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recently by rotating 3He-A (5), in which oppo-
site chiralities were identified by their different
responses to the rotation. In that experiment, how-
ever, the lifting of the degeneracy by the rotation
was essential; hence, it did not allow the explora-
tion of spontaneous chiral symmetry breaking.

Here we report the discovery of the intrinsic
Magnus (IM) force (6, 7) experienced by a moving
electron trapped below a free surface of 3He-A,
which enabled a direct detection of chirality with-
out lifting the degeneracy. Furthermore, this al-
lowed us to demonstrate that 3He-A selects either
right- or left-handed chirality at the superfluid
transition.

The IM force
→
F IM acts on an impurity mov-

ing at velocity→v through 3He-A (Fig. 1A) (6–8).
It originates from the nonzero orbital angular
momentum of Cooper pairs, which gives rise
to an asymmetric scattering of quasiparticles
by the impurity in the plane normal to %l (6, 7).
This leads to an asymmetric transverse momen-
tum transfer to the impurity, resulting in a transverse→
F IM of the form

→
F IMº

→v! %l. The direction of→
F IM reflects the orientation of %l, and thus a moving
impurity can be used as a microscopic probe for
detecting chirality directly. In an ordinary fluid,
a hydrodynamic, transverse Magnus force acts
on a moving object if it accompanies the cir-
culation of the surrounding fluid. By contrast,→
F IM does not involve the circulation of the fluid.

We studied chiral symmetry breaking at a
free surface of 3He-A, where a spatially uni-
form %l anchored normal to the surface is ex-
pected (3). In this situation, the two chiral states
correspond to %l ¼ T %z, where %z is the surface
normal pointing upward. The free surface has
two advantages: It lacks irregularities that trap
topological defects, and it is perfectly specular;
i.e., the order parameter is not suppressed at the
surface (3). Below the surface, we trapped elec-
trons at a depth d ~ 30 nm (9) and induced their
motion along the surface to experience the IM
force (→v ⊥ %l). The electrons in liquid helium are in
the state of an electron bubble; a state of an elec-
tron self-trapped in a spherical cavity with a radius
R = 2.0 nm (10, 11). The electron bubbles trapped
below the surface form a two-dimensional (2D)
rectangular charge sheet (~16 mm by 16 mm)
with an areal density n ~ 1011 m−2. The transport
measurement of electron bubbles was carried out
by a contactless capacitive coupling technique
using three electrodes located above the surface
(Fig. 1B) (9). An ac voltage Vin with frequency
f = 0.05 to 100 Hz was applied to the input
electrode, which produced an in-plane electric
field and induced the motion of electron bub-
bles along the surface. The induced current was
then recorded by the right (IR) and left (IL)
electrodes through capacitive coupling. If elec-
tron bubbles experienced the IM force, their
trajectories deflected from the direction of the
electric field, generating a difference in current:
DI ≡ IR − IL ≠ 0. To realize 3He-A, a magnetic
field B ~ 0.3 T was applied normal to the surface
(Fig. 1, B and C). The Lorentz force due to this

field was smaller than the IM force by a factor of
10−4 to 10−6 (9).

First, we demonstrated the IM force. Figure 2A
shows the real and imaginary parts of DI as a
function of temperature T measured at fixed Vin
and f in 3He-A. We clearly observed that DI
appears in both real and imaginary parts below
the transition temperature Tc. The observed DI
is at most 6% of IR + IL. To verify that DI orig-
inates from the IM force, we performed the same
measurement in nonchiral 3He-B, where the IM
force is not expected because of zero total orbital
angular momentum of Cooper pairs. As shown in
Fig. 2B, DI apparently disappears in 3He-B, pro-
viding unambiguous evidence of the IM force.
Notably, two symmetric temperature dependences
equal in magnitude but opposite in sign are
observed in different runs cooled from the nor-
mal phase (runs 1 and 2 in Fig. 2A) even though
they were measured under the same experimen-
tal conditions. The two behaviors correspond to
monodomains with opposite chiralities, and we
could assign chirality by examining the direc-
tion of

→
F IM from the sign of DI: %l ¼ −%z for run

1 and %l ¼ þ %z for run 2 (8). The observation of
the two behaviors indicated that one of the two
chiral states was adopted at the transition, directly
demonstrating chiral symmetry breaking.

The temperature dependence of DI in Fig.
2A is understood by referring to the frequency
dependence of DI (Fig. 3A). Broad resonance-
like behaviors are found with a peak in the
imaginary part of DI at a frequency f0. The
resonance-like behavior is not a true resonance,
but arises as a result of the effect of nonzero
frequency on the Hall effect in the finite-sized
2D electron bubble system as described in (9)
(in this case, the Hall effect is caused by the IM
force instead of the Lorentz force). f0 shows a
rapid increase with decreasing T, and the tem-
perature dependence of DI in Fig. 2A is inter-

preted as f0 passing through the measurement
frequency upon a temperature sweep.

To extract the magnitude of
→
FIM from the

resonance-like behaviors, we performed numer-
ical simulations of DI by solving the equation of
motion of electron bubbles, including the IM
force in our experimental geometry (9). In the
simulations, only the ratio a ≡ j

→
F IMj=j

→
FDj is a

free parameter, where
→
FD is the drag force

deduced from the mobility of an electron bub-
ble (9). As shown in Fig. 3A, the simulations
reproduce the observed signals by assuming a
chiral monodomain, and a comparison with the
experimental data gives the magnitude of a. The
obtained a shows a temperature dependence
similar to that found in our theoretical calcula-
tion (Fig. 3B) (6, 7, 12), although the magnitude
differs by a factor of ~2.5. The theoretical pre-
diction (6) suggests that a should be proportional
to DA(T)/T near Tc for the IM force, whereas the
hydrodynamic Magnus force would have the
quadratic dependence on DA(T)/T, where DA(T)
is the maximum gap of 3He-A. As shown in the
inset of Fig. 3B, the observed a is proportional
to DA(T)/T near Tc, being consistent with the
prediction.

In some cooling runs, we found multiple
chiral domains coexisting in a sample. In these
cases, DI showed different temperature depen-
dences at different cooling runs because of the
different configurations of domain walls (DWs).
In addition, DI often exhibited an abrupt jump
associated with the motion of DWs induced by
a small mechanical shock on the cryostat (13).
For a monodomain sample, by contrast, DI was
reproducible and robust; the signal showed the
same temperature dependence in different cool-
ing runs and recovered after a shock within the
time constant of our measurement system (5 to
10 min). The robustness is attributable to the topo-
logical nature of the state; a domain with the

Fig. 1. Intrinsic Magnus force. (A) A moving impurity (yellow circles) experiences the IM force
→
FIMº

→v ! %l (8). (B) Experimental setup. The motion of electron bubbles along the surface is induced
by the ac voltage applied on the input electrode, and the induced current is detected by the right and
left electrodes. If electron bubbles experience the IM force, DI = IR − IL is generated. (C) Phase
diagram of superfluid 3He at zero pressure in T-B space (19). Two phases appear, chiral 3He-A and
nonchiral 3He-B. The red lines indicate the fields at which data in Fig. 2 are taken.
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Examples of Weyl superconductor/superfluid

Weyl points (monopole charge -1)
(thermal) Anomalous 

Hall effect

example 　  ABM phase of He3

N.B. Weyl points have spin-degeneracy

���
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c.f. H. Ikegami et al,  
Science (2013)
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recently by rotating 3He-A (5), in which oppo-
site chiralities were identified by their different
responses to the rotation. In that experiment, how-
ever, the lifting of the degeneracy by the rotation
was essential; hence, it did not allow the explora-
tion of spontaneous chiral symmetry breaking.

Here we report the discovery of the intrinsic
Magnus (IM) force (6, 7) experienced by a moving
electron trapped below a free surface of 3He-A,
which enabled a direct detection of chirality with-
out lifting the degeneracy. Furthermore, this al-
lowed us to demonstrate that 3He-A selects either
right- or left-handed chirality at the superfluid
transition.

The IM force
→
F IM acts on an impurity mov-

ing at velocity→v through 3He-A (Fig. 1A) (6–8).
It originates from the nonzero orbital angular
momentum of Cooper pairs, which gives rise
to an asymmetric scattering of quasiparticles
by the impurity in the plane normal to %l (6, 7).
This leads to an asymmetric transverse momen-
tum transfer to the impurity, resulting in a transverse→
F IM of the form

→
F IMº

→v! %l. The direction of→
F IM reflects the orientation of %l, and thus a moving
impurity can be used as a microscopic probe for
detecting chirality directly. In an ordinary fluid,
a hydrodynamic, transverse Magnus force acts
on a moving object if it accompanies the cir-
culation of the surrounding fluid. By contrast,→
F IM does not involve the circulation of the fluid.

We studied chiral symmetry breaking at a
free surface of 3He-A, where a spatially uni-
form %l anchored normal to the surface is ex-
pected (3). In this situation, the two chiral states
correspond to %l ¼ T %z, where %z is the surface
normal pointing upward. The free surface has
two advantages: It lacks irregularities that trap
topological defects, and it is perfectly specular;
i.e., the order parameter is not suppressed at the
surface (3). Below the surface, we trapped elec-
trons at a depth d ~ 30 nm (9) and induced their
motion along the surface to experience the IM
force (→v ⊥ %l). The electrons in liquid helium are in
the state of an electron bubble; a state of an elec-
tron self-trapped in a spherical cavity with a radius
R = 2.0 nm (10, 11). The electron bubbles trapped
below the surface form a two-dimensional (2D)
rectangular charge sheet (~16 mm by 16 mm)
with an areal density n ~ 1011 m−2. The transport
measurement of electron bubbles was carried out
by a contactless capacitive coupling technique
using three electrodes located above the surface
(Fig. 1B) (9). An ac voltage Vin with frequency
f = 0.05 to 100 Hz was applied to the input
electrode, which produced an in-plane electric
field and induced the motion of electron bub-
bles along the surface. The induced current was
then recorded by the right (IR) and left (IL)
electrodes through capacitive coupling. If elec-
tron bubbles experienced the IM force, their
trajectories deflected from the direction of the
electric field, generating a difference in current:
DI ≡ IR − IL ≠ 0. To realize 3He-A, a magnetic
field B ~ 0.3 T was applied normal to the surface
(Fig. 1, B and C). The Lorentz force due to this

field was smaller than the IM force by a factor of
10−4 to 10−6 (9).

