered VBS: vortices carrying spin-1/2
- (2) Stronger disorder: defect instability of pinned singlets
- (3) Disordered Lieb-Schultz-Mattis conjectures

(4) Application to YbMgGaO<sub>4</sub>:  $S(q, \omega), \kappa(T), C(T)$  & *B*-field

Random network of spin-1/2 emerges: Shows random-singlets and some spin freezing





Emergent coupling varies exponentially with separation

→ Power-law density of states (as in Si:P)
 2D random-singlet phase
 ultimate fixed point likely has frozen moments

YbMgGaO<sub>4</sub>:  $C(T) \sim T^{0.7}$ YbZnGaO<sub>4</sub>:  $C(T) \sim T^{0.6}$  N both: anomalous low-*T* spin freezing 1

Ma *et al.* 1709.00256

## Relevance to YbMgGaO<sub>4</sub>: Summary, Predictions

Summary, "post-dictions":

- 1. No magnetic order
- 2. Short-ranged singlets at energies of order J
- 3. Power-law density of states at low energies,  $C(T) \sim T^{\alpha}$

#### Nontrivial predictions:

1. Thermal conductivity  $\kappa(T) \sim T^{1.9}$  (glassy phonons)

and  $S(q, \omega)$ 

- 2. Possible short-ranged VBS order [q=M]
- 3. Some glassy freezing at *T*=0
- 4. Behavior in a magnetic field:  $\kappa(T)$ , C(T)

# Recently measured $S(q, \omega)$ in magnetic fields consistent with random singlets



#### Conclusions: Frustration + Disorder

RG flow to random network of spin-1/2 Anomalous power-laws Enforced by disordered-LSM?

Outlook:

Spin liquids + defects Disordered-LSM proofs Numerical access Other materials



For more, see arXiv:1710.06860