NQS2017@YITP (2017/11/8)

Quantum Hangul

Hosho Katsura (Dept. Phys., UTokyo)

Collaborators: Hyunyong Lee (ISSP) Yun-Tak Oh, Jung Hoon Han (SKK Univ.)

Phys. Rev. B, 95, 060413(R) (2017). [arXiv:1612.06899]
Phys. Rev. B, 96, 165126 (2017). [arXiv:1709.01344]

Outline

- 1. Introduction & Motivation
- Dimers and RVB states
- Quantum dimer model and topological order
- What are trimers and what are they good for?
- 2. Quantum Trimer model
- 3. Dimer-Trimer chain
- 4. Summary

Resonating valence bond (RVB) state

What are dimers?

$$\underbrace{\mathbf{o}}_{i}_{j} = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

Dimer = spin singlet = valence bond

■ What is RVB?

• S=1/2 Heisenberg AFM model on \triangle lattice

$$H = J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j$$

Classically, the g.s. exhibits 120° order. What about quantum?

RVB = Equal-weight superposition of all dimer coverings P.W. Anderson, *Mat. Res. Bull.* **8**, 153 (1973).

Balents, Nature 464 (2010)

Common belief: This is unlikely. The g.s. has 120° order.

Quantum dimer model

Model

Rokhsar-Kivelson, PRL 61, 2376 (1988).

• Basis states: dimer coverings on a square lattice

Dimers don't touch/overlap. Different configs. are orthogonal to each other.

 $\langle \mathcal{C} | \mathcal{C}' \rangle = \delta_{\mathcal{C}, \mathcal{C}'}$

- Hamiltonian kinetic potential $\mathcal{H}_{dimer} = \sum_{plaquettes} [-J(|\parallel\rangle\langle = | + H.c.) + V(| = \rangle\langle = | + |\parallel\rangle\langle\parallel|)]$
- Ground state

• V>> J> 0

• V = J (RK point) Exact g.s.: $|\Psi_0\rangle = \sum_{\mathcal{C}: \text{ flippable}} |\mathcal{C}\rangle$

Critical dimer-dimer correlation [Fisher-Stephenson, *Phys. Rev.* **132** ('63)] → RK point is critical (gapless)

What about other lattices?

The model on a triangular lattice exhibits *topological order!*

- Topological order
 - Spectral gap above the g.s.
 - G.s. degeneracy depends on topology
 - All g.s. are indistinguishable locally

Ex.) *v=p/q* FQH states

Quantum dimer model on triangular lattice Moessner-Sondhi, PRL 86 (2001), Ivanov, PRB 70 (2004).

columnar $\sqrt{12}x\sqrt{12}$ RVB staggered 0 1 V/J

In the RVB phase,

- 4 g.s. on a torus labeled by $((-1)^{W_x}, (-1)^{W_y})$
- Gapped vison excitations
- Relevance to quantum spin liquids?

Quantum trimers

What are trimers?

Trimer = SU(2) singlet made up of three S=1

 $\mathbf{1}\otimes \mathbf{1}\otimes \mathbf{1}=\mathbf{3}\oplus \mathbf{2}\oplus \mathbf{2}\oplus \mathbf{1}\oplus \mathbf{1}\oplus \mathbf{1}\oplus \mathbf{0}$

0 is the g.s. of 3-site AFM Heisenberg chain

Motivation

- Cond-mat: S=1 spin liquids?
 - Haldane phase in 1D (Nobel prize 2016) Gapped, disordered g.s., edge states, ...
 - What about 2D? Beyond dimer RVB?

TN approach: H-Y. Lee, J-H. Han, PRB **94** (2016).

Stat-mech: Trimer covering

- Triangular lattice (exact solution) Verberkmoes, Nienhuis, *PRL* **83**, 3986 (1999)
- Square lattice (some limited cases) Ghosh *et al*, *PRE* **75** (2007); Froboese *et al*, *JPA* **29** (1996).