First, we demonstrated the IM force. Figure 2A
shows the real and imaginary parts of DI as a
function of temperature T measured at fixed Vin
and f in 3He-A. We clearly observed that DI
appears in both real and imaginary parts below
the transition temperature Tc. The observed DI
is at most 6% of IR + IL. To verify that DI orig-
inates from the IM force, we performed the same
measurement in nonchiral 3He-B, where the IM
force is not expected because of zero total orbital
angular momentum of Cooper pairs. As shown in
Fig. 2B, DI apparently disappears in 3He-B, pro-
viding unambiguous evidence of the IM force.
Notably, two symmetric temperature dependences
equal in magnitude but opposite in sign are
observed in different runs cooled from the nor-
mal phase (runs 1 and 2 in Fig. 2A) even though
they were measured under the same experimen-
tal conditions. The two behaviors correspond to
monodomains with opposite chiralities, and we
could assign chirality by examining the direc-
tion of

→
F IM from the sign of DI: %l ¼ −%z for run

1 and %l ¼ þ %z for run 2 (8). The observation of
the two behaviors indicated that one of the two
chiral states was adopted at the transition, directly
demonstrating chiral symmetry breaking.

The temperature dependence of DI in Fig.
2A is understood by referring to the frequency
dependence of DI (Fig. 3A). Broad resonance-
like behaviors are found with a peak in the
imaginary part of DI at a frequency f0. The
resonance-like behavior is not a true resonance,
but arises as a result of the effect of nonzero
frequency on the Hall effect in the finite-sized
2D electron bubble system as described in (9)
(in this case, the Hall effect is caused by the IM
force instead of the Lorentz force). f0 shows a
rapid increase with decreasing T, and the tem-
perature dependence of DI in Fig. 2A is inter-

preted as f0 passing through the measurement
frequency upon a temperature sweep.

To extract the magnitude of
→
FIM from the

resonance-like behaviors, we performed numer-
ical simulations of DI by solving the equation of
motion of electron bubbles, including the IM
force in our experimental geometry (9). In the
simulations, only the ratio a ≡ j

→
F IMj=j

→
FDj is a

free parameter, where
→
FD is the drag force

deduced from the mobility of an electron bub-
ble (9). As shown in Fig. 3A, the simulations
reproduce the observed signals by assuming a
chiral monodomain, and a comparison with the
experimental data gives the magnitude of a. The
obtained a shows a temperature dependence
similar to that found in our theoretical calcula-
tion (Fig. 3B) (6, 7, 12), although the magnitude
differs by a factor of ~2.5. The theoretical pre-
diction (6) suggests that a should be proportional
to DA(T)/T near Tc for the IM force, whereas the
hydrodynamic Magnus force would have the
quadratic dependence on DA(T)/T, where DA(T)
is the maximum gap of 3He-A. As shown in the
inset of Fig. 3B, the observed a is proportional
to DA(T)/T near Tc, being consistent with the
prediction.

In some cooling runs, we found multiple
chiral domains coexisting in a sample. In these
cases, DI showed different temperature depen-
dences at different cooling runs because of the
different configurations of domain walls (DWs).
In addition, DI often exhibited an abrupt jump
associated with the motion of DWs induced by
a small mechanical shock on the cryostat (13).
For a monodomain sample, by contrast, DI was
reproducible and robust; the signal showed the
same temperature dependence in different cool-
ing runs and recovered after a shock within the
time constant of our measurement system (5 to
10 min). The robustness is attributable to the topo-
logical nature of the state; a domain with the

Fig. 1. Intrinsic Magnus force. (A) A moving impurity (yellow circles) experiences the IM force
→
FIMº

→v ! %l (8). (B) Experimental setup. The motion of electron bubbles along the surface is induced
by the ac voltage applied on the input electrode, and the induced current is detected by the right and
left electrodes. If electron bubbles experience the IM force, DI = IR − IL is generated. (C) Phase
diagram of superfluid 3He at zero pressure in T-B space (19). Two phases appear, chiral 3He-A and
nonchiral 3He-B. The red lines indicate the fields at which data in Fig. 2 are taken.
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example 2:     URu2Si2

�k = �kz(kx + iky)

Chiral dzx+idyz SC 

Line nodes

point nodes 
(linear dispersion)

N.B. Weyl points have  
spin-degeneracy

Thermal conductivity, 
specific heat, …
(Kasahara et al.; 
Yano et al.) 

• Kerr effect (Kapitulnik’s group, 2015)

• Giant Nernst effect due to chiral SC fluctuation
( exp. : Matsuda’s group, 2016 ;

theory : H. Sumiyoshi and S. F. , 2015)

Examples of Weyl superconductor



example 3:     UCoGe  Ferromagnetic SC non-unitary spin-triplet SC 

d = (a1ka + ia2kb, a3kb + ia4ka, 0) d � d� �= 0

��� �= ���(Mineev, PRB66, 134504;  
Hattori, Tada et al., PRL108, 066403)

N.B. Weyl points have no spin-degeneracy !!

J. Phys.: Condens. Matter 22 (2010) 015503 M Samsel-Czekała et al

Figure 6. The same as in figure 5 but spin-up and spin-down
channels are shown separately.

with the nesting vector q6 along the a axis and, finally, a
small electron element in the middle of the Brillouin zone
in the fourth band. The discs are unstable with even slight
changes of lattice parameters (they are shifted from the third
band). In a similar way, the electrons in the middle of the
fourth Brillouin zone are also unstable. It is worth underlining
that the ferromagnetic FS is typically metallic, with nesting
properties along all axes that may favour both magnetism
and/or superconductivity.

A detailed insight into the electronic structure can be
gained from, e.g., dHvA measurements. Unfortunately, we
are not aware of any dHvA experiments not only for UCoGe
but also for the whole family of 1:1:1 uranium ternaries
UT(Si, Ge). In an attempt to initiate possible experiments, we
provide here dHvA frequencies and their angular dependences
in both the non-magnetic and ferromagnetic states of UCoGe
as a representative of the UT(Si, Ge) family. The extremal
orbits have been calculated using the numerical scheme
presented in [19], which outlined in detail an earlier work
on this subject [22]. In tables 4 and 5 we gather calculated
values of the dHvA frequencies F for the non-magnetic and
ferromagnetic states of UCoGe, respectively. The extremal
orbits for a magnetic field H orientation along the [001], [100]
and [010] directions are displayed in figure 8 and labelled with
Greek letters and corresponding band numbers.

The FS in the non-magnetic state (see figure 7) consists
of four sheets and thus there are four extremal orbits for

Figure 7. Calculated FS sheets of UCoGe in the non-magnetic
(left-hand panel) and ferromagnetic (along the c axis) (right-hand
panel) states, drawn separately for each band in the orthorhombic
Brillouin zone with marked high symmetry points and possible
nesting vectors q1, . . . , q6 with respective lengths: 0.41 (2π/c), 0.73
(2π/b), 0.48 (2π/a), 0.53 (2π/c), 0.90 (2π/a), 0.85 (2π/a).

Table 4. Calculated dHvA frequencies F (in kT) with H ∥ c for
UCoGe in the non-magnetic state.

H Orbits Band no Central point Area (kT )

001 α 251 T′
k b=0.70 0.747

β 253 S 1.113
γ 253 %k c=0.15 0.362
δ 255 S 0.213

Table 5. Calculated dHvA frequencies F (in kT) with H ∥ a, H ∥ c,
and H ∥ b for UCoGe in the ferromagnetic state.

H Orbits Band no Central point Area (kT )

100 ρ 253 % 1.237
φ 253 X ′

k a=0.20 0.852
µ 253 X ′′

k a=0.45 2.250
λ 253 X 1.325
ξ 254 X 1.295

001 χ 252 Z 0.270
ω 252 Z 3.726

010 τ 252 Z 1.748
η 252 Z′

k a=0.16 1.442

a magnetic field along the c-axis direction. In table 4 the
extremal orbits denoted as β and δ are connected with those FS
sheets centred at the S point, while α and γ orbits correspond
to those located close to the T and % points centred at k points
(0.0, 0.70, 0.47) and (0.00 0.30 0.15), respectively. We expect
that α and γ orbits are very sensitive to both the alignment of
the magnetic field and purity of the crystal due to their shapes
and locations. It is quite clear (see figure 7) that there are

6

(Samsel-Czekala et al.)

point node 
Weyl point

Genuine Weyl superconductor !!

Fermi surface  
for majority spin

Examples of Weyl superconductor



example 4:    B phase of UPt3 Chiral f-wave SC ? (controversial) 

N.B. Weyl points have spin-degeneracy

(Goswami-Nevidomskyy) 

�k = �kz(kx + iky)2 (Schemm et al.)

4

(a) (b)

kz

ky

FIG. 1. (Color online) (a) A vector-field plot of the quasiparticle’s Berry curvature ⌦k,z for �k = �0kz(kx � ik
y

)2/k3
F

. The
point nodes at k

z

= ±k
F

appear as the double (anti)monopole of the Berry curvature. The Berry curvature is diminished at
the equator k

z

= 0, due to the presence of the line node. (b) Sketch of the (spherical) Fermi surface with projection onto the
(100)-surface Brillouin zone, showing the double-Weyl points at k

z

= ±k
F

connected by two Andreev surface arcs.

in and out of the ca or the cb planes are equal, and there is
no net flux through the ca and the cb planes. In contrast,
⌦k,n,z in Eq. (6) is an even function of its arguments, and
the flux through the ab plane as a function of k

z

equals

�⌦(kz) =

Z
d2k?⌦k,n,z = 2⇡ C(k

z

) (7)

where C(k
z

) is the Chern number for the e↵ective two-
dimensional problem for a fixed k

z

. For a given value of
�k

F

<k
z

<k
F

(provided k
z

6=0), ĥk describes an e↵ective
two-dimensional problem with fully gapped weak/BCS
pairing and an e↵ective chemical potential µ̃ = µ �
k2
z

/(2M), which leads to C(k
z

) = L
z

. For k2
z

> k2
F

, the
e↵ective chemical potential of the two-dimensional prob-
lem becomes negative, and describes topologically trivial
BEC pairing, as C(k

z

) vanishes. Therefore, point nodes
k
z

= ±k
F

act as the monopoles and antimonopoles of the
Berry curvature of strength L

z

, and the flux through a
sphere surrounding the (anti)monopole is equal to ±L

z

.
Thus the topological invariant of the nodal points is pre-
cisely determined by the Cooper pairs’s angular momen-
tum projection L

z

along the c-axis. We have plotted the
Berry curvature for L

z

= �2 pairing and n = +1 band in
Fig. 1a, which captures all the salient features described
above. For L

z

= +2, the monopole and the antimonopole
swap places. By expanding ĥk for L

z

= �2 around the
point nodes we obtain the low energy Hamiltonians

ĥ
R/L

= ±v
F

(k
z

⌥ k
F

)⌧̂3 ±
�0

k2
F

�
(k2

x

� k2
y

)⌧̂1 + 2k
x

k
y

⌧̂2
�
,

(8)
for the double (anti)monopole. The low energy excita-
tions around the point nodes possess linear dispersion
along the c axis and quadratic dispersion in the ab plane.

This anisotropic dispersion leads to the linear density
of states D(✏) / ✏. The nontrivial Chern number for
�k

F

<k
z

<k
F

(and k
z

6=0) is responsible for giving rise
to the current carrying, chiral Andreev bound states on
the (1, 0, 0) and the (0, 1, 0) surfaces, and many exotic
chiral transport properties to be discussed below.

