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Quantum Theory of Solids: Two Foundations

Band Theory Quasiparticle

e Bloch waves * Landau quasiparticles
* Energy bands in k-space * mass & lifetime

- 4

particle-wave duality




Modern Developments

Band Theory

Topological Band Theory

» global property of Bloch
eigenstates Y (k) in k-space
Thouless et al (1982), Haldane (1988)...

It's Topo-
LOGICAL!

Topographical
Insulators

Top. crystalline insulator
Top. Kondo insulator
Weyl/Dirac semimetals

diverse phenomena, unified framework



Bewildering Behaviors of Correlated Electron Systems
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Bewildering Behaviors of Correlated Electron Systems
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Sebastian et al, Science (2015); Li et al, Science (2014)

* SmB, & YbB,,: quantum oscillation in heavy fermion insulators



Bulk Fermi arc & Insulator’s Fermi surface

* shaking the fundamental of solid-state theory?
* special or generic phenomena?

e theoretical framework?



Quasiparticles vs. Noninteracting Electrons

Fundamental distinction:

e Quasiparticles have finite lifetime resulting from e-e and e-phonon
interaction at T # 0, and impurity scattering atall T'.

* Non-interacting electrons last forever.

Fermi liquid: g ImE(kp, w = 0) &< T* < kgT

Electron-phonon, quantum ImZ(w~0)~ kgT
critical & chaotic systems:



Damping + Dispersion

Green’s function: GR(k,w) = (w—H(k w))™?!

Quasiparticle Hamiltonian: H(k,w) = Hy(k) + Z(k, w)

(non-Hermitian) Bloch Hamiltonian self-energy

Finite lifetime means X is non-Hermitian: X=X’ + X"

Complex spectrum of H(k, w~0) determines quasiparticle properties
Re(E}) : quasiparticle dispersion

Im(E}) : inverse lifetime

single-band system: E;,, = € — iy



Damping Reshapes Dispersion

Green’s function: GR(k,w)= (w—H(kw))™?
Quasiparticle Hamiltonian: H(k,w) = Hy(k) + Z(k, w)

(non-Hermitian) Bloch Hamiltonian self-energy

Finite lifetime means X is non-Hermitian: X=X’ + X"

Complex spectrum of H(k, w~0) determines quasiparticle properties
Re(E}) : quasiparticle dispersion

Im(E}) : inverse lifetime

multi-orbital systems: H, & X are matrices and generally do not commute

* imaginary part of self-energy resulting from qp decay can have dramatic
feedback effect on qp dispersion in zero/small-gap systems.

Kozii & LF, arXiv:1708.05841



Damping Reshapes Dispersion

Green’s function: GR(k,w) = (w—H(kw))™?!

Quasiparticle Hamiltonian: H(k,w) = Hy(k) + Z(k, w)

(non-Hermitian) Bloch Hamiltonian self-energy

Finite lifetime means X is non-Hermitian: X=X’ + X"

Complex spectrum of H(k, w~0) determines quasiparticle properties

Re(E}) : quasiparticle dispersion

yin and yang of quasiparticles

Im(E}) : inverse lifetime

multi-orbital systems: H, & X are matrices and generally do not commute

* imaginary part of self-energy X'’ resulting from qp decay can have
dramatic feedback effect on gp dispersion in zero/small-gap systems.

The whole is more than the sum of its parts |




Quasiparticles in Zero/Small Gap Systems

Bloch Hamiltonian + self-energy with two lifetimes

Ho(k) = G Bk}~ (vlkm vyk, ) near hybridization
A €2k vyky —V2kg nodes
r light band
(i 0
E_( 0 @rg) _
\/ heavy band

_|_

Two orbitals unrelated by symmetry generally have different lifetimes.

Example: d- and f-orbitals in heavy fermion systems.

Kozii & LF, arXiv:1708.05841



Microscopic Origins of Two Lifetimes

Electron-phonon interaction: Kozii & LF, 1708.05841

* two orbitals with different e-ph coupling constants 4 ,.

