
Fermionic partial transpose
� fermionic entanglement and fermionic SPT phases �

Shinsei Ryu

University of Chicago

November 7, 2017



Outline

1. Bosonic case (Haldane chain)
• What is partial tranpose?
• Why it is relevant to entanglement?
• Why it is relevant to SPT phases?

2. Fermionic case (Kitaev chain)
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Haldane phase

• Spin 1 AF Heisenberg model:

H = J
∑
i

Si · Si+1, J > 0

• Gapped, unique ground state, no SSB =⇒ quantum spin liquid

• SPT phase protected by TRS or a part of spin rotation symmetry



Bulk-boundary correspondence

• Spin 1/2 edge state:

• Quantum anomaly: edge states are not invariant under SO(3) rotation,
but pick up a phase (−1)

• Haldane state = collection of Bell pairs



TRS and quantum entanglement

• Bell pair:|Ψ〉 = 1√
2

[|01〉 − |10〉]

ρ = |Ψ〉〈Ψ| =
1

2
[|01〉〈01|+ |10〉〈10| − |01〉〈10| − |10〉〈01|]

How do we quantify quantum entanglement?

• Partial transpose:

ρT2 =
1

2
[|01〉〈01|+ |10〉〈10| − |00〉〈11| − |11〉〈00|]

• A�ected by partial transpose ⇒ entangled
Not a�ected by partial transpose ⇒ untangled

• Negative eigenvalues: Spec(ρT2) = {1/2, 1/2, 1/2,−1/2}.

• C.f. For a classical state:

ρ =
1

2
[|00〉〈00|+ |11〉〈11|] = ρT2



Partial transpose: bosonic case

• De�nition: for the density matrix ρA1∪A2 ,
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where |e(1,2)
i 〉 is the basis of HA1,A2 .

• Partial transpose ' partial time-reversal

H∗ = HT

• Detecting quantum correlation coming from �o�-diagonal� parts:
Entanglement negativity and logarithmic negativity:

1

2
(Tr |ρT2

A | − 1), EA = log Tr |ρT2
A |

[Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio

(05) ...]



Partial transpose and Entanglement negativity

• How to quantify quantum entanglement between A1 and A2 when ρA1∪A2

is mixed ? E.g., �nite temperature, A1,2 is a part of bigger system.

• The entanglement entropy is an entanglement measure only for pure
states.

• Entanglement negativity and logarithmic negativity, using partial

transpose, can extract quantum correlations only. [Peres (96),

Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio (05) ...]

• The logarithmic negativity is not convex but an entanglement monotone.
[Plenio (2005)]



Partial transpose and topological invariant

• Partial transpose can be used to construct/de�ne topological invariants of
bosonic topological phases [Pollmann-Turner]

• Step 1: The reduced density matrix for an interval I, ρI := TrĪ |Ψ〉〈Ψ|.

• Step 2: Bipartition I into two adjacent intervals, I = I1 ∪ I2.

• Step 3: Take partial time-reversal acting only on I1; ρI −→ ρT1
I .

• Step 4: The invariant is given by the phase of: Z = Tr[ρIρ
T1
I ], and ±1.

C.f. Negativity: Tr |ρT1
I |



• Matrix product state representation:
• Wave function;

Ψ(s1, s2, · · · ) =
∑

{in=1,··· }
As1i1i2A

s2
i2i3

As3i3i4 · · · sa =↑, ↓

• Topological invariant:

Z = Tr[ρIρ
T1
I ]



• The invariant "simulates" the path integral on real projective plane RP 2 :
[Shiozaki-Ryu (16)]

= = = =



Kitaev chain

• (1+1)d superconductor: (∆ = t for simplicity)

H =
∑
j

[
− tc†jcj+1 + ∆c†j+1c

†
j + h.c.

]
− µ

∑
j

c†jcj



Kitaev chain

• Phase diagram: two phases

The two phases are topologically distinct: topological SC for 2|t| ≥ |µ|

• Z2 topological invariant at non-interacting level:

exp

[
i

∫ π

−π
dkAx(k)

]
= ±1

(Ax(k) = i〈u(k)|∂/∂k|u(k)〉 is the Berry connection)

• With TRS, Z8 classi�cation. [Fidkowski-Kitaev(10)]



Majorana dimers

• Fractionalizing an electron into two Majoranas:

cx = cLx + icRx , c†x = cLx − icRx .



Majorana Entanglement

• Can partial transpose/negativity can capture fermionic entanglement?