IV. SURFACE ANDREEV BOUND STATES

As mentioned above, the bulk invariant L
z

= 2 for the
point nodes has already been determined by the Joseph-
son interferometry measurements34. However surface-
sensitive techniques, such as ARPES and Fourier trans-
formed STM, can provide more direct information about
the topological surface states, tied to the existence of the
two types of bulk topological invariants. For this reason,
we now consider the di↵erent types of surface Andreev
bound states arising from the line and the point nodes.

We first describe the zero-energy bound states due to
the existence of the line node on the (0, 0, 1) surface. We
consider a semi-infinite sample, such that z < 0 and z > 0
regions are occupied by the superconductor and the vac-
uum, respectively. Since k

x

and k
y

are good quantum
numbers, the zero-energy bound states satisfy the dif-
ferential equations ĥ(k

x

, k
y

,�i@
z

) (k?, z) = 0, and the
boundary conditions  (z = 0) =  (z ! �1) = 0. We
have already noted that the presence of a spectral sym-
metry with respect to the matrix Uk (independent of k

z

),
which continues to be valid even after the replacement
k
z

! �i@
z

. For this reason, the zero-energy bound states
need to be eigenstates of Uk with eigenvalue +1 or �1.

Point node 
(k-quadratic) 
double-Weyl  

points 
(monopole  
charge +2)

Point node 
(k-quadratic) 

double-Weyl points

line node

Majorana arc 
anomalous  

thermal 
Hall effect

(Huxley et al.) 

B

A

C

(monopole  
charge -2)
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Examples of Weyl superconductor

example 5:    U1-xThxBe13

VoLUME65, NUMBER 22 PHYSICAL REVIEW LETTERS 26 NovEMaER 1990

Rauchschwalbe, ' who studied a sample with x =0.033.
We now discuss our conclusions from these data, ad-

dressing first the nature of the overall T-x phase dia-
gram. There is no evidence of a second phase transition
at low fields below T,. i in pure UBet3 from either the
pSR data or the H, i(T) data. This contradicts the data
of Ref. 14, where a small deviation from the T depen-
dence in pure UBei3 below 0.56 K was claimed as evi-
dence for a second phase, but supports previous specific-
heat results. ' The fact that wt.* see an increase in the
pSR linewidth below T,. ~ and two diA'erent quadratic
temperature dependences in H, i(T) only for x =0.0193,
0.0245, and 0.0355, but not for x =0.000, 0.0100, or
0.0600, is a clear indication that there are magnetic
correlations only in regions of the phase diagram where a
second specific-heat peak has been observed (0.019 (x(0.043). ' The previous suggestion' that the super-
conducting transition at T, i=0.86 K in UBetq is to be
associated with the lower transitions at T,.2 for 0.019~ x(0.043 is also ruled out by our data, because the latter
phase transitions exhibit magnetic correlations while the
former does not. Within uncertainties in the Th concen-
tration of about 0.005, the T-x phase diagram is con-
structed approximately as shown in Fig. 3, augmented by
specific-heat data for other Th concentrations. The
dashed lines may not be absolutely vertical as drawn, but
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TABLE II. The x dependence of o, and [H,'i] ~-' at T=O in
U I —,Th, BeI ~.

x ( k) x/1. 93 o;.(x)/o, (1.93) I,' (. )/, ' ( . 3)l"-
1.93
2.45
3.55

1.00
1.27
1.84

1.00
1.11 ~ 0.06
1.31 ~ 0.07

1.00
1.14+ 0.07
1.21 + 0.07

Ref. 17.
We now discuss the nature of the phase below T,, ~.
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for a tiny electron band [38, 39]. Given the fact that sponta-
neous magnetism is observed from zero-field µSR only below
Tc2 [16], in addition, it would be natural to assume that the
B phase is a time-reversal-symmetry broken SC state. Un-
der these constraints, two plausible scenarios can be proposed
to explain the multiple SC phases in U1−xThxBe13. One is
to employ a degenerate order parameter belonging to higher
dimensional representations of the Oh symmetry (degenerate
scenario). The other is to assume two order parameters be-
longing to different representations of the Oh group, nearly
degenerate to each other (accidental scenario) [19].

Degenerate scenario: The group theoretic classification
of the gap functions under the cubic symmetry Oh has been
given by several authors [19, 40–42]. Among them, the
two-dimensional odd-parity Eu state is a promising candi-
date for the order parameter which naturally explains the ex-
isting experimental data of both pure and Th-doped UBe13
[43]. The possibility of the odd-parity state has also been
suggested from the µSR Knight shift experiments [23]. As
for the odd-parity Eu state, we have two basis functions,
l1(k) =

√
3(x̂kx− ŷky), and l2(k) = 2ẑkz−x̂kx− ŷky , and

their combinated state, d(k) = l1+il2 = x̂kx+ϵŷky+ϵ2ẑkz
with ϵ = ei

2π

3 (ϵ3 = 1). The non-unitary state d(k) = l1+il2
has point nodes only along the ⟨111⟩ direction, therefore,
the nodal quasiparticle excitations can be missing consider-
ing the calculated Fermi surface [38, 39]. The condition of
the occurrence of each two-dimensional SC state can be ex-
amined using the Ginzburg-Landau free energy density, F =
α(T )(|l1|2 + |l2|2) + β1(|l1|2 + |l2|2)2 + β2(l1l∗2 + l∗1l2)

2

with α(T ) = α0(Tc − T ), where β1 > 0 is required for
the stability. If β2 > 0, the non-unitary state with the bro-
ken time-reversal symmetry becomes stable in lower T as a
ground state (the B phase). With increasing temperature the
degeneracy of the order parameters is lifted at Tc2, and one
of them appears in the A phase (Tc2 < T < Tc1). Logically,
the other one appears in the C phase by changing dopant x.
In pure UBe13 (the C phase), a nodeless gap function, i.e.,
l2(k) = 2ẑkz − x̂kx − ŷky , which is a unitary state, is likely,
explaining the absence of nodal quasiparticle excitations [12]
without invoking the Fermi-surface topology.

Accidental scenario: We briefly discuss the possibility of
the accidental scenario, starting with the simplest and most
symmetric A1u, namely dA1u(k) = x̂kx + ŷky + ẑkz with
an isotropic full gap as the C phase for x = 0. From x =
0.019 to x = 0.045, we consider the combined state of 1D
representations, the above p-wave A1u and f -wave A2u with
dA2u(k) = x̂kx(k2y−k2z)+ŷky(k2z−k2x)+ẑkz(k2x−k2y). The
combined state of A1u and A2u, namely, non-unitary d(k) =
dA1u + idA2u is nodeless irrespective of the Fermi-surface
topology, although dA2u alone has point nodes along ⟨100⟩
and ⟨111⟩ directions. Thus nodeless A1u and the A1u + iA2u

states can explain the absence of nodal quasiparticles in pure
and Th-doped UBe13, respectively [44]. Similarly, the other
order parameters belonging to different irreducible represen-
tations are possible, e.g., A1u + iEu; the determination of the
two order parameters is not easy due to the arbitrariness of

their combinations.

Finally, it is worth discussing the topology of the H-T
phase diagram. In Fig. 4(b), it may appear that the lines
of Tc1(H) and Tc2(H) merge into a single 2nd-order tran-
sition line in a high-field region. Such a case is, however,
not allowed in the thermodynamic argument of the multicrit-
ical point [46, 47]. Instead, a crossing of the two 2nd-order
transition lines at a tetra-critical point is possible [46]. This
argument imposes the existence of another 2nd-order transi-
tion below Hc2 for T <∼ 0.25 K, but no evidence for such a
transition line has been obtained so far in our measurements
as well as in previous thermal expansion studies [24]. It might
be natural to consider an anti-crossing of the two 2nd-order
transition lines [48]. The crossing of Tc1(H) and Tc2(H) in
U1−xThxBe13 will be examined further in future studies.

To conclude, low-energy quasiparticle excitations and mag-
netic response of U0.97Th0.03Be13 were studied by means of
heat-capacity and dc magnetization measurements. The mag-
netization results evidence that the second transition at Tc2

is between two different SC states. Strikingly, the present
C(T,H,φ) data strongly suggest that the SC gap is fully
open over the Fermi surface in U0.97Th0.03Be13, excluding
a number of gap functions possible in the cubic symmetry.
Our new thermodynamic results entirely overturn a widely
believed idea that nodal quasiparticle excitations occur in
the odd-parity SC state with broken time-reversal-symmetry.
The absence (presence) of anisotropy for Tc2 (Tc1) in fields
clearly demonstrates that the gap symmetry in the B phase
(T < Tc2) is distinguished from that of the A phase (Tc2 <
T < Tc1). Moreover, the isotropic behavior of the Tc2(H)
in U1−xThxBe13 contrasts starkly to the anisotropic field re-
sponse of B∗ anomaly found in pure UBe13. These findings
lead to a new channel to deepen its true nature of the ground
state of U1−xThxBe13, clarifying the origin of the unusual
transition inside the SC phase.
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Tc2 [16], in addition, it would be natural to assume that the
B phase is a time-reversal-symmetry broken SC state. Un-
der these constraints, two plausible scenarios can be proposed
to explain the multiple SC phases in U1−xThxBe13. One is
to employ a degenerate order parameter belonging to higher
dimensional representations of the Oh symmetry (degenerate
scenario). The other is to assume two order parameters be-
longing to different representations of the Oh group, nearly
degenerate to each other (accidental scenario) [19].
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of the gap functions under the cubic symmetry Oh has been
given by several authors [19, 40–42]. Among them, the
two-dimensional odd-parity Eu state is a promising candi-
date for the order parameter which naturally explains the ex-
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with α(T ) = α0(Tc − T ), where β1 > 0 is required for
the stability. If β2 > 0, the non-unitary state with the bro-
ken time-reversal symmetry becomes stable in lower T as a
ground state (the B phase). With increasing temperature the
degeneracy of the order parameters is lifted at Tc2, and one
of them appears in the A phase (Tc2 < T < Tc1). Logically,
the other one appears in the C phase by changing dopant x.
In pure UBe13 (the C phase), a nodeless gap function, i.e.,
l2(k) = 2ẑkz − x̂kx − ŷky , which is a unitary state, is likely,
explaining the absence of nodal quasiparticle excitations [12]
without invoking the Fermi-surface topology.

Accidental scenario: We briefly discuss the possibility of
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and Th-doped UBe13, respectively [44]. Similarly, the other
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tations are possible, e.g., A1u + iEu; the determination of the
two order parameters is not easy due to the arbitrariness of

their combinations.
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transition lines [48]. The crossing of Tc1(H) and Tc2(H) in
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To conclude, low-energy quasiparticle excitations and mag-
netic response of U0.97Th0.03Be13 were studied by means of
heat-capacity and dc magnetization measurements. The mag-
netization results evidence that the second transition at Tc2

is between two different SC states. Strikingly, the present
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a number of gap functions possible in the cubic symmetry.
Our new thermodynamic results entirely overturn a widely
believed idea that nodal quasiparticle excitations occur in
the odd-parity SC state with broken time-reversal-symmetry.
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scenario). The other is to assume two order parameters be-
longing to different representations of the Oh group, nearly
degenerate to each other (accidental scenario) [19].