Electron-electron interaction:

e periodic Anderson model Yang Qi, Kozii & LF, to appear
H = z Ed(k)d;dk + Ef(k)fk+fk + (deltfk + hC) + z UTlfT,infl,i
k [

interaction on f-orbital only

; : 0 0
U~ - (33)
: ; 0 2y

(a)

p+q

(b)



Asymmetric Damping Reshapes Dispersion

Quasiparticle Hamiltonian H (k) = (ULk“‘ —ih uyhy T )
2

Quasiparticle dispersion Re(E,):

[T # I3

« [} =T, =2y # 0 : two bands stick together to form a bulk Fermi arc,
terminating at k, = 0, k, = 2y /v,

* new fermiology: constant dos, strong anisotropy



Asymmetric Damping Reshapes Dispersion

Quasiparticle Hamiltonian H (k) = ( vrha — il vy Ry T )
2

Quasiparticle dispersion Re(E,):

Prediction: bulk Fermi arc in
heavy fermion systems

« [} =T, =2y # 0 : two bands stick together to form a bulk Fermi arc,
terminating at k, = 0, k, = 2y /v,

* new fermiology: constant dos, strong anisotropy



Interplay of Damping and Coherence

Non-Hermitian quasiparticle Hamiltonian:

(e —iy Ak y = (Ih-12)/2,
Hio = (5T S ) TEETRE

Complex-energy spectrum:

Ei(k)=¢, \/(Elk — € — y)% + |Af| — il

without hybridization, Fermi surface at band crossing €1, = €51

with hybridization and asymmetric damping, Re(£)

 for |Ag| > v:Re(E,) #- Re(E) (gap opens) \ /
 for |Ag| <v:Re(E,) =Re(E)=0 (gap closes) S B ky




Spectral Function

Ak, w) = —Im(TrGR (k, w)) = —Im(Z - (k) + w_El_(k))

constant-energy contour linecuts
w<0 w=0 w>0

ky II n

—> k,

e Dirac point spreads into an arc
* Asymmetry due to two lifetimes




Topological Stability of Bulk Fermi Arc

H(k) = (veky —iy)o, + vk, 0,
> y(—io, 2 0y) atxke = (0,+7/1))

Re(E

\ /k E. (k) = \/(vxk —iy)? + vy

e attwo ends of Fermi arc k = +ky, matrix H is non-diagonalizable
and has only one eigenstate!

* eigenvalue coalescence is unique to non-Hermitian operators.



Exceptional Points

Physics of nonhermitian degeneracies

M.V. BERRY **) 2004

Spawning rings of exceptional points out of
Dirac cones 2015

Bo Zhen'*, Chia Wei Hsu"**, Yuichi Igarashi'**, Ling Lu', Ido Kaminer', Adi Pick"*, Song- Liang Chua®,
John D. Joannopoulos' & Marin Soljacic'

ON THE COMPLETENESS OF THE
EIGENFUNCTIONS OF SOME CLASSES
OF NON-SELFADJOINT LINEAR OPERATORS!

M. V. Keldysh 1971



Exceptional Points

Physics of nonhermitian degeneracies

DIE GRUNDLEHREN DER MATHEMATISCHEN
WISSENSCHAFTEN IN EINZELDARSTELLUNGEN

o M.V. BERRY **) 2004
Perturbation Theory for
Linear Operators
Spawning rings of exceptional points out of
T. Kato .
Dirac cones 2015
1966 Bo Zhen', Chia Wei Hsu"?*, Yuichi Igarashi"**, Ling Lu', Ido Kaminer', Adi Pick"*, Song- Liang Chua®,

John D, Joannopoulos' & Marin Soljadic'

In open systems, non-Hermiticity results from coupling with external bath.

In interacting many-body systems, microscopic Hamiltonian is Hermitian,
while one-body quasiparticle Hamiltonian is non-Hermitian due to damping.