Outline

1. Introduction & Motivation

2. Quantum Trimer model

- Trimer covering –Tensor network approach–
- Rokhsar-Kivelson model
- Topological sectors, Z3 topological order

- 3. Dimer-Trimer chain
- 4. Summary

Trimer covering

Setup

Consider a square lattice with PBC. *M*: horizontal length *N*: vertical length

Allowed trimers

Rules

-Place trimers without making holes

-Trimers should not touch or overlap

Question:

How many ways to arrange trimers?

→ TN approach is very useful!

Tensor network approach

Local tensor

 α , β , γ , δ = 0, 1, or 2 labels a state on each edge. Only 10 nonzero elements.

How it works

Results

Number of configs. $Z = \operatorname{Tr} (T_M)^N$

Ζ	<i>N</i> =1	2	3	4	5	6	
<i>M</i> =3	3	33	174	585	2,598	11,550	
6	3	297	11,550	54,417	705,708	9,027,000	
9	3	2,913	1,094,943	7,111,413	325,897,458	15,280,181,589	

Z grows exponentially with system size!

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

OEIS does not work...

$$s = \frac{1}{MN} \ln Z \sim \frac{1}{M} \ln \lambda_M^{\max}$$

 λ_M^{\max} : Largest eigenvalues of T_M

For large *M* and *N*,

Entropy/site

$$s = \begin{cases} 0.41194 & (= \ln 1.50974) \\ 0.27693 & (= \ln 1.31907) & \text{bent only Froboese et al, JPA 29 (1996)} \\ 0.15852 & (= \ln 1.17178) & \text{linear only Ghosh et al, PRE 75 (2007)} \end{cases}$$

Quantum trimer model (1)

Basis states

Trimer coverings on a square lattice

Trimers don't touch/overlap. Different configurations are orthogonal.

 $\langle \mathcal{T} | \mathcal{T}' \rangle = \delta_{\mathcal{T}, \mathcal{T}'}$

Quantum trimer model (2)

■ Schematic phase diagram

Ground-state correlations in tRVB

 $\langle \mathrm{tRVB} | T_i T_j | \mathrm{tRVB} \rangle \propto Z'_{ij} / Z$

Z: Total # of trimer configs. Z'_{ij} : # of configs. with fixed trimers at *i* and *j*

Exponentially decaying correlations Imply gapped nature of the model

 $V_{\Gamma} := \omega^{n_l - n_r}$ commutes with *H*. $V_{\Gamma} = 1$, ω or ω^2 . \rightarrow 3 sectors! On a torus, we have 3 × 3=9 disconnected sectors.

■ Ergodicity ...

Hamiltonian *H* is block-diagonal w.r.t. the sectors. Is the action of *H* ergodic in each sector? \rightarrow NO!

Staggered states are frozen...

- Z3 vortex excitations
 - Variational state

$$|v_1, \bar{v}_2\rangle = \sum_{\mathcal{T}} \omega^{n_l(\mathcal{T}) - n_r(\mathcal{T})} |\mathcal{T}\rangle$$

- Similar to vison in QDM (Read, Ivanov, ...)
- Orthogonal to the g.s. $|\mathrm{tRVB}\rangle$
- Close to the true excited states?
- Can the pair sprit into fractional excitations?

14/20

Outline

- **1. Introduction & Motivation**
- 2. Quantum Trimer model
- 3. Dimer-Trimer chain
- Comparison with S=1 BLBQ chain
- Entanglement characterization

3. Summary

Back to real spin models

Orthogonality issue

If you think of trimer coverings as real spin states,

Different configs. are not quite orthogonal...

→ Hard to write down a microscopic spin Hamiltonian. For quantum dimer models, see Fujimoto, PRB 72 (2005), Seidel, PRB 80 (2009), Cano-Fendley, PRL 105 (2010).

More realistic Hamiltonian?

Question: Can we write down a spin-model Hamiltonian for a trimer-liquid ground state?

As a warm-up, let's consider a 1D model first.

S=1 bilinear-biquadratic (BLBQ) chain

Hamiltonian

$$H_{\text{BLBQ}} = \sum_{i=1}^{N} [\cos \theta (\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1}) + \sin \theta (\boldsymbol{S}_{i} \cdot \boldsymbol{S}_{i+1})^{2}]$$

Phase diagram

Lauchli, Schmid, Trebst, PRB 74, 144426 (2006).

