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Anomalous Hall effect

Hall effect that is NOT proportional to the magnetic field H,.
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Intrinsic vs extrinsic mechanisms

Intrinsic mechanism:
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Extrinsic mechanism (impurity scattering):

Skew scattering:
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(Pseudo-)spin dependent scattering by impurities

Side jump: L Berger, 70

Spin scattering:  JKondo, 62



Berry phase and fictitious magnetic field in strong coupling limit

D Loss etal., 92; JYe et al.,"99; KOhgushi et al. "00; Y Taguchi et al.,"01; R Shindou et al."01; | Martin et al., "08; ...
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Non-coplanar magnetic states often gives rise to a fictitious net magnetic field.



Spin chirality related anomalous Hall effect in weak coupling limit

G Tatara et al., 02
1. Anomalous Hall effect also appears in the weak-coupling limit, where

the scattering by localized moments can be treated as a perturbation.

2. The Hall conductivity in this limit is linearly proportional to the spin

scalar chirality.
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Magnetization (ug/NdMoO, ;)

Topological Hall effect due to non-coplanar spin texture

K
40K
50K
60 K
70K
80K
WK

100K
1 L. 1

py (10% Qem)

Nd,Mo,0,

| T I I

I
X
o~
=)
S
—

Il:il:lII(

1 1 Il 1 i | L

0 2 4 6 8
Magnetic field (T)

0 2 4 6 8 10

Magnetic field (T)

Y Taguchi et al.,"01

Topological Hall effect observed as an unusual magnetic field dependence of ay.



MnSi

Anomalous Hall effect by magnetic skyrmions ©¢ field-polarized
0.5} izt gy
http://www.riken.jp __04f
= conical
o 03f
0.2
01 S S e
. helical ) _“  paramagnetic
20 25

30 35
T(K) S Muhlbauer et al., "09

e Topological defectin magnets.

* Topological number (skyrmion number):
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Topological Hall effect by magnetic skyrmions b, < Ti(7) - 0xTi(F) X 0y7i(7)
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Topological Hall effect observed in skyrmion crystal phases, consistently with neutron
scattering/Lorenz TEM experiments.



Topological Hall conductivity in MnGe

~ 0.2}
= It seems the Berry phase mechanism alone
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Q s the scattering by the fluctuating spins similar
-0.2 to that by the Berry phase effect?
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Model: Classical spin Kondo lattice model

{ We consider classical spin Kondo lattice model with the quadratic dispersion.
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Second Born approximation

We study the scattering by localized moment i _‘
using second Born approximation. In particular, \fl) .....
we consider the term that comes from the Fi K°B)
interference of single spin scattering and two
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Second Born approximation

+

[ We focus on the asymmetric part of scattering:  wpis_p0 = 5 (Whaoks £ Wrisska) }
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The scattering due to non-coplanar magnetic textures gives rise to skew scattering
(scattering term proportional to k X k').



Boltzmann theory and Hall conductivity
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As ] < 0, the Hall conductivity due to spin chirality has opposite sign to the Hall
conductivity by the Berry phase (topological Hall effect).




Topological Hall conductivity in MnGe
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Phase diagram and scalar spin chirality
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Monte Carlo simulation shows large scalar chirality y even above
the magnetic transition temperature.



Anomalous Hall effect

Goy = X — (L )b b= SS()) - (S(r+8)) x (S(r+6:00))

.0

T=01 T =0.5

0.2

! | ! l : 0.2

o KR |
Helical - 5 - f

O‘I e ................ ................. ................. ................ .............. _

01 b T R S e T

0.0 0.5 1.0 15 2.0 2.5 3.0 35 4.0

Non-monotonic behavior of anomalous Hall conductivity appears due to competition
of the emergent magnetic field and skew scattering mechanisms.



Topological Hall conductivity in MnGe

~ 0.2}
= It seems the Berry phase mechanism alone
5 Yy P
o cannot explain the AHE in MnGe...
= 0
p—
A
Q s the scattering by the fluctuating spins similar
-0.2 to that by the Berry phase effect?

N Kanazawa et al., 11



Summary: skew scattering induced by spin fluctuations
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Skew scattering appears in the second Born
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approximation, which is related to the non-coplanar

spin texture.

The skew scattering term gives rise to anomalous

Hall conductivity, which is different from the Berry ol — L
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