Kozii & LF, arXiv:1708.05841



Topology of Finite-Lifetime Quasiparticles

k-space: :> Non-Hermitian Hamiltonian:
H(k,w) = Hy(k) + Z(k, )

Topology of non-Hermitian quasiparticle Hamiltonian:
the generalization of topological band theory
to interacting electron systems.

*quasiparticles can be electron, magnon, exciton...

Shen, Zhen & LF, arXiv:1706.07435



Topological Band Theory for Non-Hermitian Hamiltonians

arXiv:1706.07435

generic Hamiltonian H(k,, k,,) near exceptional point (EP):

H =e¢eo, + Ajjkjo; ws) E (k)= i\/e(vxkx + vyk,y)
(Vx, Vy, /Uy are complex)

due to double-valuedness of square root, encircling an EP in k-space
swaps the pair of complex eigenvalues: E, - E_, E_ > E,

Im(E)

.\ \ »Re(E)

\ !




Topological Band Theory for Non-Hermitian Hamiltonians

arXiv:1706.07435

generic Hamiltonian H(k,, k,,) near exceptional point (EP):

H =e¢eo, + Ajjkjo; ws) E (k)= i\/e(vxkx + vyk,y)

(Vx, Vy, /Uy are complex)

topological index: vorticity of complex energy “gap” in k-space

1
Vi (I') = —5- 36 Vi arg [E,, (k) — E, (k)| - dk, Im(E)
r A
topological charge of exceptional point: v = i% \*‘\
\ Y > RE(E)
topology guarantees a line of real gap closing ~ »°
(= Fermi arc) emanates from EP.




Exceptional Points: Ubiquitousind = 2

How many parameters must be tuned to hit a degeneracy?

* Hermitian: 3
a - o is degenerate when a = 0 => topological Weyl points in 3D

* non-Hermitian: 2
(d+ib) - g is defective whena - b = 0 and |a| = |b|
=> topological exceptional points in 2D and exceptional loops in 3D.




Exceptional Points in 2D

Introducing generic damping to 2D Dirac fermion:  arXiv:1706.07435

H(k) = (ky — ik))a, + (ky — iK;)0x + (M — i8)0,

* imaginary vector potential:
Dirac point turns into Fermi arc ending at a pair of EPs.

* imaginary Dirac mass
Dirac point turns into “Fermi disk” ending at a ring of EPs

LETTER

Spawning rings of exceptional points out of
Dirac cones

Bo Zhen'*, Chia Wei Hsu"?*, Yuichi Igarashi"**, Ling Lu', Ido Kaminer', Adi Pick"*, Song-Liang Chua®,
John D. Joannopoulos' & Marin Soljac¢i¢!




Exceptional Points in 2D

Introducing generic damping to 2D Dirac fermion:  arXiv:1706.07435

H(k) = (ky — ik))a, + (ky — iK;)0x + (M — i8)0,

Tk

EhN
Ny

Direct quantum Hall transition is replaced by intermediate phase
with a pair of exceptional points at momenta:

k:l: _ _W_Léﬁ + \/(H2 o /"m’Q)(“h‘q’2 + 52)
K K

7Z X 1.




Topological Band Theory for Non-Hermitian Hamiltonians

arXiv:1706.07435

Exceptional points cannot be created or removed alone.
Merging a pair of exceptional points:

1 1 o . o" H 124
e -4 - = 1:resultsin atopological “vortex point”.

2
—% = 0: results in a “hybrid point”, which can be gapped.

N[N

TABLE I. Four types of degeneracy in non-Hermitian Hamiltonians with their properties.

Degeneracy Vorticity Defectiveness

Exceptional point| Half-integer Defective
Hybrid point Zero Defective

Dirac point Zero Non-defective

Vortex point |Nonzero integer | Non-defective




Fermi Arc in Heavy Fermion Systems

p(w)
T=1/3

J¥

-1.0 -0.5 0.0 0.5 1.0

w

DMFT shows temperature-dependent bulk
Yuki Nagai Fermi arc in periodic Anderson model with
(JAEA & MIT) e

d-wave hybridization.




