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Outline

1. Bosonic case (Haldane chain)

e What is partial tranpose?
e Why it is relevant to entanglement?
e Why it is relevant to SPT phases?

2. Fermionic case (Kitaev chain)

o Collaborators:
Ken Shiozaki (RIKEN) and Hassan Shapourian (Chicago)




Haldane phase

e Spin 1 AF Heisenberg model:

H:JZSZ‘~S¢+1, J>0

e Gapped, unique ground state, no SSB = quantum spin liquid

e SPT phase protected by TRS or a part of spin rotation symmetry



Bulk-boundary correspondence

e Spin 1/2 edge state:

o =Spin1 —— = Bell pair

—O-O-O-O-

e Quantum anomaly: edge states are not invariant under SO(3) rotation,
but pick up a phase (—1)

e Haldane state = collection of Bell pairs



TRS and quantum entanglement

Bell pair:|¥) = % [|01) — |10)]
p=¥N¥| = %[IOI)(OII +110){10] — [01)(10]| — |10)(01]]
How do we quantify quantum entanglement?
Partial transpose:

p = %[|01>(01| + [10)(10] — 00) (11] — [11)(00]]

Affected by partial transpose = entangled
Not affected by partial transpose = untangled

Negative eigenvalues: Spec(p™) = {1/2,1/2,1/2,—1/2}.
C.f. For a classical state:

p = 31100)(00] +[11) (1] = p™



Partial transpose: bosonic case

o Definition: for the density matrix pa,ua,,

To e(_l)

1 2 1 2 2 1 2
<ez(' )‘3; )‘pA1UA2|e§c )ez( )> = (e; 61( )\PAlqu|€§C )‘3; )>

where |e£1’2)> is the basis of Ha;, 4,.
e Partial transpose ~ partial time-reversal
H* _ HT

e Detecting quantum correlation coming from “off-diagonal” parts:
Entanglement negativity and logarithmic negativity:

1
S (Trlp[ = 1), £a=log Tr[p}’|

[Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio
(05) ...]



Partial transpose and Entanglement negativity

How to quantify quantum entanglement between A; and Az when pa,ua,
is mixed 7 E.g., finite temperature, A1 2 is a part of bigger system.

The entanglement entropy is an entanglement measure only for pure
states.

Entanglement negativity and logarithmic negativity, using partial
transpose, can extract quantum correlations only. [Peres (96),
Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio (05) ...]

The logarithmic negativity is not convex but an entanglement monotone.
[Plenio (2005)]



Partial transpose and topological invariant

Partial transpose can be used to construct/define topological invariants of
bosonic topological phases [Pollmann-Turner]

I
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e
I, I

Step 1: The reduced density matrix for an interval I, p; := Trz|W)(¥|.

Step 2: Bipartition I into two adjacent intervals, I = I; U I5.

Step 3: Take partial time-reversal acting only on I; pr — plTl.

Step 4: The invariant is given by the phase of: Z = Tr[p;p1], and +1.
C.f. Negativity: Tr|pl|




e Matrix product state representation:
e Wave function;

U(si,s2,--) =y ASL AT A . 5o =1

G112 2137 314
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T
Z =Tx[prp;']

e Topological invariant:
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[Shiozaki-Ryu (16)]

e The invariant "simulates" the path integral on real projective plane RP? :
SZ

S2
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Kitaev chain

e (1+1)d superconductor: (A =t for simplicity)

H = Z[ tCCJ-HJFACJJrlJJFhC]*MZ

6666666
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Kitaev chain

e Phase diagram: two phases

Topological * Trivial ||
It]

lul = 2[¢|

The two phases are topologically distinct: topological SC for 2|t| > |u

e 7o topological invariant at non-interacting level:
exp |:1,/ dk:A,c(k)} — 41
(Az(k) = i(u(k)|0/0k|u(k)) is the Berry connection)

e With TRS, Zsg classification. [Fidkowski-Kitaev(10)]



Majorana dimers

o Fractionalizing an electron into two Majoranas:

L, . R L . R
C, = Cp 1, clzcm—zcz.