- Haldane: gapped, unique g.s., SPT!
- Spin-quadrupolar (SQ): gapless, dominant nematic correlation
- Ferromagnetic (FM)
- Dimer: gapped, 2-fold degenerate g.s. Several solvable/integrable points.

Another way to write Hamiltonian

$$H_{\rm BLBQ} \propto -\sum_{i} \left[\cos\tilde{\theta} P_{i,i+1}^{(0)} + \sin\tilde{\theta} P_{i,i+1}^{(1)}\right]$$

S=1 dimer-trimer (DT) chain

Hamiltonian

 $H_{\rm DT} = -\sum_{i=1}^{N} [\cos \theta D(i) + \sin \theta T(i)]$ D(i): projection to singlet at (i, i+1)T(i): projection to singlet at (i, i+1, i+2)

Phase diagram by DMRG

Oh, Katsura, Lee, Han, *PRB* **96**, 165126 (2017).

- Dimer: same as dimer in BLBQ
- Symmetry-protected topological (SPT): gapped, unique g.s., ~Haldane phase
- Trimer-liquid (TL): gapless, ~ SQ phase
- Macroscopically-degenerate (MD): similar to $\theta = \pi$ in BLBQ

Gapless, translation-invariant, trimer liquid is realized in TL!

Reminder:

 $\frac{1}{\sqrt{6}} \sum_{a,b,c=1}^{1} \epsilon^{abc} |a\rangle_1 |b\rangle_2 |c\rangle_3$

Entanglement characterization

■ SPT phase

Double degeneracy in entanglement Pollmann *et al.*, *PRB* **81** (2010) *E*

$$A \sum_{i} \left(S_{i}^{x} S_{i}^{y} + S_{i}^{y} S_{i}^{x} \right) + B \sum_{i} S_{i}^{z}$$
$$+ C \sum_{i} \left(S_{i}^{z} - S_{i+1}^{z} \right) \left(S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} \right)$$

$$+ C \sum_{i} \left(S_{i}^{x} S_{i+1}^{x} + S_{i}^{y} S_{i+1}^{y} \right) \left(S_{i}^{z} - S_{i+1}^{z} \right)$$

C-term breaks inversion symmetry.

TL phase

Entanglement entropy Calabrese-Cardy formula

$$S_n = S_n^{\text{CFT}} + S_n^{\text{osc}} + c',$$
$$S_n^{\text{CFT}} = \frac{c_N}{6} \log \left[\frac{2L}{\pi} \sin \left(\frac{\pi n}{L} \right) \right]$$

Consistent with $SU(3)_1$ WZW (c=2), similar EE in the entire phase

On-line encyclopedia at work!

■ MD phase

The number of g.s. (OBC)

	Ν	3	4	5	6	7	8	9	10
(i)	$\theta = \pi$	21	55	144	377	987	2584	6765	17711
(ii)	$\pi\!<\!\theta\!<\!3\pi/2$	20	49	119	288	696	1681	4059	9800
(iii)	$\theta = 3\pi/2$	26	75	216	622	1791	5157	14849	42756

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

Surprisingly, they match (i) A001906, (ii) A048739, (iii) A076264. (Recurrence relations are known.)

Residual entropy/site (conjecture)

$$s = \begin{cases} 2\ln\varphi &\sim 0.962 & \text{(i)} & [\boldsymbol{\varphi}: \text{ golden ratio}] \\ \ln(1+\sqrt{2}) &\sim 0.881 & \text{(ii)} \\ \ln x^* &\sim 1.06 & \text{(iii)} & [(x^*)^3 + 3(x^*)^2 + 1 = 0] \end{cases}$$

Summary

Trimer covering

- Tensor network formulation
- Residual entropy per site: s=0.41194
- Quantum trimer model
 - Trimer-RVB g.s. at RK point
 - Short-range correlation in tRVB
 - Topological deg. & excitations
- Dimer-trimer chain
 - Competition of dimer- & trimer formations
 - 4 phases: Dimer, SPT, TL & MD
 - Trimer liquid ground state is realized

Schematic phase diagram columnar liquid staggered \sqrt{r} $\frac{r}{4}$

