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Conclusions in pictures: 

color-orbit and color flip fields
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Conclusions in pictures: 

color-orbit and color flip fields
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Ultracold fermions with three internal states can exhibit very unusual color 

superfluidity in the presence of color-orbit and color-flip fields, where SU(3) 

symmetry is explicitly broken.

The phase diagram of color-flip versus interaction parameter for fixed color-

orbit coupling exhibits several topological phases associated with the nodal 

structure of the quasiparticle excitation spectrum. The phase diagram exhibits 

a pentacritical point where five nodal superfluid phases merge.

Even for interactions  that occur only in the color s-wave channel, the order 

parameter for superfluidity exhibits singlet, triplet and quintuplet 

components due to the presence of color-orbit and color-flip fields.

These topological phases can be probed through measurements of 

spectroscopic properties such as  excitation spectra, momentum distributions 

and density of states.

.Conclusions in words
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Motivation: color superfluidity and 

ultracold fermions 

• Why studying ultracold fermions is important?

• Because it allows for the exploration of several 

fundamental properties of matter, such as 

superfluidity, which is encountered in atomic, 

condensed matter, nuclear and astrophysics.
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Possible phase diagram for 

Quantum Chromodynamics (QCD)

12
SdM – Physics Today, October (2008)



QCD and ultracold fermions (UCF) with 

three internal states: SU(3) case

• QCD – gluons mediate interactions

• QCD – s-wave interactions are not controllable

• QCD - quark masses are different

• QCD – quarks are charged

• QCD – quarks have three colors (internal states)

• UCF – contact interactions

• UCF – s-wave interactions are controllable

• UCF – Fermi atoms masses are the same

• UCF – Fermi atoms are neutral

• UCF – Fermi atoms can have three internal states 
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Ultracold fermions (UCF) with two 

internal states: SU(2) case

14(2008)October Today, Physics-SdM 

KLi, 406

F = 9/2

F = 5/2



Simplest example: colored fermions 

and single interaction channel
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Single  channel

only Red and Blue 

have contact interactions

Green band is inert: non-interacting



BCS Pairing (g << EF or kFas� 0-)
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gEF
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BEC Pairing (g >> EF or kFas� 0+)

FERMI SEA IS 
DEPLETED

EF
Weakly interacting
gas of tightly bound
Molecules with inert 
Green fermions g

2µ = -Eb< 0
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Feshbach Resonances

)(Baag Ss →→ B-dependent

scattering length

Contact

interaction
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E(k) at T = 0 and k
x

= 0 (S-wave)

µ > 0 µ < 0Same Topology
21



QCD-like color superfluidity nearly identical 

to BCS-BEC crossover of SU(2) case  

fermions Greeninert    (2008)Today PhysicsSdM, + 22
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Raman process and spin-orbit coupling
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spin-orbit

detuning

Raman
coupling
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Rb87

SU(2) rotation to new spin basis:
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Experimental phase diagram for 87Rb:

bosons with two internal states (spin-1/2)
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Case with three internal states: 

color-orbit and color flip fields
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Raman Process

YbK, Li, 173406



Case with three internal states

color-orbit and color-flip fields
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Kinetic energies of 

Red, Green and Blue fermions

Color-orbit and 

Color-Zeeman fields

Color-flip field



Case with three internal states: 

color-orbit and color flip fields
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Colored fermions are a correlated 

three band system
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Example of Fermi Surface
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Start with SU(2) case

• For simplicity and to gain insight let me start 

first with the SU(2) case: two colors or simple 

peudospin-1/2 fermions.

• How spin-orbit and Zeeman fields change the 

crossover from BCS to BEC as interactions are 

tuned?
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spin-orbit

detuning

Raman
coupling
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Zeeman and Spin-Orbit Hamiltonian
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Energy Dispersions in the ERD case

Can have intra- and 
inter-helicity pairing.
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Bring Interactions Back (real space)

Kinetic Energy

Contact Interaction

Spin-orbit and Zeeman
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Bring interactions back:

Hamiltonian in initial spin basis
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Bring interactions back:

Hamiltonian in the helicity basis
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Excitation Spectrum

Can be
zero
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Excitation Spectrum (ERD)

US-2 US-1

d-US-0i-US-0

= 0
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Phase diagram for finite spin-orbit 

coupling and changing Zeeman field
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Now look at SU(3) case

• Let me analyze the SU(3) case: three colors or 

pseudo-spin-1 fermions.

• How color-orbit and color-flip fields change 

the crossover from BCS to BEC as interactions 

are tuned?
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SU(3) invariant kinetic energy

and three identical interaction channels
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Pair operator



No color-orbit and no color-flip fields
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KE is SU(3) invariant

Can go to a mixed color basis where only two mixed colors

pair and the third one is inert as a result of SU(3) invariance!

NOT VERY INTERESTING, JUST CROSSOVER!



Add color-orbit and color-flip fields 

(near zero temperature)

45bands quasihole 3 and
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Hamiltonian Blocks
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Mixed (rotated) color basis
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Zero color-orbit coupling
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Non-zero color-orbit coupling
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Non-zero color-orbit coupling
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Color compressibility near 

quintuple point
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Color compressibility near 

gapless R1 to fully gapped FG line
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Momentum distributions 

of original colors
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Order parameter tensor

(mixed color basis)
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Order parameter tensor 

(total pseudo-spin basis)
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SINGLET AND QUINTET PAIRING
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Conclusions in pictures: 

color-orbit and color flip fields
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Conclusions in pictures: 

color-orbit and color flip fields
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Ultracold fermions with three internal states can exhibit very unusual color 

superfluidity in the presence of color-orbit and color-flip fields, where SU(3) 

symmetry is explicitly broken.

The phase diagram of color-flip versus interaction parameter for fixed color-

orbit coupling exhibits several topological phases associated with the nodal 

structure of the quasiparticle excitation spectrum. The phase diagram exhibits 

a pentacritical point where five nodal superfluid phases merge.

Even for interactions  that occur only in the color s-wave channel, the order 
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components due to the presence of color-orbit and color-flip fields.

These topological phases can be probed through measurements of 

spectroscopic properties such as  excitation spectra, momentum distributions 

and density of states.
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THE END
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