LRL
mx

+1



Majorana Entanglement

e Can partial transpose/negativity can capture fermionic entanglement?

e An example in 1+1 dimensions: the Kitaev chain (with t = A)

H=30 [ = tflfopr + AL+ ] =7 gL



Majorana entanglement

e Consider log negativity £ for two adjacent intervals of equal length.
(L = 40 = 8)
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e Vertical axis: u/t ranging from 0 to 6.

e (Blue circles and Red corsses) is computed by Jordan-Wigner + bosonic
partial transpose

e Log negativity fails to capture Majorana dimers.



Topological/geometrical insight into partial transpose

e From the lesson we learned in the Haldane phase example, we expect that
we can endow a topological spacetime interpretation for partial transpose:
(topological) quantum field theory on an unoriented spacetime

e For Majorana fermions, we should also be able to give a topological
interpretation for partial transpose.

e We use topological quantum field theory as a guide to search for a proper
definition of partial transpose:
Fermionic partial transpose, when properly defined and used, should be
able to introduce unoriented spacetime.



Partial transpose for fermions — our definition

[Shiozaki-Shapourian-SR (16)]

Fermion operator algebra does not trivially factorize for Ha, ® Ha,.
Expand the density matrix in terms of Majorana fermions:
_ Ap A Ay Ay Ag A
pa = const. + Z Pp1p20p11 Cq22 + Z pPlp2Q1Q2cp1 Cpg Cq12c 2+
P1,92 P1,P2,91,92

m-+4n=even
= Z Z Ppisa; Cpl ol Cqt e g
G T
Define partial transpose by pp.q — pp,qi™

- m-4n=even

1 1,, A1 A2 A2

Pa = Z Z Priva; i Cp Cpm Ca1 Can
m,n {pi,q;}

Simple check:

(a2 =0k, (Ph@- @) = () @@ ()"



Comparison with previous definitions

(a)

[Shiozaki-Shapourian-SR (16)]
W

e (Blue circles and Red crosses): Old (bosonic) definition

o (Green triangles and Orange triangles) Our definition;

DA



Gaussian fermionic systems

e Partial transpose of bosonic Gaussian states is still Gaussian; easy to
compute by using the correlation matrix

e Puzzle: Conventional partial transpose of fermionic Gaussian states are
not Gaussian
e pT1 can be written in terms of two Gaussian operators O :
m_1-i 1+i

16)
5 YT

o Negativity estimators/bounds using Tr [\/O+O_] [Herzog-Y. Wang (16),
Eisert-Eisler-Zimboras (16)]
e Spin structures: [Coser-Tonni-Calabrese, Herzog-Wang]

O_

® Qur fermion partial transpose keeps Gaussian fermion states Gaussian.



Applications

e The logarithmic negativity for two adjacent intervals with equal length ¢ at
the critical point of the SSH model.
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The numerical result using the free fermion formula (points) with
L = 40-400 agrees with the CFT result (solid line). & = ilntan%e

Analytical derivation by using the replica method + Fisher-Hartwig.

e Negativity for random fermion chain, etc.



Topological invariant for TRS Majorana chain
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Step 1: The reduced density matrix for an interval I, p; := Tr7|W)(¥|.

Step 2: Bipartition I into two adjacent intervals, I = I; U I5.

Step 3: Take partial time-reversal acting only on I1; pr — pfl.
Step 4: The invariant is given by the phase of: Z = Tr[pIpITl}

This quantity should correspond, in the continuum limit, the partition
function of the Kitaev chain on the real projective plane.



Numerics

e Numerics
(a)
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e The phase of Z is quantized to the 8th root of unity.
Consistent with Zg classification: [Fidkowski-Kitaev(10)]
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Summary

Proposed the new definition of “Fermionic partial transpose”

The fermionic partial transpose can be used to capture
fermionic/Majorana entanglement.

Many-body topological invariants for fermionic SPT phases can be
constructed by using fermionic partial transpose.

Many-body invariants should be contrasted with single particle topological
invariants. (c.f. Kane-Mele formula)



Many-body Zs invariant for 2d time-reversal symmetric Tl
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