Degenerate scenario: The group theoretic classification
of the gap functions under the cubic symmetry Oh has been
given by several authors [19, 40–42]. Among them, the
two-dimensional odd-parity Eu state is a promising candi-
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l2(k) = 2ẑkz − x̂kx − ŷky , which is a unitary state, is likely,
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without invoking the Fermi-surface topology.

Accidental scenario: We briefly discuss the possibility of
the accidental scenario, starting with the simplest and most
symmetric A1u, namely dA1u(k) = x̂kx + ŷky + ẑkz with
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Chiral Anomaly of Weyl semimetal
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displacement vector uA (where we allow for a time dis-
placement as well). In terms of the displacement vector the
coframe fields are (to linear order in displacements)

eAμ ¼ δAμ − ∂uA
∂xμ ð3Þ

where the spatial componentswa
i ¼ ∂iua are known conven-

tionally as the distortion tensor [61]. The undeformed
system is represented by the orthonormal frames eAμ ¼ δAμ
which exist at every point in space-time.
Similarly, lattice disclinations can be viewed as sources

of curvature—traversal around a disclination results in
rotation. This effect can be encoded in link variables
ωab
i . Promoting this to space-time, we have the set of

spin connection 1-forms [valued in soðd − 1; 1Þ] ωA
B ¼

ωA
μ;Bdxμ which are gauge potentials for local Lorentz

invariance. The field strength RA
B for the spin connection

is referred to as the curvature. In fact, the spin connection
can be grouped with the translation gauge potentials eA to
form a kind of Poincaré gauge structure.4We refer the reader
to Ref. [41], and references therein, for more discussion
about the connection between the field theory variables
and conventional elasticity theory.
Now we will move on to discuss the well-known chiral

anomaly. In 1þ 1 dimensions, charged chiral fermions in
the presence of an electric field will not conserve chiral
charge. This effect is captured by the anomalous Ward
identity for the chiral (axial) current:

∂μj
μ
5 ¼

q2

4π
ϵμνFμν ð5Þ

where q is theUð1Þ charge. This is problematic in the sense
that it goes against all classical physical intuition about
charge conservation. There are two common ways in which
this problem is resolved: (i) if the chiral fermion appears as
the low-energy description of a real 1þ 1-dimensional
material then it must always appear with its antichiral
partner [a consequence of the Neilsen-Ninomiya no-go
theorem (fermion doubling)] [62] or (ii) the chiral fermion
appears as the low-energy description on the boundary of a

2þ 1-dimensional system, and the antichiral partner
appears on the opposite boundary. In this case the total
chiral charge of the two chiral fermions is passed back and
forth through the 2þ 1-dimensional bulk. One can show in
case (ii) that when an electric field is applied parallel to the
chiral edge state there is a bulk current perpendicular to
the applied electric field/edge, and the boundary chiral
anomaly is attached to a bulk Hall effect; this is an example
of the Callan-Harvey effect [3] and it appears in any
two-dimensional electron system exhibiting the integer
quantum Hall effect. In case (i) the Uð1Þ axial charge is
locally conserved but it can be converted between the
low-energy left-hand (left-moving) and right-hand (right-
moving) branches in the presence of an applied electric
field. In this case there is no notion of a perpendicular Hall
current since both chiral and antichiral fermions exist in the
same local region of space.
We note that because the frame field, and, subsequently,

the torsion 2-form, carry an extra Lorentz index A, there is
no Lorentz invariant contribution to the 1þ 1-dimensional
chiral anomaly from torsion. For a real crystalline material
or a fluid at finite density, both of which naturally break
Lorentz invariance, it is possible to generate a term of the
form ∂μj

μ
5 ∼ θAϵμνTA

μν for some field θA arising from the
source of Lorentz violation. For example, this type of
anomaly might be generated if we have left- and right-hand
chiral fermions with different velocities, which is allowed
in a condensed matter setting. For 1þ 1-dimensional
fermions different velocities means the density of states
of the left and right movers is different, which can lead to a
physically measurable consequence. We will not consider
these effects in what follows, though they could appear in
low-dimensional condensed matter materials and would be
interesting to study in future work.
In 3þ 1 dimensions, the next dimension that supports

chiral fermions, there is also a chiral anomaly in the
presence of background electromagnetic fields; however
it is only present when parallel electric and magnetic fields
are applied. This is captured by the anomalous Ward
identity

∂μj
μ
5 ¼

q3

32π2
ϵμνρσFμνFρσ ¼

q3

4π2
~E · ~B: ð6Þ

One can think of the anomaly as a two-step process in
which one first turns on a uniform magnetic field and then a
parallel electric field. The magnetic field will produce
Landau levels in the low-energy chiral fermions, and there
will be one Landau level that disperses chirally along the
direction of the magnetic field. This dispersive Landau
level is identical to a degenerate set of 1þ 1-dimensional
chiral fermions along the direction of the magnetic field,
one chiral branch for each magnetic flux quantum. At this
point the problem has been reduced back to decoupled
copies of the 1þ 1-dimensional case, and one can proceed

4Formally, this can be seen by considering the coupling of a
Dirac fermion (or any tensor) to a background frame and spin
connection. The covariant derivative ∇A generates translations,
and the commutator of translations takes the form

½∇A;∇B& ¼ −TC
AB∇C þ RCD;ABJCD; ð4Þ

where T is torsion, R curvature, and J the generator of Lorentz
transformations acting on the Dirac spinor. The commutator has
an interpretation in terms of traversing a “closed” path, the result
being a translation (if torsion is present) or a (Lorentz) rotation (if
curvature is present). The standard relations between eA, ωA

B,
and TA, RA

B will be given below in the following subsection.
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We demonstrate that topological transport phenomena, characteristic of Weyl semimetals, namely the
semiquantized anomalous Hall effect and the chiral magnetic effect (equilibrium magnetic-field-driven current),
may be thought of as two distinct manifestations of the same underlying phenomenon, the chiral anomaly. We
show that the topological response in Weyl semimetals is fully described by a θ term in the action for the
electromagnetic field, where θ is not a constant parameter, like, for example, in topological insulators, but is
a field, which has a linear dependence on the space-time coordinates. We also show that the θ term and the
corresponding topological response survive for sufficiently weak translational symmetry breaking perturbations,
which open a gap in the spectrum of the Weyl semimetal, eliminating the Weyl nodes.
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I. INTRODUCTION

Weyl semimetals have attracted attention recently as a
new kind of topologically nontrivial phase of matter: Weyl
semimetal is gapless in the bulk yet possesses protected
surface states and the corresponding topological transport
phenomena.1–19 Topological protection in this case results
from the separation of the individual Weyl band-touching
nodes with opposite topological charges in momentum space,
which makes it impossible to hybridize the nodes and produce
a fully gapped insulating state without violating translational
symmetry.20–23 Such separation requires breaking of either
time-reversal (TR) or inversion (I) symmetry, or both,24 as in
the presence of TR and I all bands are doubly degenerate by
Kramers theorem.

As has long been known in the quantum field theory context,
chiral Weyl fermions are associated with the phenomenon of
chiral anomaly.25–27 Chiral anomaly manifests in nonconser-
vation of the numbers of particles of a specific chirality in
the presence of topologically nontrivial configurations of the
background gauge field (electromagnetic field in our context),
even though these numbers are conserved classically (for
massless particles). This phenomenon plays an important role
in the standard model of particle physics.28,29 In the condensed
matter context, the 2 + 1-dimensional relative of the chiral
anomaly, the parity anomaly, has mainly been discussed, due to
its close relation to the quantum Hall effect.30–34 The discovery
of Weyl semimetals provides a concrete condensed matter
system, where 3 + 1-dimensional chiral anomaly and related
effects can be realized.11,13,14

In this paper we focus on a specific realization of a Weyl
semimetal in a magnetically doped multilayer heterostructure,
made of alternating layers of topological insulator35,36 (TI)
and normal insulator (NI) materials.4 This system realizes the
simplest possible kind of Weyl semimetal, with only two Weyl
nodes of opposite chirality, the smallest number allowed by the
Nielsen-Ninomiya theorem,37 in its band structure (identical
results are obtained by magnetically doping a bulk TI with
a small band gap). We have demonstrated before that such a
system possesses topologically nontrivial transport properties,
namely the semiquantized anomalous Hall effect4,5 and the
chiral magnetic effect (generation of equilibrium current by
magnetic field).6 The chiral magnetic effect has been known

for some time in the particle physics context13,38–41 and may
have recently been observed experimentally in relativistic
heavy ion collisions.42 Observation of this effect in Weyl
semimetals would be of significant interest.

In this work we demonstrate that both the quantum
anomalous Hall effect and the chiral magnetic effect in
Weyl semimetals are manifestations of the same underlying
phenomenon, the chiral anomaly. We show that opposite-
chirality Weyl nodes, separated in momentum space and in
energy, give rise to an induced θ term in the action of the
electromagnetic field

Sθ = e2

32π2

∫
dtdr θ (r,t)ϵµναβFµνFαβ, (1)

where h̄ = c = 1 units are used henceforth. θ (r,t) is an “axion”
field,43 which has the following form:

θ (r,t) = 2b · r − 2b0t, (2)

where 2b is the separation between the Weyl nodes in
momentum space and 2b0 is the separation between the nodes
in energy.

In the rest of the paper we will give a derivation of Eq. (1)
using Fujikawa’s method,28,29,44 which clearly demonstrates
the relation of the θ term to the chiral anomaly, and show
that both the anomalous Hall and the chiral magnetic effects
follow directly from Eq. (1). We will also demonstrate that,
somewhat contrary to the commonly expressed belief that
Weyl semimetal is only topologically stable in the presence
of translational symmetry, which prohibits the mixing of Weyl
nodes, the θ term in Eq. (1) in fact survives even when the
translational symmetry is broken and the Weyl nodes are hy-
bridized and gapped out, provided the translational symmetry
breaking is sufficiently weak. The quantum anomalous Hall
effect and the chiral magnetic effect are thus more robust than
the Weyl nodes themselves.