• An example in 1+1 dimensions: the Kitaev chain (with t = ∆)

H =
∑
x

[
− tf†xfx+1 + ∆f†x+1f

†
x + h.c.

]
− µ

∑
x

f†xfx



Majorana entanglement

• Consider log negativity E for two adjacent intervals of equal length.
(L = 4` = 8)

• Vertical axis: µ/t ranging from 0 to 6.

• (Blue circles and Red corsses) is computed by Jordan-Wigner + bosonic
partial transpose

• Log negativity fails to capture Majorana dimers.



Topological/geometrical insight into partial transpose

• From the lesson we learned in the Haldane phase example, we expect that
we can endow a topological spacetime interpretation for partial transpose:
(topological) quantum �eld theory on an unoriented spacetime

• For Majorana fermions, we should also be able to give a topological
interpretation for partial transpose.

• We use topological quantum �eld theory as a guide to search for a proper
de�nition of partial transpose:
Fermionic partial transpose, when properly de�ned and used, should be
able to introduce unoriented spacetime.



Partial transpose for fermions � our de�nition

[Shiozaki-Shapourian-SR (16)]

• Fermion operator algebra does not trivially factorize for HA1 ⊗HA2 .

• Expand the density matrix in terms of Majorana fermions:

ρA = const.+
∑
p1,q2

ρp1p2c
A1
p1
cA2
q2

+
∑

p1,p2,q1,q2

ρp1p2q1q2c
A1
p1
cA1
p2
cA2
q1
cA2
q2

+ · · ·

=

m+n=even∑
m,n

∑
{pi,qj}

ρpi,qj c
A1
p1
· · · cA1

pm︸ ︷︷ ︸
∈A1

cA2
q1
· · · cA2

qn︸ ︷︷ ︸
∈A2

• De�ne partial transpose by ρp,q → ρp,qi
m:

ρT1
A =

m+n=even∑
m,n

∑
{pi,qj}

ρpi,qj i
mcA1

p1
· · · cA1

pm
cA2
q1
· · · cA2

qn

• Simple check:

(ρT1
A )T2 = ρTA, (ρ1

A ⊗ · · · ⊗ ρ
n
A)T1 = (ρ1

A)T1 ⊗ · · · ⊗ (ρnA)T1



Comparison with previous de�nitions

[Shiozaki-Shapourian-SR (16)]

• (Blue circles and Red crosses): Old (bosonic) de�nition

• (Green triangles and Orange triangles) Our de�nition;



Gaussian fermionic systems

• Partial transpose of bosonic Gaussian states is still Gaussian; easy to
compute by using the correlation matrix

• Puzzle: Conventional partial transpose of fermionic Gaussian states are
not Gaussian

• ρT1 can be written in terms of two Gaussian operators O±:

ρT1 =
1− i

2
O+ +

1 + i

2
O−

• Negativity estimators/bounds using Tr [
√
O+O−] [Herzog-Y. Wang (16),

Eisert-Eisler-Zimborás (16)]
• Spin structures: [Coser-Tonni-Calabrese, Herzog-Wang]

• Our fermion partial transpose keeps Gaussian fermion states Gaussian.



Applications

• The logarithmic negativity for two adjacent intervals with equal length ` at
the critical point of the SSH model.

• The numerical result using the free fermion formula (points) with
L = 40-400 agrees with the CFT result (solid line). E = c

4
ln tan π`

L

• Analytical derivation by using the replica method + Fisher-Hartwig.

• Negativity for random fermion chain, etc.



Topological invariant for TRS Majorana chain

• Step 1: The reduced density matrix for an interval I, ρI := TrĪ |Ψ〉〈Ψ|.

• Step 2: Bipartition I into two adjacent intervals, I = I1 ∪ I2.

• Step 3: Take partial time-reversal acting only on I1; ρI −→ ρT1
I .

• Step 4: The invariant is given by the phase of: Z = Tr[ρIρ
T1
I ]

• This quantity should correspond, in the continuum limit, the partition
function of the Kitaev chain on the real projective plane.



Numerics

• Numerics

• The phase of Z is quantized to the 8th root of unity.
Consistent with Z8 classi�cation: [Fidkowski-Kitaev(10)]



Summary

• Proposed the new de�nition of �Fermionic partial transpose�

• The fermionic partial transpose can be used to capture
fermionic/Majorana entanglement.

• Many-body topological invariants for fermionic SPT phases can be
constructed by using fermionic partial transpose.

• Many-body invariants should be contrasted with single particle topological
invariants. (c.f. Kane-Mele formula)



Many-body Z2 invariant for 2d time-reversal symmetric TI
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