Topology of “Gapped” Non-Hermitian
Band Structure

While F, (k) are generally complex, we define a band
n to be “separable” if its energy F, (k) # FE,,(k) for all
m # n and all k. We define a band n to be “isolated”
if £,(k) # E,, (k") for all m # n and all k, k', i.e., the
region of energies {F,, (k),k € BZ} in the complex plane
does not overlap with that of any other band. In this
case, we say the band F,, (k) is surrounded by a “gap”
in the complex energy plane where no bulk states exist.
A band is called “inseparable” if at some momentum the
complex-energy is degenerate with another band. Our

Left and right eigenstates: H |[¢R) = E, [¢%), HT [¢L) = E* |[¢L)

Shen, Zhen & LF, arXiv:1706.07435



Gapped Non-Hermitian Band Structures

Complex energy plane LL, RR, LR, RL Berry curvature
e Byt (k) = i (05 (1)|0;7) (k) .
0.4f
0.2} Chern numbers: all equal!

1
| ' : ' Re(E) af __ N 2
4 2 | 2 4 NP = oy Ethn w(k)d k,
_04} Proof based on the fact
08! (Y |9n) # 0

* topologically protected edge state of non-Hermitian Hamiltonians

Shen, Zhen & LF, arXiv:1706.07435



Fermi Surface & Quantum Oscillation of
In-Gap Quasiparticles

Motivation: quantum oscillation in SmB, & YbB,,:
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* Ground state of Kondo insulator in periodic Anderson model is
adiabatically connected to band insulator

* In-gap states seen in specific heat, optical conductivity



Fermi Surface & Quantum Oscillation of
In-Gap Quasiparticles

Our proposal: Huitao Shen & LF, to appear

In-gap states are due to quasiparticle damping (e.g., impurity scattering)

Ho(k) = (Elkg?:rl 0 )

€Eok — ZFQ

Aw)
E
N\ L
f 'v/6=2
20 I'y/6 =0.1
I 10 -
Inverted gap e f-electrons have much smaller

damping rate due to localized nature



Fermi Surface & Quantum Oscillation of
In-Gap Quasiparticles

Complex-energy spectrum: Ey(k) =€, + \/(Elk — €y —iy)?+ 6% =il

I —T, > 26: Re(E,) =Re(E)) band gap closes & Fermi surface recovers!

Solution of non-Hermitian Landau level problem:

Alw =0)

1.3

1.2
1.1+
1.0
0.9

Y

Huitao Shen

Quantum oscillation amplitude is largely
determined by the long lifetime of f-band




Quasiparticles in Correlated Electron Systems

Damping =non-Hermicity: reshapes dispersion
& leads to new topology.

Prediction:
e Bulk Fermi arc in heavy fermion systems

* Quantum oscillation in insulators with inverted gap

Outlook:
* non-Hermitian topology + DMFT => material calculation/prediction

* thermodynamics & transport of exceptional quasiparticles



temperature

Damping Reshapes Dispersion

Postscript: Observation of Bulk Fermi Arc and Polarization
Half Charge from Paired Exceptional Points

Hengyun Zhou,'2:* Chao Peng,"?* Yoseob Yoon,* Chia Wei Hsu,> Keith A.
Nelson,* Liang Fu,! John D. Joannopoulos,! Marin Soljaci¢,! and Bo Zhen!®: 1

strange metal

Fermi liquid

antiferromagnet

hole doping

A=791.0 nm

ky an2m




Non-Hermitian Quantum Mechanics:

As an effective theory, it is natural and everywhere.
Its many unusual consequences are waiting to be
explored.

Non-Hermitian = dissipative, open system, subsystem...



Thanks to
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Vlad Kozii Huitao Shen Bo Zhen

Michal Papaj Yuki Nagai Hiroki Isobe