II. θ TERM IN WEYL SEMIMETALS

We start from a specific realization of a Weyl semimetal
in a TI-NI multilayer heterostructure.4 The advantage of
this system is its simplicity (and, perhaps, simplicity of
experimental realization as well), as the Weyl semimetal
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by applying an electric field as the second step. The electric
field will induce a nonconservation of charge for each
1þ 1-dimensional chiral branch. The resolution of the
nonconservation of chiral charge is solved using one of the
two mechanisms presented earlier. Using the nomenclature
from recent condensed matter literature, one would say that
chiral fermions occurring from case (i) appear in a Weyl
semimetal material [22–24,26–35] and from case (ii) one
would state that the chiral fermions appear at the boundary
of a 4þ 1-dimensional topological insulator state [19].
It is well known that in addition to the electromagnetic

contributions to the anomalous chiral conservation law,
new terms are generated when the space-time in which the
chiral fermion resides is curved or has torsion. As shown,
for instance in [21,63], the Ward identity is modified in the
presence of curvature and torsion to5

∂μj
μ
5 ¼

q3

32π2
ϵμνρσFμνFρσ þ

q
192π2

ϵμνρσ
1

4
Rab
μνRcd

ρσηadηbc

þ CNY; ð7Þ

where Rab
μν is the Riemann curvature tensor and the Nieh-

Yan term [64] is given by

CNY ¼ q
32π2l2

ϵμνρσðηabTa
μνTb

ρσ − 2Rab;μνeaρebσÞ ð8Þ

with l being a length scale. The consequences of the first
term are well understood, and even the curvature dependent
term has recently come under investigation in a condensed
matter setting [20,65]; however the microscopic origin, and
a clear condensed matter interpretation of the third term has
not been considered. The coefficients of the first two terms
are dimensionless and universal, while the Nieh-Yan term
has a dimensionful coefficient, related to a UV scale [21].
The reason the coefficients have different properties is that
the components of the coframe eAμ are dimensionless and
do not have the conventional natural units of L−1 befitting
the components of a connection. Thus, the torsion field (1)
only has units of L−1 and the anomalous Nieh-Yan term
needs a coefficient with units ℏ=L2 so that the entire term
has the units of action when integrated over a space-time
region. Usually, anomaly coefficients have a topological
origin and are quantized as an integer multiplying funda-
mental constants. The Nieh-Yan term however has units, is
sensitive to UV scales, and thus has no apparent universal
interpretation.
In this article we have not set out to address the Nieh-Yan

term from a fundamental perspective, but instead we will
provide a regularized derivation and a condensed matter
interpretation of the consequences of this and other new
torsional contributions to anomalies. Indeed, we do find

that one can interpret the Nieh-Yan term as a contribution to
the chiral anomaly, and its effects could possibly be
observed, for example, in Weyl semimetals.6 A related
effect also appears in the response of 3þ 1-dimensional
time-reversal invariant topological insulators to torsion
where an axion-induced Nieh-Yan term gives rise to a
surface Hall viscosity [66]. Before we get to these results,
we will review the warm-up problem of the 2þ 1-
dimensional topological insulator that was covered in
Refs. [41,47] and then step up to the 4þ 1-dimensional
topological insulator. While considering 4þ 1 dimensions
may be a stretch for condensed matter minded readers, we
can use two different properties of this system to study
lower-dimensional systems that are relevant to experiments.
We can first consider the gapless boundary modes of
the 4þ 1-dimensional topological insulator which will be
standard 3þ 1-dimensional chiral fermions as would be
found in the bulk of a Weyl semimetal, and second, we can
dimensionally reduce the 4þ 1-dimensional insulator to
obtain a time-reversal invariant strong topological insulator
in 3þ 1 dimensions using the framework set forth
by Ref. [19].

B. Formal preliminaries

Before proceeding, we present here a brief introduction
to the mathematical details of torsional gravity, fermions
coupled to torsion, the corresponding symmetries, etc. (see
[41,67] for more details). As mentioned previously, con-
ventionally, gravity is described in terms of the metric
2-tensor g ¼ gμνdxμ ⊗ dxν on space-time. However, in
order to couple fermions to gravity, it is essential that
we use the first order formalism. In this language, we
introduce the coframe, a local basis of 1-forms eAðxÞ ¼
eAμ ðxÞdxμ on space-time, such that

g ¼ ηABeA ⊗ eB: ð9Þ

The corresponding basis of tangent vector fields dual to
the coframe is called the frame eAðxÞ. In going from the
metric to the coframe, we have introduced a redundancy
in our description, namely the local Lorentz gauge
symmetry

eAðxÞ ↦ ΛA
BðxÞeBðxÞ ð10Þ

5These expressions should be taken to be schematic; the
precise results will be presented later in the paper.

6In the context of topological insulators, the significance of
UV scales is somewhat subtle. As we review below for example,
the UV scale of an edge theory is related to a gap scale in the bulk.
Thus, it is possible that anomalies depending on the UV scale in
an edge theory have simple interpretations (by anomaly inflow) in
terms of physics in the bulk. We expect that the same physics can
arise in high-energy theory, for example in braneworld scenarios,
if either side of a brane corresponds to distinct topological phases.
This possibility, as far as we are aware, has not been considered in
the literature.
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of a 4þ 1-dimensional topological insulator state [19].
It is well known that in addition to the electromagnetic

contributions to the anomalous chiral conservation law,
new terms are generated when the space-time in which the
chiral fermion resides is curved or has torsion. As shown,
for instance in [21,63], the Ward identity is modified in the
presence of curvature and torsion to5

∂μj
μ
5 ¼

q3

32π2
ϵμνρσFμνFρσ þ

q
192π2

ϵμνρσ
1

4
Rab
μνRcd

ρσηadηbc

þ CNY; ð7Þ

where Rab
μν is the Riemann curvature tensor and the Nieh-

Yan term [64] is given by

CNY ¼ q
32π2l2

ϵμνρσðηabTa
μνTb

ρσ − 2Rab;μνeaρebσÞ ð8Þ

with l being a length scale. The consequences of the first
term are well understood, and even the curvature dependent
term has recently come under investigation in a condensed
matter setting [20,65]; however the microscopic origin, and
a clear condensed matter interpretation of the third term has
not been considered. The coefficients of the first two terms
are dimensionless and universal, while the Nieh-Yan term
has a dimensionful coefficient, related to a UV scale [21].
The reason the coefficients have different properties is that
the components of the coframe eAμ are dimensionless and
do not have the conventional natural units of L−1 befitting
the components of a connection. Thus, the torsion field (1)
only has units of L−1 and the anomalous Nieh-Yan term
needs a coefficient with units ℏ=L2 so that the entire term
has the units of action when integrated over a space-time
region. Usually, anomaly coefficients have a topological
origin and are quantized as an integer multiplying funda-
mental constants. The Nieh-Yan term however has units, is
sensitive to UV scales, and thus has no apparent universal
interpretation.
In this article we have not set out to address the Nieh-Yan

term from a fundamental perspective, but instead we will
provide a regularized derivation and a condensed matter
interpretation of the consequences of this and other new
torsional contributions to anomalies. Indeed, we do find

that one can interpret the Nieh-Yan term as a contribution to
the chiral anomaly, and its effects could possibly be
observed, for example, in Weyl semimetals.6 A related
effect also appears in the response of 3þ 1-dimensional
time-reversal invariant topological insulators to torsion
where an axion-induced Nieh-Yan term gives rise to a
surface Hall viscosity [66]. Before we get to these results,
we will review the warm-up problem of the 2þ 1-
dimensional topological insulator that was covered in
Refs. [41,47] and then step up to the 4þ 1-dimensional
topological insulator. While considering 4þ 1 dimensions
may be a stretch for condensed matter minded readers, we
can use two different properties of this system to study
lower-dimensional systems that are relevant to experiments.
We can first consider the gapless boundary modes of
the 4þ 1-dimensional topological insulator which will be
standard 3þ 1-dimensional chiral fermions as would be
found in the bulk of a Weyl semimetal, and second, we can
dimensionally reduce the 4þ 1-dimensional insulator to
obtain a time-reversal invariant strong topological insulator
in 3þ 1 dimensions using the framework set forth
by Ref. [19].

B. Formal preliminaries

Before proceeding, we present here a brief introduction
to the mathematical details of torsional gravity, fermions
coupled to torsion, the corresponding symmetries, etc. (see
[41,67] for more details). As mentioned previously, con-
ventionally, gravity is described in terms of the metric
2-tensor g ¼ gμνdxμ ⊗ dxν on space-time. However, in
order to couple fermions to gravity, it is essential that
we use the first order formalism. In this language, we
introduce the coframe, a local basis of 1-forms eAðxÞ ¼
eAμ ðxÞdxμ on space-time, such that

g ¼ ηABeA ⊗ eB: ð9Þ

The corresponding basis of tangent vector fields dual to
the coframe is called the frame eAðxÞ. In going from the
metric to the coframe, we have introduced a redundancy
in our description, namely the local Lorentz gauge
symmetry

eAðxÞ ↦ ΛA
BðxÞeBðxÞ ð10Þ

5These expressions should be taken to be schematic; the
precise results will be presented later in the paper.

6In the context of topological insulators, the significance of
UV scales is somewhat subtle. As we review below for example,
the UV scale of an edge theory is related to a gap scale in the bulk.
Thus, it is possible that anomalies depending on the UV scale in
an edge theory have simple interpretations (by anomaly inflow) in
terms of physics in the bulk. We expect that the same physics can
arise in high-energy theory, for example in braneworld scenarios,
if either side of a brane corresponds to distinct topological phases.
This possibility, as far as we are aware, has not been considered in
the literature.
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generalized to the case with dislocation,

H =
∑

r

[
it
∑

i=x,y,z

c†
r+î+δi,zbgΘ(r)

Γicr + r

(
3c†rΓ

4cr −
∑

i=x,y,z

c†
r+î+δi,zbgΘ(r)

Γ4cr

)
+

d

2
c†rΓ

12cr

]

+ h.c., (4.3.1)

where the 4 × 4-matrices, Γi, satisfy the SO(5) Clifford algebra {Γi,Γj} = 2δij [66],

Γij := [Γi,Γj]/2i, r = (x, y, z) and î denote the position of the atoms and the xi-

direction unit vector, respectively, and t, r, and d are the real parameters, and we

suppose the lattice constant as 1 and lattice size Lx×Ly×Lz. We introduced a pair of

screw dislocations along z-direction with opposite Burgers vector at ±ldis = ±(ldisx , 0)

as shown in Fig.4.3, by sliding the hopping directions in the first and third terms of Eq.

(4.3.1) as Θ(r) = −1 for the region x = 0, −ldisx < y < ldisx , while Θ(r) = 0 for other

regions.

Figure 4.3: Setup for the numerical calculation: lattice with a pair of screw dislocations

with opposite Burgers vectors. Reproduced from Ref.[20].

Now, we numerically diagonalized this model and obtained the spectrums and cur-

rent. Here the material parameters are set as t = r = 1 and d = 3.6. The lattice

constant is 1 and the amplitudes of the Burgers vectors is set as bg = 1. For the cal-

culation, we imposed the open boundary condition along the x− and y−directions and
periodic boundary condition along the z−direction, and set Lx = Ly = 4ldisx = 38 and

Lz = 100.

As shown in Fig.4.4.a-c, we obtained the asymmetric spectrum in agreement with

the analytic calculation. The asymmetric modes are localized at the dislocation line.

