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Conclusions in pictures:
color-orbit and color flip fields
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Conclusions in pictures:
color-orbit and color flip fields




Conclusions in words

Ultracold fermions with three internal states can exhibit very unusual color
superfluidity in the presence of color-orbit and color-flip fields, where SU(3)
symmetry is explicitly broken.

The phase diagram of color-flip versus interaction parameter for fixed color-
orbit coupling exhibits several topological phases associated with the nodal
structure of the quasiparticle excitation spectrum. The phase diagram exhibits
a pentacritical point where five nodal superfluid phases merge.

Even for interactions that occur only in the color s-wave channel, the order
parameter for superfluidity exhibits singlet, triplet and quintuplet
components due to the presence of color-orbit and color-flip fields.

These topological phases can be probed through measurements of
spectroscopic properties such as excitation spectra, momentum distributions
and density of states.
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Motivation: color superfluidity and
ultracold fermions

 Why studying ultracold fermions is important?

superfluidity




Possible phase diagram for
Quantum Chromodynamics (QCD)
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QCD and ultracold fermions (UCF) with
three internal states: SU(3) case

QCD — gluons mediate interactions

QCD - s-wave interactions are not controllable
QCD - quark masses are different

QCD — quarks are charged

QCD — quarks have three colors (internal states)

UCF — contact interactions

UCF — s-wave interactions are controllable

UCF — Fermi atoms masses are the same

UCF — Fermi atoms are neutral

UCF — Fermi atoms can have three internal states




Ultracold fermions (UCF) with two
internal states: SU(2) case
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Simplest example: colored fermions
and single interaction channel

Single channel
only Red and Blue

have contact interactions
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Green band is inert: non-interacting




BCS Pairing (g << E; or kra,~> 0)
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BEC Pairing (g >> E. or k.a, = 07)
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Feshbach Resonances
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Contact B-dependent
interaction scattering length
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BEC (u < 0)

BCS (i > 0)
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QCD-like color superfluidity nearly identical
to BCS-BEC crossover of SU(2) case

Unbound
fermions

Fermi
liquid
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Raman process and spin-orbit coupling
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Experimental phase diagram for 8/Rb:
bosons with two internal states (spin-1/2)
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Case with three internal states:
color-orbit and color flip fields
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Case with three internal states
color-orbit and color-flip fields

Kinetic energies of
Red, Green and Blue fermions

Color-orbit and
Color-Zeeman fields

Color-flip field




Case with three internal states:
color-orbit and color flip fields
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Colored fermions are a correlated
three band system

Example of Fermi Surface
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Start with SU(2) case

e For simplicity and to gain insight let me start
first with the SU(2) case: two colors or simple
peudospin-1/2 fermions.

* How spin-orbit and Zeeman fields change the
crossover from BCS to BEC as interactions are
tuned?
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Zeeman and Spin-Orbit Hamiltonian

Hamiltonian Matrix
H,(k) =¢&k)1-h(k)s, —h (k)e, —h,(k)o,

£, (k) = £(k) =g, (k)
£,(k) = £(K) +|hy, (k)

e ()] =[0G+, G+, )




Energy Dispersions in the ERD case

Inter-helicity pairing £, (k) = (k) +\/h22 +




Bring Interactions Back (real space)

Kinetic Energy Spin-orbit and Zeeman

Contact Interaction




Bring interactions back:
Hamiltonian in initial spin basis
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Bring interactions back:
Hamiltonian in the helicity basis




Excitation Spectrum

& (k)= E(K) -
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Excitation Spectrum (ERD)




Phase diagram for finite spin-orbit
coupling and changing Zeeman field

Triple-point: US-0/US-1/US-2




Now look at SU(3) case

e Let me analyze the SU(3) case: three colors or
pseudo-spin-1 fermions.

 How color-orbit and color-flip fields change
the crossover from BCS to BEC as interactions

are tuned?




SU(3) invariant kinetic energy
and three identical interaction channels

il (Q) = Yy flk +Q/2)fl(—k — Q/2)
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No color-orbit and no color-flip fields

NOT VERY INTERESTING, JUST CROSSOVER!

v

Can go to a mixed color basis where only two mixed colors
pair and the third one is inert as a result of SU(3) invariance!




Add color-orbit and color-flip fields
(near zero temperature)

Spectrum has 3 quasiparticle
and 3guasihole bands




Hamiltonian Blocks

cr(k)  —ha(k)/V2

—he(k)/V2  ec(k)
0 —ha(K)/V2




Mixed (rotated) color basis




Zero color-orbit coupling

Color - orbit coupling iszero,
but color - flipfield Q isnot!

Oneof thethreequasiparticle
bands hasasurface of nodes,
the other two are fully gapped.

When color - flipfield Q iszero one
mixed color band iscompletely inert.




Non-zero color-orbit coupling
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Non-zero color-orbit coupling




Color compressibility near
quintuple point
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Color compressibility near
gapless R1 to fully gapped FG line

K =n[on/ oyl
K = KglInQ - Q (1))
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Order parameter tensor
(mixed color basis)
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Order parameter tensor
(total pseudo-spin basis)
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color-orbit and color flip fields
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Conclusions in words

Ultracold fermions with three internal states can exhibit very unusual color
superfluidity in the presence of color-orbit and color-flip fields, where SU(3)
symmetry is explicitly broken.

The phase diagram of color-flip versus interaction parameter for fixed color-
orbit coupling exhibits several topological phases associated with the nodal
structure of the quasiparticle excitation spectrum. The phase diagram exhibits
a pentacritical point where five nodal superfluid phases merge.

Even for interactions that occur only in the color s-wave channel, the order
parameter for superfluidity exhibits singlet, triplet and quintuplet
components due to the presence of color-orbit and color-flip fields.

These topological phases can be probed through measurements of
spectroscopic properties such as excitation spectra, momentum distributions
and density of states.




THE END