The quasi-localized chiral modes are not isolated from the bulk but easily mixed with

the bulk modes (Fig.4.4.a-c).
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Torsional CME in Weyl superconductor

Vortex of l-vector of A phase of Helium 3 : 

• Anderson-Toulouse vortex

• Mermin-Ho vortex

� = �0(m + in) · k

Torsion:

T 3
23 = �2�3 � �3�2 etc.

Torsional chiral magnetic effect of mass current 

T 3
31 = �3�1 � �1�3

� = m � n

Torsional Chiral Magnetic Effect due to Skyrmion Textures in a Weyl Superfluid
3He-A

Yusuke Ishihara, Takeshi Mizushima, Atsushi Tsuruta, and Satoshi Fujimoto
Department of Materials Engineering Science, Osaka University, Toyonaka 560-8531, Japan

(Dated: July 18, 2017)

We investigate chiral anomaly phenomena induced by skyrmion-like textures of ℓ-vector in the
A-phase of a superfluid 3He, which is a typical example of a Weyl superfluid. In particular, we focus
on torsional chiral magnetic effect, which gives rise to mass current flow due to a torsional magnetic
field arising from textures of ℓ-vector. It is found that spectrum asymmetry induced by skyrmion
textures results in equilibrium currents of Weyl-Bogoliubov quasiparticles. Furthermore, the ℓ-vector
skyrmion leads to spatially inhomogeneous structures of Weyl bands in the real coordinate space.

PACS numbers:

I. INTRODUCTION

Recently, Weyl semimetals have been attracting much
attention because of the realization of chiral anomaly in
condensed matter systems, which is experimentally de-
tectable in various exotic transport phenomena such as
the anomalous Hall effect, chiral magnetic effect, and
negative magnetoresistance.1–3 Chiral anomaly is the vi-
olation of conservation law of axial currents in the case
with both electric and magnetic fields which are not
orthogonal to each other. Its origin is attributed to
monopole charge carried by Weyl ponts in the momen-
tum space, which generate the Berry curvature, and are
sources and drains of momentum generation. Recent
experimental studies revealed the realization of chiral
anomaly in Weyl semimetal materials via the observa-
tion of negative magnetoresistance.4

The notion of Weyl semimetals is naturally generalized
to superconducting states.5 In superconductors with bro-
ken time-reversal symmetry such as chiral pairing states
and non-unitary odd-parity pairing states, nodal excita-
tions from point-nodes of the superconducting gap be-
have as Weyl fermions accompanying the Berry curva-
ture. There are several candidate systems of Weyl su-
perconductors and superfluids such as the A-phase of
the superfluid 3He, URi2Si2, the B-phase of UPt3, and
UCoGe.6,7 Since the Bogoliubov quasiparticles are the
superposition of electrons and holes, the usual coupling
with electromagnetic fields does not directly lead to chiral
anomaly. However, it is still possible that in Weyl super-
conductors and Weyl superfluids, emergent elecromag-
netic fields arising from spatially inhomogeneous textures
of the superconducting order parameter and its dynamics
give rise to chiral anomaly phenomena. As a matter of
fact, in 1997, more than ten years before the invention of
the notion of Weyl semimetals, Bevan et al. observed mo-
mentum generation due to chiral anomaly in 3He-A with
skyrmion textures of ℓ-vector,8 which was motivated by
a pioneering theoretical work of Volovik and Mineev.9,10

In their experiments, the chiral anomaly was detected via
the measurement of forces acting on vortices.

In this paper, we consider another chral anomaly effect

which is referred to as the torsional chiral magnetic effect
(TCME). The chiral magnetic effect is the production of
currents due to an applied magnetic field. This effect
was originally proposed for quark-gluon plasma in the
case with chiral chemical potential, i.e. the chemical po-
tential difference between left-handed and right-handed
Weyl fermions.? In solid state systems, the chemical po-
tential difference can be realized in electron band struc-
tures even in equilibrium state without bias potentials.
However, equiribrium transport current is not possible in
the equilibrium ground state, as was pointed out later.?

On the other hand, it was pointed out that emergent
magnetic fields induced by spatial inhomogeneous non-
trivial structures such as lattice dislocation and topolog-
ical textures can give rise to local equilibrium current
of Weyl fermions because of the TCME.11 In the pevi-
ous study, the TCME was considered for magnetic Weyl
semimetals with lattice dislocations, where lattice dislo-
cations give rise to torsion fields which act as emergent
magnetic fields, resulting in equilibrium currents flowing
along the dislocation lines. The current induced by the
torsion field is given by,

J =
vFΛ

4π2

∑

a=x,y,z

T a(pLa − pRa), (1)

where vF is the Fermi velocity, Λ is the momentum cutoff,
pL(R)a (a = x, y, z) is the position of the Weyl point with
left(right)-handed chirality in momentum space, and

(T a)µ =
ϵµνλ

2
T a
νλ, (2)

where T a
νλ is torsion which can be realized in condensed

matter systems by topological defects such as lattice dis-
location and a skyrmion texture of magntic order. In the
case of superconductors, torsional magnetic fields arise
from vortex textures of the sueprconducting order pa-
rameter, and hence, lead to the torsional magnetic ef-
fect of Weyl-Bogoliubov quasiparticles. In particular, we
mainly focus on skyrmion-like textures of ℓ-vector of the
A-phase of 3He such as the Anderson-Toulouse vortex
and the Mermion-Ho vortex.12 In fact, the existence of

J =
vF �

2�2
T 3kF3

� � �

EF
kF : UV momentum cutoff

in-plane torsional magnetic field (parallel to xy-plane)
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Torsional CME in Weyl superconductor
• Mermin-Ho vortex

T 3
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current distribution
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Spectrum asymmetry

	  qθ:	  azimuthal	  momentum

3 ਐ

∆+ = const, ∆0 = ∆− = 0ɺT/Tc = 0.001ͷͱ͖
∫ R

0
r jθ(r)rdr = 177.9194 (24)

N =
∫ R

0

∑

q
|uq(r)|2 f (Eq)rdr = 515.7980 (25)

6

Numerical Results from BdG equation

suppress backward scattering
dissipationless current

J =
vF �

2�2
T 3kF3

Torsional Chiral Magnetic Effect due to Skyrmion Textures in a Weyl Superfluid
3He-A

Yusuke Ishihara, Takeshi Mizushima, Atsushi Tsuruta, and Satoshi Fujimoto
Department of Materials Engineering Science, Osaka University, Toyonaka 560-8531, Japan

(Dated: July 18, 2017)

We investigate chiral anomaly phenomena induced by skyrmion-like textures of ℓ-vector in the
A-phase of a superfluid 3He, which is a typical example of a Weyl superfluid. In particular, we focus
on torsional chiral magnetic effect, which gives rise to mass current flow due to a torsional magnetic
field arising from textures of ℓ-vector. It is found that spectrum asymmetry induced by skyrmion
textures results in equilibrium currents of Weyl-Bogoliubov quasiparticles. Furthermore, the ℓ-vector
skyrmion leads to spatially inhomogeneous structures of Weyl bands in the real coordinate space.

PACS numbers:

I. INTRODUCTION

Recently, Weyl semimetals have been attracting much
attention because of the realization of chiral anomaly in
condensed matter systems, which is experimentally de-
tectable in various exotic transport phenomena such as
the anomalous Hall effect, chiral magnetic effect, and
negative magnetoresistance.1–3 Chiral anomaly is the vi-
olation of conservation law of axial currents in the case
with both electric and magnetic fields which are not
orthogonal to each other. Its origin is attributed to
monopole charge carried by Weyl ponts in the momen-
tum space, which generate the Berry curvature, and are
sources and drains of momentum generation. Recent
experimental studies revealed the realization of chiral
anomaly in Weyl semimetal materials via the observa-
tion of negative magnetoresistance.4

The notion of Weyl semimetals is naturally generalized
to superconducting states.5 In superconductors with bro-
ken time-reversal symmetry such as chiral pairing states
and non-unitary odd-parity pairing states, nodal excita-
tions from point-nodes of the superconducting gap be-
have as Weyl fermions accompanying the Berry curva-
ture. There are several candidate systems of Weyl su-
perconductors and superfluids such as the A-phase of
the superfluid 3He, URi2Si2, the B-phase of UPt3, and
UCoGe.6,7 Since the Bogoliubov quasiparticles are the
superposition of electrons and holes, the usual coupling
with electromagnetic fields does not directly lead to chiral
anomaly. However, it is still possible that in Weyl super-
conductors and Weyl superfluids, emergent elecromag-
netic fields arising from spatially inhomogeneous textures
of the superconducting order parameter and its dynamics
give rise to chiral anomaly phenomena. As a matter of
fact, in 1997, more than ten years before the invention of
the notion of Weyl semimetals, Bevan et al. observed mo-
mentum generation due to chiral anomaly in 3He-A with
skyrmion textures of ℓ-vector,8 which was motivated by
a pioneering theoretical work of Volovik and Mineev.9,10

In their experiments, the chiral anomaly was detected via
the measurement of forces acting on vortices.

In this paper, we consider another chral anomaly effect

which is referred to as the torsional chiral magnetic effect
(TCME). The chiral magnetic effect is the production of
currents due to an applied magnetic field. This effect
was originally proposed for quark-gluon plasma in the
case with chiral chemical potential, i.e. the chemical po-
tential difference between left-handed and right-handed
Weyl fermions.? In solid state systems, the chemical po-
tential difference can be realized in electron band struc-
tures even in equilibrium state without bias potentials.
However, equiribrium transport current is not possible in
the equilibrium ground state, as was pointed out later.?

On the other hand, it was pointed out that emergent
magnetic fields induced by spatial inhomogeneous non-
trivial structures such as lattice dislocation and topolog-
ical textures can give rise to local equilibrium current
of Weyl fermions because of the TCME.11 In the pevi-
ous study, the TCME was considered for magnetic Weyl
semimetals with lattice dislocations, where lattice dislo-
cations give rise to torsion fields which act as emergent
magnetic fields, resulting in equilibrium currents flowing
along the dislocation lines. The current induced by the
torsion field is given by,

J =
vFΛ

4π2

∑

a=x,y,z

T a(pLa − pRa), (1)

where vF is the Fermi velocity, Λ is the momentum cutoff,
pL(R)a (a = x, y, z) is the position of the Weyl point with
left(right)-handed chirality in momentum space, and

(T a)µ =
ϵµνλ

2
T a
νλ, (2)

where T a
νλ is torsion which can be realized in condensed

matter systems by topological defects such as lattice dis-
location and a skyrmion texture of magntic order. In the
case of superconductors, torsional magnetic fields arise
from vortex textures of the sueprconducting order pa-
rameter, and hence, lead to the torsional magnetic ef-
fect of Weyl-Bogoliubov quasiparticles. In particular, we
mainly focus on skyrmion-like textures of ℓ-vector of the
A-phase of 3He such as the Anderson-Toulouse vortex
and the Mermion-Ho vortex.12 In fact, the existence of
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and 

r = 1 - de  89 sech 2  89 

[1 - qS@) is the "Yoshida function" generalized to p-wave pairingj, and E 
is the excitation energy : Ea(p) = ~2 + iA(/3)12 and we have assumed a unitary 
solution. Here j o  is the spin current in the ith direction for spins along the 
direction, and is expressed in terms of number : The spin transported is this 
multiplied by the spin  89 of each particle. 

To the same order in Tc/EF: 

F ~ = T~ajb(VidJ(Vfl*~) + non-current-giving terms (5) 

The non-current-giving terms involve gradients of IA] 2 only, and so do not 
couple to the gauge field. They can be written in the form 

1 - ~ Tiajb ViVj(da~d~) 

Equations (3) and (4) are exactly the results that would be obtained from 
Eq. (5) by the gauge arguments. 

In the Ginzburg-Landau region the tensor T is isotropic and state 
independent. The free energy is exactly of the form BBA suggested, with 

7~(3) p 
K o  = K A  -- 8 0 n 2 T 2  m 

and, to this order in Tc/EF, KL = 0. Away from T~, T remains isotropic for 
the BW phase, but for the ABM phase is invariant under rotations about the 
direction 7 only, and the BBA free energy no longer applies. 

The results will now be displayed for each phase in turn explicitly in 
terms of the angle variables. 

6.1. The ABM Phase 

The number current is 

2~  C ~ curl ? jo = pO Vgb + 2m (6) 

where the (tensor) st~perfluid density and C O are given, in our chosen axes, by 

p O  
L so 0 

p O 0 , CO ~P~l 1 

o po o - 
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Comparison between torsional CME and  
supercurrent induced by l-vector textures

[Cross(1975) , Ishikawa et al.(1978), Mermin-Muzikar(1980)]supercurrent :

Weyl quasiparticle 
current (torsional CME) :

supercurrent 

Result of BdG eq. 
(total current) 

distance from the center of MH vortex 

current 
density

T/Tc = 0.001

� (supercurrent) � �

EF

due to  
torsional CME !! 

� J0 � �

EF
J =

vF �

2�2
T 3kF3 T 3 = � � �



Thermal analogue of negative 
magnetoresistivity 

in Weyl superconductors



Thermal negative magnetoresistivity  
in Weyl superconductor with vortices

� = �0e
i�(kx + iky)Vortex of chiral p-waveSC : 

kx

ky
� �= 0

� = 0

� = 0

kz

vortex line

Torsion :  T 2
12 =

kF

�0r

Emergent magnetic field due to torsion :  

Negative magnetoresistivity  
of thermal current for JH � B

Torsional CME does not occur T 3
µ� = 0

= 0

However

(B)z =
1

r
(ky cos � � kx sin �)

J =
vF �

2�2
T 3kF3
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x2 + y2 B

JH

thermal 
current



� = �0e
i�(kx + iky)Vortex of SC order : 

Torsion :  T 2
12 =

kF

�0r

Emergent magnetic field due to torsion :  

vortex line
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ky
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kz

thermal 
current

JH

Negative thermal  
magnetoresistivity
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Thermal negative magnetoresistivity  
in Weyl superconductor with vortices

: Berry curvature due to Weyl points
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Negative thermal magnetoresistivity

Thermal conductivity (Born approx.) 

Thermal negative magnetoresistivity  
in Weyl superconductor with vortices

� = �0 + �B

= �B�T

usual contribution due to torsion fields� T � 1

T

 Chiral anomaly effect is enhanced as temperature is lowered

However, Berry phase formula is not applicable to  
zero temperature limit, because of singularity at Weyl points ! 

at Weyl points

JH =
�

s=±1

�

k

(vps · �+
pps)

2�2
ps

�
�f

��ps

�
�ps(

�T

T
· B)B,kk

� 1/|k � kF |2 k � kF



Results from Keldysh formalism of Eilenberger equation

𝜖 Ƹ𝜏𝑧 − ℎ, ො𝑔 + 𝑖ℏ𝒑𝐹 ∙ 𝛻𝑅 ො𝑔 =
𝑖
2

𝜵𝑹 ℎ ∙ 𝜵𝒑 ො𝑔 − 𝜵𝒑 ℎ ∙ 𝜵𝑹 ො𝑔 −
𝑖
2

𝜵𝑹 ො𝑔 ∙ 𝜵𝑷 ℎ − 𝜵𝒑 ො𝑔 ∙ 𝜵𝑹 ℎ
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・Calculate self energy for reproducing Tanuma’s paper.
・Calculate heat current about some kinds of vorticity.
・Compare temperature dependence of thermal conductivity for 𝐽0, 𝐽2. 

quantum corrections (torsional magnetic fields) 

ĥ = �̂ + �̂ �̂ �̂: self-energy(Born approx.) : SC gap

We consider the case with single vortex line 

ĝ =

�
ĝR ĝK

0 ĝA

�
Quasi-classical 
Green function

Thermal negative magnetoresistivity  
in Weyl superconductor with vortices

JH = N(0)

�
dp

�
d�

4�i
�vtr[�ĝK ]Heat current



Chiral spin-polarization effect  

in ferromagnetic Weyl superconductors
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Figure 6. The same as in figure 5 but spin-up and spin-down
channels are shown separately.

with the nesting vector q6 along the a axis and, finally, a
small electron element in the middle of the Brillouin zone
in the fourth band. The discs are unstable with even slight
changes of lattice parameters (they are shifted from the third
band). In a similar way, the electrons in the middle of the
fourth Brillouin zone are also unstable. It is worth underlining
that the ferromagnetic FS is typically metallic, with nesting
properties along all axes that may favour both magnetism
and/or superconductivity.

A detailed insight into the electronic structure can be
gained from, e.g., dHvA measurements. Unfortunately, we
are not aware of any dHvA experiments not only for UCoGe
but also for the whole family of 1:1:1 uranium ternaries
UT(Si, Ge). In an attempt to initiate possible experiments, we
provide here dHvA frequencies and their angular dependences
in both the non-magnetic and ferromagnetic states of UCoGe
as a representative of the UT(Si, Ge) family. The extremal
orbits have been calculated using the numerical scheme
presented in [19], which outlined in detail an earlier work
on this subject [22]. In tables 4 and 5 we gather calculated
values of the dHvA frequencies F for the non-magnetic and
ferromagnetic states of UCoGe, respectively. The extremal
orbits for a magnetic field H orientation along the [001], [100]
and [010] directions are displayed in figure 8 and labelled with
Greek letters and corresponding band numbers.

The FS in the non-magnetic state (see figure 7) consists
of four sheets and thus there are four extremal orbits for

Figure 7. Calculated FS sheets of UCoGe in the non-magnetic
(left-hand panel) and ferromagnetic (along the c axis) (right-hand
panel) states, drawn separately for each band in the orthorhombic
Brillouin zone with marked high symmetry points and possible
nesting vectors q1, . . . , q6 with respective lengths: 0.41 (2π/c), 0.73
(2π/b), 0.48 (2π/a), 0.53 (2π/c), 0.90 (2π/a), 0.85 (2π/a).

Table 4. Calculated dHvA frequencies F (in kT) with H ∥ c for
UCoGe in the non-magnetic state.

H Orbits Band no Central point Area (kT )
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k b=0.70 0.747
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Table 5. Calculated dHvA frequencies F (in kT) with H ∥ a, H ∥ c,
and H ∥ b for UCoGe in the ferromagnetic state.

H Orbits Band no Central point Area (kT )
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k a=0.45 2.250
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ξ 254 X 1.295
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a magnetic field along the c-axis direction. In table 4 the
extremal orbits denoted as β and δ are connected with those FS
sheets centred at the S point, while α and γ orbits correspond
to those located close to the T and % points centred at k points
(0.0, 0.70, 0.47) and (0.00 0.30 0.15), respectively. We expect
that α and γ orbits are very sensitive to both the alignment of
the magnetic field and purity of the crystal due to their shapes
and locations. It is quite clear (see figure 7) that there are
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From detailed angle-resolved NMR and Meissner measurements on a ferromagnetic (FM) super-
conductor UCoGe (TCurie ∼ 2.5 K and TSC ∼ 0.6 K), we show that superconductivity in UCoGe is
tightly coupled with longitudinal FM spin fluctuations along the c axis. We found that magnetic
fields along the c axis (H ∥ c) strongly suppress the FM fluctuations and that the superconductivity
is observed in the limited magnetic-field region where the longitudinal FM spin fluctuations are
active. These results combined with model calculations strongly suggest that the longitudinal FM
spin fluctuations tuned by H ∥ c induce the unique spin-triplet superconductivity in UCoGe. This
is the first clear example that FM fluctuations are intimately related with superconductivity.

PACS numbers: 71.27.+a 74.25.nj, 75.30.Gw

The discovery of superconductivity in ferromag-
netic (FM) UGe2 opened up a new paradigm of
superconductivity[1, 2], since most unconventional su-
perconductivity has been discovered in the vicinity of
an antiferromagnetic (AFM) phase[3]. From the theo-
retical point of view, in an itinerant FM superconductor
with the presence of a large energy splitting between the
majority and minority spin Fermi surfaces, exotic spin-
triplet superconductivity is anticipated, in which pairing
is between parallel spins within each spin Fermi surface.
In addition, it has been argued that critical FM fluctu-
ations near a quantum phase transition could mediate
spin-triplet superconductivity[4]. However, there have
been no experimental results indicating a relationship be-
tween FM fluctuations and superconductivity.

Among the FM superconductors discovered so far,
UCoGe is one of the most readily explored experimen-
tally, because of its high superconducting (SC) transition
temperature (TSC) and low Curie temperature (TCurie)
at ambient pressure[5]. Microscopic measurements have
shown that superconductivity occurs within the FM re-
gion, resulting in microscopic coexistence of ferromag-
netism and superconductivity[6, 7]. Studies of the SC
upper critical field (Hc2) and its angle dependence along
each crystalline axis have reported remarkable enigmatic
behavior[8, 9]: superconductivity survives far beyond the
Pauli-limiting field along the a and b axes, whereas Hc2

for fields along the c direction (Hc
c2) is as small as 0.5

T. Colossal Hc2 for fields along the a and b axes seems
to suggest spin triplet pairing. In addition, a steep an-
gle dependence of Hc2 was reported when the field was
tilted slightly from the a axis toward the c axis[9]. The
observed characteristic Hc2 behavior is one of mysterious
features of SC UCoGe and its origin can be related to
the mechanism of the superconductivity.

Unlike the three dimensional crystal structure, mag-

netic properties are strongly anisotropic[8]. The mag-
netization has Ising-like anisotropy with the c axis as a
magnetic easy axis, and direction-dependent nuclear-spin
lattice relaxation rate (1/T1) measurements on a single
crystalline sample have revealed the magnetic fluctua-
tions in UCoGe to be Ising-type FM ones along the c axis
(longitudinal FM spin fluctuations)[10]. Here, we report
from precise angle-resolved 1/T1 and Hc2 measurements
how the longitudinal FM spin fluctuations are sensitively
affected by the fields along the c axis (Hc), and are linked
with the superconductivity. In addition, with the aid of
model calculations, we unveil the role of the FM fluctu-
ations as pairing glue in this compound, concomitantly
resolving the above-mentioned puzzle of Hc2.

A single crystal of UCoGe was grown by the Czochral-
ski pulling method in a tetra-arc furnace under high-
purity argon. A 1.65 × 1.65 × 1.89 mm3 with a mass of
55.8 mg sample was cut by spark erosion from the single
crystalline ingot. The FM transition temperature TCurie

was evaluated to be 2.55 ± 0.1 K from the Arrot plots,
and onset and midpoint SC transition temperatures were
determined from ac susceptibility as 0.70 and 0.57 K, re-
spectively. Clear anomalies in the specific heat were ob-
served at TCurie and TSC, confirming that two anomalies
are the bulk transitions. Resistivity along each direction
was measured and is shown in Fig. 1. The sample showed
a large residual resistivity ratio (RRR) of approximately
30 along the b axis. The temperature dependence below
2 K is approximately expressed as ρ(T ) = ρ0 + AT 2 as
shown in the inset. From the anisotropy of A coefficient,
the mass anisotropy is estimated as m∗

c/m
∗
b ∼ 1.65 using

a relation of m∗ ∝
√
A. It is worth noting that a huge

ratio of Ha
c2 to Hc

c2 (Ha
c2/H

c
c2 > 20) cannot be explained

by anisotropy of the conduction-electron mass.

Low-energy magnetic fluctuations are sensitively
probed by 1/T1 measurements. The single crystal was
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It is proposed that in ferromagnetic Weyl superconductors with non-unitary spin triplet pairings,
a temperture gradient applied parallel to a torsional magnetic field induces the increase of spin
magnetization, which is a prominent signature of chiral anomaly of Weyl fermions. (we may not
need temperature gradient ????) The effect is related to a dynamical axion effect which stems
from spin fluctuations, and can be realized in the case with vortex textures which gives rise to the
torsional magnetic field.

PACS numbers:

There are several experimental evidences for the real-
ization of non-unitary spin-triplet pairing states in the
ferromagnetic superconductor UCoGe [1–3]. According
to group theoretical argument, one of promising candi-
dates of the pairing state is the so-called A phase for
which the d-vector is given by [3, 4]

d = (a1kx + ia2ky, a3ky + ia4kx, a5kz + ia6kxkykz), (1)

where ai (i = 1 ∼ 6) is a real number. If a5 = a6 = 0,
there are point nodes at kx = ky = 0, which carry
monopole charges in the momentum space, and a Weyl
superconducting state is realized. Since there are ex-
change splitting of the Fermi surface due to the fermo-
magnetic order, it is expected that equal-spin pairings
∆↑↑, ∆↓↓ dominate, and dz = ∆↑↓ (i.e. a5, a6) is negli-
gible.
We consider chiral anomaly of the Weyl superconduc-

tor caused by a temperature gradient and an emergent
magnetic field induced by torsion fields[12–15]. We in-
troduce the gravitational potential ψ to take into accont
the temperature gradient. There is a correspondence be-
tween the potential gradient and the temperature gradi-
ent, ∇ψ ↔ −T∇(1/T ). The emergent magnetic field B
can be generated from a torsion field due to, e.g., a vor-
tex texture of the superconducting order parameter. Ac-
cording to semiclassical analysis for the Weyl-Bogoliubov
quasiparticles[16, 17], the conservation law of the axial
current J5

σ and the axial density ρ5σ for spin states σ =↑,
↓ is expressed as [16, 17],

∂ρ5σ
∂t

+∇J5
σ = −

∑

k

εk(∇ψ ·B)(Ωkk · vk)
∂fkσ
∂εk

, (2)

where εk is the single-particle energy of the Bogoliubov
quasiparticles, Ωkk is the Berry curvature arising from
the Weyl points, and fkσ is the Fermi distribution func-
tion. The right-hand side of Eq.(2) arises from chiral
anomaly. Putting εk = v|k|, we rewrite this term as,
C0T (∇ψ·B) = C0(∇T ·B), with C0 a numerical factor. In
the limit of infinite momentum cutoff, C0 = 2 ln 2/(2π)2.
Assuming the steady-state condition ∂ρ5/∂t = 0 and B

constant, we obtain from Eq.(2),

J5
σ = C0TB. (3)

This result implies the existence of an effective La-
grangean density, which is similar to that of Axion
electromagnetism[18, 20],

Laxion
σ = C0TA

5
σ ·B, (4)

where A5
σ is a chiral gauge field. In the Weyl super-

conducting state with ferromagnetic order, A5
σ = kFσ +

δkFσ, where kFσ is the Fermi wave-number vector, and
δkFσ is a correction due to spin fluctuations. In the case
of the Ising ferromagnet UCoGe with strong electron cor-
relation, it is legitimate to assume that longitudinal spin
fluctuations along the z-axis dominate, and also charge
fluctuations are suppressed. Then, δkFσ = (0, 0, cσδm)
with cσ a constant, and δm the longitudinal spin fluctu-
ation. We, hence, obtain the effectiev action,

SDA =

∫
dtdrD0T δmBz, (5)

with D0 = C0(c↑ − c↓)/2. This action implies that the
spin polarization is induced by orbital effects of the tor-
sional magnetic field; i.e. spin magnetization couples to
pseudo-orbital magnetization.

On the other hand, the action for the longitudinal spin
fluctuation is,

Sspin =
∑

ω,q

[
iω

vq
− q2 − κ

]
δm(q,ω)δm(−q,−ω), (6)

where κ ∝ 1/ξ2sf is the mass term of the spin fluctuation
with ξsf correlation length. For uniform and static limit
q → 0, ω → 0, the stationary condition δS/δ(δφ) = 0
with S = Sspin + SDA results in the shift of the spin
magnetizaion,

δm =
C0TBz

2κ
. (7)

This experimentally detectable signature of chiral
anomaly is akin to magnetoelectric effects in which spin
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torsional magnetic field.

PACS numbers:

There are several experimental evidences for the real-
ization of non-unitary spin-triplet pairing states in the
ferromagnetic superconductor UCoGe [1–3]. According
to group theoretical argument, one of promising candi-
dates of the pairing state is the so-called A phase for
which the d-vector is given by [3, 4]

d = (a1kx + ia2ky, a3ky + ia4kx, a5kz + ia6kxkykz), (1)

where ai (i = 1 ∼ 6) is a real number. If a5 = a6 = 0,
there are point nodes at kx = ky = 0, which carry
monopole charges in the momentum space, and a Weyl
superconducting state is realized. Since there are ex-
change splitting of the Fermi surface due to the fermo-
magnetic order, it is expected that equal-spin pairings
∆↑↑, ∆↓↓ dominate, and dz = ∆↑↓ (i.e. a5, a6) is negli-
gible.
We consider chiral anomaly of the Weyl superconduc-

tor caused by a temperature gradient and an emergent
magnetic field induced by torsion fields[12–15]. We in-
troduce the gravitational potential ψ to take into accont
the temperature gradient. There is a correspondence be-
tween the potential gradient and the temperature gradi-
ent, ∇ψ ↔ −T∇(1/T ). The emergent magnetic field B
can be generated from a torsion field due to, e.g., a vor-
tex texture of the superconducting order parameter. Ac-
cording to semiclassical analysis for the Weyl-Bogoliubov
quasiparticles[16, 17], the conservation law of the axial
current J5

σ and the axial density ρ5σ for spin states σ =↑,
↓ is expressed as [16, 17],

∂ρ5σ
∂t

+∇J5
σ = −

∑

k

εk(∇ψ ·B)(Ωkk · vk)
∂fkσ
∂εk

, (2)

where εk is the single-particle energy of the Bogoliubov
quasiparticles, Ωkk is the Berry curvature arising from
the Weyl points, and fkσ is the Fermi distribution func-
tion. The right-hand side of Eq.(2) arises from chiral
anomaly. Putting εk = v|k|, we rewrite this term as,
C0T (∇ψ·B) = C0(∇T ·B), with C0 a numerical factor. In
the limit of infinite momentum cutoff, C0 = 2 ln 2/(2π)2.
Assuming the steady-state condition ∂ρ5/∂t = 0 and B

constant, we obtain from Eq.(2),

J5
σ = C0TB. (3)

This result implies the existence of an effective La-
grangean density, which is similar to that of Axion
electromagnetism[18, 20],

Laxion
σ = C0TA

5
σ ·B, (4)

where A5
σ is a chiral gauge field. In the Weyl super-

conducting state with ferromagnetic order, A5
σ = kFσ +

δkFσ, where kFσ is the Fermi wave-number vector, and
δkFσ is a correction due to spin fluctuations. In the case
of the Ising ferromagnet UCoGe with strong electron cor-
relation, it is legitimate to assume that longitudinal spin
fluctuations along the z-axis dominate, and also charge
fluctuations are suppressed. Then, δkFσ = (0, 0, cσδm)
with cσ a constant, and δm the longitudinal spin fluctu-
ation. We, hence, obtain the effectiev action,

SDA =

∫
dtdrD0T δmBz, (5)

with D0 = C0(c↑ − c↓)/2. This action implies that the
spin polarization is induced by orbital effects of the tor-
sional magnetic field; i.e. spin magnetization couples to
pseudo-orbital magnetization.

On the other hand, the action for the longitudinal spin
fluctuation is,

Sspin =
∑

ω,q

[
iω

vq
− q2 − κ

]
δm(q,ω)δm(−q,−ω), (6)

where κ ∝ 1/ξ2sf is the mass term of the spin fluctuation
with ξsf correlation length. For uniform and static limit
q → 0, ω → 0, the stationary condition δS/δ(δφ) = 0
with S = Sspin + SDA results in the shift of the spin
magnetizaion,

δm =
C0TBz

2κ
. (7)

This experimentally detectable signature of chiral
anomaly is akin to magnetoelectric effects in which spin

Total action of spin fluctuation

L� =
�em

2�
Aem5

� · Bem Eem = ���em

Stot = Sspin +

�
drdt(L� + L�)

Increase of spin magnetization !!�m =
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�emBem
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e.g. temperature gradient



SUMMARY

• Torsional chiral magnetic effect in Weyl superconductors can 
be induced by skyrmion-like vortex textures of SC order 
parameter

• Negative thermal magnetoresistivity as a signature of chiral 
anomaly is realized by a vortex in Weyl superconductors 

• In FM Weyl superconductors near FM quantum criticality, 
chiral anomaly can be detected as the increase of spin 
magnetization due to torsional magnetic fields induced by, 
e.g., twist deformation of a sample around c-axis.


